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Abstract: Maritime transport is a major mode of transportation. Over 80% of international freight is
carried by this mode. A port is a hub of ships and freight in maritime transport. Because of growing
environmental concerns, how to effectively monitor, control, and improve ship emissions in a port has
become a challenge for port administrations. This study combines automatic identification systems
(AIS), ship emission estimation model (SEEM), geographic information system (GIS) mapping, and
a scenario simulation technique to create a ship emission scenario simulation model (SESSM) for
mapping and assessing current ship emissions alongside various “what-if” improvement options in a
port area. A case study of the Port of Keelung in Taiwan is used to illustrate and verify the proposed
model. In this case, the distribution and density of ship carbon emissions are mapped, with the ship
berthing status being identified as the primary source of ship emissions. Meanwhile, nine “what-if”
scenarios based on various combinations of speed policies and shore power supplies are simulated
and analyzed. The results show that the proposed scenario simulation model is an effective tool
to assess various “what-if” emission improvement options and to identify key factors for emission
reduction. The effect of shore power supply on carbon emission reduction is significantly greater
than speed policies. If investment costs are an issue, a balanced emission improvement option is
suggested by combining a new speed policy and 50% shore power supply.

Keywords: ship emission; scenario simulation; automatic identification system (AIS); carbon emis-
sions; geographic information system (GIS)

1. Introduction

Maritime transport has been the primary transportation mode adopted in global trade.
Currently, it transports more than 80% of the world’s freight trade [1]. In maritime transport,
ports play a pivotal role, functioning as a hub of ship activities and freight transport across
countries. However, this critical function also renders ports a hub of maritime transport
pollution. According to the European Sea Ports Organization (ESPO) [2], the top three of
the top ten environmental priorities of EU ports in 2020, (1) air quality, (2) climate change,
and (3) energy efficiency (see Figure 1), are related to ship emissions at ports. Furthermore,
the latest statement from the 2021 United Nations Climate Change Conference (COP 26)
indicates that nearly 200 countries agreed to the Glasgow Climate Pact to keep 1.5 ◦C
alive and finalize the outstanding elements of the Paris Agreement [3]. This means that
greenhouse gas (GHG) emissions mitigation, adaptation, and financing will come into
force in the near future. Additionally, the International Maritime Organization (IMO) also
agreed with COP 26 to accelerate its efforts to reduce GHG emissions. IMO’s Marine
Environment Protection Committee (MEPC) has begun the revision of the Initial IMO
Strategy on reduction in (GHG) emissions from ships [4]. These environmental demands
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make the monitoring and control of the air pollution in ports a great urgency and a huge
challenge not only for ocean carriers but also for port administrations and residents.
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The primary sources of air pollution in a port are ocean-going vessels, harbor craft,
cargo handling equipment, on-road vehicles, and rail locomotives. Among these sources,
vessel emissions are the majority of pollutants [5]. However, pre-existing literature does
not propose an effective method for providing instant air emission information of ship
activities and “what-if” improvement solutions. This research gap deters the progress
of environmental priorities and the control of GHG emissions in the shipping industry.
This research aims to develop an instant and effective method able to estimate and to map
the emissions of ship activities in a port, as well as to simulate the outcomes of various
“what-if” scenarios for decision making if environmental improvement measures are taken.

The fourth IMO GHG study shows that maritime transport emits around 1056 million
tons of CO2 emissions annually and is responsible for about 2.89% of global anthropogenic
greenhouse gas GHG emissions [6]. Either for air pollution or GHG control, vessel emis-
sions can simply not be ignored. A considerable amount of literature regarding vessel
emissions has been published. For instance, Eyring et al. investigated emissions changes of
international maritime shipping from 1950 to 2001. Their results suggest that from 1970 to
2001 the world’s merchant fleet increased rapidly. This fact led to a corresponding increase
in total fuel consumption and air pollutants [7]. Endresen et al. studied the environmental
impacts of increased international maritime shipping and mapped the geographic distribu-
tion of global shipping operations. They showed not only the past trends of emissions but
also the future impacts of emissions [8]. In contrast with the worldwide perspective, several
researchers have focused on ship emissions in a specific region. Leonardi and Browne
presented a method for assessing the carbon footprints of maritime transportation. Based
on the data analysis from import supply chains involving several countries in Europe, the
results discussed logistics and supply chain choices, the influence of trip distance, load fac-
tor, and ship speed [9]. Ammar and Seddiek investigated the case of RO-RO cargo vessels
operating in the Red Sea. They compared the environmental and economic performance of
four emission reduction methods based on different fuel combinations for ship emission
control [10]. Dragović et al. estimated and analyzed ship emission inventories and external-
ities in the associated cruise bays and ports of Dubrovnik (Croatia) and Kotor (Montenegro)
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along the eastern coast of the Adriatic Sea. The work also examined port policies for the
effective control of air pollutions in such environmentally sensitive areas [11].

In the relevant studies of ship emissions, the method of measuring and estimating
ship emissions is a crucial issue and has been widely investigated. Agrawal et al. measured
the emissions of the main propulsion engine, auxiliary engine, and an auxiliary boiler on a
crude oil tanker and presented a set of emission factors of pollutants. This work provided
valuable measurement information for successive studies of ship emission estimation [12].
Corbett et al. adopted a profit-maximizing equation to estimate economically-efficient ship
speeds and discussed the policy impacts of a fuel tax and a speed reduction mandate on
carbon emissions [13].

Instead of these aforementioned works which rely on static historical shipping statistics
for estimating ship emissions, Zaman et al. [14] analyzed realtime ship data in different
operational statuses and developed an algorithm to identify the optimum ship speed with
the least fuel consumption and carbon emissions.

In recent years, researchers have developed another type of emissions estimation
method based on the automatic identification system (AIS). AIS is a tracking system
that has been widely used on vessels and can generate navigational data. This type of
method adopts the data automatically collected from AIS to estimate the emissions from
vessel activities [15–18]. The primary advantage of the AIS-based method is that an AIS
can provide approximately realtime navigational information, which can be applied to
other fields, such as emissions monitoring and emissions mapping. The method does
not require collecting massive historical shipping statistics in advance. In addition, AIS
has been widely installed on various vessels, making additional equipment investment
not required. Li et al. [19] presented a high-resolution ship emission inventory for the
Pearl River Delta region and showed low uncertainty in utilizing AIS data to improve
ship emissions estimates. Chen et al. [20] presented a comprehensive national-scale ship
emission inventory in China for 2014 based on AIS data for the full year of 2014.

As mentioned above, vessel emissions are a major source of air pollution in a port.
The AIS-based method has been applied to the research on port emissions. For instance,
Ng et al. [21] used AIS data to investigate the marine emissions in the neighborhood of
Hong Kong and the Pearl River Delta and discussed a potential policy change based on
the revealed results. Tichavska and Tovar [22] adopted AIS data to estimate the exhaust
pollutants related to ferry and cruise operations by sea in Las Palmas Port. Chen et al. [23]
presented a high temporal-spatial ship emission inventory in Qingdao Port and its adjacent
waters, also based on AIS data. In addition, Yang et al. [24] and Toscano et al. [25] performed
similar studies but considered local issues for Tianjin port and Naples port, respectively.
Zhang et al. [26] also used AIS data to estimate the ship emission inventory but focused on
unidentified vessels with missing ship parameters. Furthermore, Huang et al. [27] dealt
with the needs of real-time ship emission monitoring. They presented a method of dynamic
calculation of ship emissions based on real-time ship trajectory data. Weng et al. [28]
provided higher spatial-temporal resolution for ship emission estimation.

To date, most of the prior research about maritime emissions based on AIS data focused
on macro-scale spatial distribution of ship emissions around the globe or in a broad area
of sea or coast, such as the Pearl River Delta, the Yangtze River, the Baltic Sea area, or the
Adriatic Sea. Few studies have looked at micro-scale spatial distribution ship emissions in a
port. Prior research tends to analyze the existing static condition of air pollution from vessel
activities and lacks useful tools to evaluate the emissions in various “what-if” scenarios to
identify an appropriate improvement alternative. Instead of analyzing and assessing port
emissions in a passive manner, this study introduces the technique of simulation to explore
proactive emission improvement alternatives. Few past studies address this issue.

This paper combines historical AIS data, a ship emissions estimation model, and a
geographic information system (GIS) to create a scenario simulation model for mapping and
assessing ship emissions in a port area. The proposed model can present the distribution
and volume of ship emissions not only at current status but also in various “what-if”
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scenarios. This provides the advantage of realtime environmental monitoring and allows
port administration to evaluate which emission improvement alternative performs better.

The rest of this paper is organized as follows: Section 2 describes the study’s frame-
work and method, and Section 3 details the case for analysis and simulation. Section 4
discusses the simulation results using the proposed method. Finally, Section 5 presents the
conclusions and potential opportunities for future research.

2. Methods

The framework of the proposed method is called Ship Emissions Scenario Simulation
Model (SESSM) and is illustrated in Figure 2. It requires three types of input data: ship
specifications, AIS data, and port mapping information. Ship specifications include ship
size, ship tonnage, and propulsion machine. AIS dynamic data mainly include ship
direction, position, speed, etc. These two types of data are the input of the Ship Emissions
Estimation Model (SEEM). SEEM uses the data as the basic parameters to estimate the
volume of ship emissions. Port mapping information provides the scope of the mapping
area of the port for ship emissions monitoring. It is the input of GIS mapping of ship
emissions and thus needs to be defined clearly. Combining the output of SEEM and port
mapping information, GIS maps the distribution and density of ship emissions in a specific
port area. These components form the basic framework of the SESSM. The output of the
SESSM can be used either for the illustration of the current ship emission status or for
the simulation of different “what-if” scenarios. Furthermore, they can be compared and
analyzed to improve the control of ship emissions in a port area and to find appropriate
improvement options for ship emission reduction. More details of the framework are
described below.
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2.1. Automatic Identification System (AIS)

AIS is a tracking system, which has been widely used on ships at sea. The AIS combines
Global Positioning System (GPS) and Very High Frequency (VHF) radio communication
technology and enables ships to exchange various navigational information in two different
modes—ship-to-ship and ship-to-shore—as shown in Figure 3. The main AIS facilities on
land include vessel traffic service (VTS) centers and AIS base stations. The broadcast navi-
gational information of the AIS mainly includes three types: static, dynamic, and voyage.
The static information contains ship identification number (known as IMO number), length,
beam, and ship type. The dynamic information varies with time, frequently containing
position, course, speed, heading, etc. The voyage-related information includes hazardous
cargo onboard, draft, destination, route plan, etc. Using this information, the AIS can
provide various maritime functions, such as collision avoidance, navigation, maritime
security, search, and rescue, etc. In this study, the traditional roles of the AIS are expanded
to the environmental monitoring of ship activities.
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2.2. Ship Emission Estimation Model (SEEM)

Several AIS-based models have been developed to estimate ship emissions [15–18].
Most of these models calculate ship emissions mainly based on engine activities and energy
consumption. This study assesses the emissions of individual ships as a function of vessel
energy demand multiplied by an emission factor and fuel correction factor as calculated
in Equation (1). This estimation model has been implemented and verified by the port of
Los Angeles and the major ports of Taiwan [5,30]. The energy demand is the energy output
of engines on a ship, which is measured in kW-hr. It comes from three types of sources:
main engines, auxiliary engines, and auxiliary boilers. See Equation (2) below. The energy
demand is mainly determined by the maximum continuous rated engine power (MCR),
load factor (LF), and activity (Act), as shown in Equations (3)–(5). MCR power is defined
as the manufacturer’s tested engine power and related to the highest power available from
a ship engine during average cargo and sea conditions. The load factor means propulsion
engine load factor and is expressed as the cube of the ratio of a ship’s actual speed to
the ship’s maximum speed as calculated in Equation (6). From a practical perspective,
operating a ship at 100% of its MCR power is very costly in terms of fuel consumption and
engine maintenance. Therefore, at normal service speed, a ship usually has a load factor of
close to 80%. The activity refers to propulsion engine activity and is measured in operation
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hours of an engine as calculated in Equation (7). The calculation of the fuel correction factor
in Equation (1) follows Table A7 in Appendix A.

E = Energy × EF × FCF/106 (1)

Energy = Energyme + Energyae + Energyab (2)

Energyme = MCR × LFme × Act (3)

Energyae = MCR × LFae × Act (4)

Energyab = LFab × Act (5)

LF = (
AS
MS

)
3

(6)

Act = D/AS (7)

The nomenclature used in Equations (1)–(7) is provided below.

E: Emission (ton);
Energy: Total energy demand (kW-hrs);
Energyme: Energy demand of a main engine (kW-hrs);
Energyae: Energy demand of an auxiliary engine (kW-hrs);
Energyab: Energy demand of an auxiliary boiler (kW-hrs);
MCR: Maximum continuous rating power (kW);
LFme: Load factor of a main engine;
LFae: Load factor of an auxiliary engine;
LFab: Load factor of an auxiliary boiler;
Act: Activity (hrs);
EF: Emission factor (g/kW-hrs);
FCF: Fuel correction factor;
AS: Actual speed (knots);
MS: Maximum speed (knots); and
D: Distance (nautical miles).

Ship emissions contain various types of pollutants as shown in Appendix A Table A4,
such as 10-µm micron particulate matter (PM10), 2.5-µm particulate matter (PM2.5), oxides
of nitrogen (NOx), oxides of sulfur (SOx), carbon monoxide (CO), etc. Because of intensive
concerns on the global impact of the greenhouse effect and climate change in recent years,
this study focuses on GHGs, and the results present only one type of emission, carbon
dioxide equivalent (CO2e). However, using the Tables A4–A6 in Appendix A, the other
pollutants can be easily estimated, and other indicators or multilayer mapping can also be
easily applied in the proposed model.

The static information of AIS data, such as IMO ship identification number, can help
us identify critical ship characteristics, such as ship tonnage and power sources. Moreover,
the dynamic information of AIS data can provide other critical parameters, such as position
and speed. These parameters enable SEEM to effectively estimate the emissions of a ship
during different times.

2.3. Geographic Information System (GIS)

GIS is a system used to create, analyze, manage, and present various geographic
data on a map. It has been widely applied in different fields, including traffic navigation,
real estate, national defense, natural resources, etc. Based on the data of ship emissions
estimated by SEEM, the GIS in the study is used to visualize the distribution of ship
emissions in a port area and to simulate “what-if” scenarios of emissions improvement
options. The GIS software used in the paper is ArcMap 10, which maps the port area in
grids and plots the density of ship emissions in different colors.
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3. Case
3.1. The Port of Keelung

The focus point of this study is the Port of Keelung, a major port in northern Taiwan
established in 1886, at 25.1346◦ N, 121.7411◦ E (see Figure 4). The Port of Keelung handles
about 1.53 million TEU containers and 63 million tons of cargo annually [31]. The AIS data
in the study were collected by the AIS base stations around the port in June 2015, including
425 individual ships. Ship status includes sailing on the sea, maneuvering, and berthing.
The geographical domain designed for monitoring in the port is the square zone within the
range of 20 nautical miles (NM) outside the center of the port, as indicated in Figure 4. The
site is plotted in a grid with 500-meter intervals, as shown in Figure 5. The berthing area is
the circle area at the bottom of Figure 5.
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3.2. “What-If” Scenarios of Ship Emissions Improvement Plans

In addition to presenting the current status of ship emissions, evaluating various
ship emissions improvement plans is another crucial issue in this study. Presently, there
are several common measures for vessel air pollution prevention in international port
administrations, such as the use of shore power, the use of low-sulfur fuels, the decrease in
vessel speed, etc. This study selected vessel speed policy and the use of shore power as
key improvement factors with which to construct nine different “what-if” scenarios. Each
factor had three options or levels, as shown in Tables 1 and 2.

Table 1. Description of improvement factors.

Improvement Factors Options/Levels Remark

Vessel Speed Policy

<20 NM: 12 knots Current speed policy

<20 NM: 10 knots Speed policy 1
<10 NM: 7 knots

<20 NM: 12 knots

Speed policy 2<15 NM: 10 knots
<10 NM: 8 knots
<5 NM: 5 knots

Shore Power Supply
0% Current facility status

50%
100%

Table 2. What-if scenarios based on improvement factors.

Scenarios
Improvement Factors

Speed Policy Shore Power Supply

1 Current Speed Policy 0%
2 Current Speed Policy 50%
3 Current Speed Policy 100%
4 Speed Policy 1 0%
5 Speed Policy 1 50%
6 Speed Policy 1 100%
7 Speed Policy 2 0%
8 Speed Policy 2 50%
9 Speed Policy 2 100%

In Table 1, the first factor, “Vessel Speed Policy,” included three different options:
(1) current port speed policy, (2) speed policy 1, and (3) speed policy 2. The “current speed
policy” is the speed policy that is being implemented by the Port of Keelung. As shown
in Figure 6, it requests the ships to decrease their speed to under 12 knots within the port
area (<20 NM). The other two options are “what-if” speed policies for improving emissions.
The “speed policy 1” and “speed policy 2” are stepwise speed policies that request ships
to decrease the speed at different levels within different distance ranges from the port, as
shown in Table 1 and Figures 7 and 8.

In Table 1, the second factor, “Shore Power Supply,” has three different levels: 0%,
50%, and 100%. These levels indicate the percentage of onshore power the berthed ships in
a port use. Currently, the Port of Keelung has very few facilities providing shore power
to berthing ships. Thus, 0% is close to the current status of power supply. The other two
levels, 50% and 100%, are “what-if: plans for improving emissions. Because we did not
have enough information about how many percentages of berthing ships would turn on
their auxiliary boilers, we assumed that berthing ships do not produce emissions for easy
estimation. Combining the two factors and their three options (or levels), Table 2 constructs
nine “what-if” scenarios. The proposed SESSM can provide the emissions outcomes in the
current situation and the “what-if” scenarios.
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4. Results and Discussions

Based on the proposed SESSM methodology, Figures 9–11 illustrate the simulation
result of the distribution and density of carbon emissions in the nine different scenarios
in the port area of Keelung. The colors in the grid (500 × 500 m2) represent the density of
carbon emissions. Density is indicated (from low to high) as white, dark green, light green,
yellow, orange, and red. The density indicator of carbon emissions (ton per cell in the grid)
for different colors is presented in Figure 9.
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4.1. Vessel Speed Policy

Figures 9 and 10a–d and 11a–d represent three sets of scenarios for the three speed
policies. Scenarios 1–3 followed the current speed policy, Scenarios 4–6 followed speed
policy 1, and Scenarios 7–9 followed speed policy 2. We can observe that the speed policies
have a significant impact on the distribution and density of ship carbon emissions in
the sailing area of the port. The sailing area of the port in Figures 9 and 10a,b has more
dense red and orange cells than Figures 10c,d and 11a. Figure 11b–d have more dense
green and yellow cells than the other figures (i.e., Figures 9, 10 and 11a). This indicates that
the proposed stepwise speed policies are environmental friendly, producing less carbon
emission than the current speed policy during sailing status. Speed policy 2, which has
more interval speed reduction, performs better than speed policy 1 in carbon emissions.
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4.2. Shore Power Supply

Figures 9, 10c and 11b are the scenarios showing the current port facility status.
Figures 10a,d and 11c are the simulation scenarios for shore power levels of 50%, and
Figures 10b and 11a,d are the simulation scenarios for shore power levels of 100%. Obvi-
ously, the current port status has red cells concentrated in the berthing area, indicating
the existing port facilities do not supply any power to berthing ships. It causes ships to
produce serious carbon emissions staying in the berthing area. If the shore power level
increases to 50%, the number of red cells decreases. This simulation result tells that the
ship carbon emissions can be reduced significantly. If the shore power level increases
to 100%, the red cells all turn orange or yellow indicating that the ship emissions are
improved further. However, the maneuvering activities of the ships in the berthing area
still produce a tremendous amount of carbon emissions. This means the cells will not turn
completely green.

4.3. Volume of Ship Emissions

Figure 12 shows the total volume of ship carbon emissions and the emissions volume
of different ship statuses (sailing and berthing) in various scenarios. Scenario 1, the
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current port status, has the highest carbon emissions, and Scenario 9 has the lowest carbon
emissions. Scenarios 3, 6, and 9 simulate 100% shore power supply, so emissions at the
berthing status (grey portion) are zero.
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Figure 12. Volume of ship carbon emissions in different scenarios.

Table 3 presents the composition percentage of carbon emissions during sailing and
berthing and the influence of the improvement factors, speed policy, and shore power. In
the current port status (Scenario 1), carbon emissions generated by sailing and maneuvering
are about one-third (36.6%), and those generated by berthing are about two-thirds (63.4%).
This indicates that in our mapping area, berthing is the major source of carbon emissions.
If the shore power supply increases to 50%, as in Scenario 2, about one-third of the total
carbon emissions (31.7%) can be reduced. Suppose the shore power supply increases to
100%, as in Scenario 3, all emissions during berthing can be reduced. That means that
two-thirds of the total emission (63.4%) can be reduced simply by using shore power.
Therefore, the implementation of shore power is a critical measure for the reduction in
carbon emissions in a port area.

Table 3. The influence of improvement factors on ship carbon emissions in different scenarios.

Scenarios
Composition % Influence Factors

Sailing and
Maneuvering Berthing Speed

Policy
Shore
Power

Emissions
Difference

1 36.6% 63.4% – – current status
2 53.6% 46.4% – 50% −31.7%
3 100.0% 0.0% – 100% −63.4%
4 29.8% 70.2% policy 1 – −9.7%
5 45.9% 54.1% policy 1 50% −41.4%
6 100.0% 0.0% policy 1 100% −73.1%
7 23.4% 76.6% policy 2 – −17.2%
8 37.9% 62.1% policy 2 50% −48.9%
9 100.0% 0.0% policy 2 100% −80.6%

Because emissions for sailing and maneuvering account for only 36.6%, positive results
from a speed policy are much less than those of providing shore power supply. If speed
policy 1 is implemented, as outlined in Scenario 4, total emissions can be reduced less than
10%. If speed policy 2 is implemented, as in Scenario 7, less than 18% of total emissions
can be reduced. Comparing the two speed policies, the contribution of speed policy 2 to
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the reduction in total ship carbon emissions is almost double (17.2% vs. 9.7%). Obviously,
speed policy 2 outperforms speed policy 1 in emissions reduction.

Presently, the port has insufficient shore power facilities. Since the installation of shore
power facilities would require an extra investment cost, increasing the shore power supply
to 100% may not be achievable in a short time. Thus, an initial change to 50% shore power
supply is a reasonable improvement target. Scenario 8, the improvement option combining
speed policy 2 and shore power 50%, is the best one among all 50% shore power options,
as it can reduce the most carbon emissions—almost half of the total emissions (48.9%).

5. Conclusions

This paper combined AIS, SEEM, GIS mapping, and a scenario simulation technique
to construct a ship emissions scenario simulation model for mapping and assessing the
ship emissions of the current status and “what-if” improvement scenarios in a port area.
The proposed model successfully mapped and estimated the distribution and density of
the Port of Keelung and simulated the other “what-if” improvement scenarios. The results
show that SESSM is an effective tool to assess various “what-if” emission improvement
options and is able to identify key factors for emission reduction. Based on the case study of
the Port of Keelung, the primary source of ship carbon emissions comes from ship berthing
status. Thus, the improvement of shore power supply can reduce total ship emissions
significantly, especially in the area of the berthing docks. However, this improvement
incurs a great number of investment costs. The change of speed policies affects emissions
less than the shore power supply does but will not require additional investment costs
from port administrations. The improvement option balancing the two factors seems to be
the best initial option.

Since the proposed simulation model is innovative to the relevant study of ship emis-
sions control, it may not be sufficiently refined. Many issues have not been fully addressed
and need to be perfected in future work. For instance, the simulation model is deter-
ministic. Other critical variables, such as investment costs, operation costs, maintenance
costs, weather, and sea conditions have not been considered. A complicated simulation
model involving these stochastic and realistic elements can be developed to provide further
financial analysis for port planning evaluation. In addition, the scenarios include only
two improvement factors—speed policies and shore power supply. If relevant data iare
available, more experiment factors and levels can be added into the simulation scenarios to
provide port administrations with more feasible and flexible options for decision making.
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Appendix A

Table A1. Parameter Defaults for Ocean-going Vessels [32].

Vessel Type
Maximum
Rotational

Speed (rpm)

Maximum Main
Engine Power

(kW)

Maximum
Speed (Knot)

Auxiliary
Engine Power

(kW)

Bulk Carrier 123 8373 14 1486
Container ship 107 32,082 21 6100

Passenger 174 21,848 19 6752
General Cargo 178 4540 13 1195

Ro/Ro 159 8805 19 1175
Tanker 156 7055 14 2179
Other 171 4934 12 1455

Table A2. Auxiliary Engine Power and Load Factor Defaults [32].

Vessel Type Auxiliary Engine
Power (kW)

Load Factor Defaults (%)

Sea Maneuvering Berthing

Bulk 2850 17% 45% 10%
Container 1000 2090 13% 50% 18%
Container 2000 4925 13% 50% 22%
Container 3000 5931 13% 50% 22%
Container 4000 7121 13% 50% 18%
Container 5000 11,360 13% 50% 16%
Container 6000 13,501 13% 50% 15%
Container 7000 13,501 13% 50% 15%
Container 8000 13,501 13% 50% 15%

Passenger 3900 15% 45% 32%
General Cargo 1776 17% 45% 22%

Ro/Ro 2850 15% 45% 26%
Tanker All_Small 1911 24% 33% 26%
Tanker Panamax 2520 24% 33% 26%
Tanker Afranax 2544 24% 33% 26%
Tanker Suezmax 2865 24% 33% 26%

Tanker VLCC 3388 24% 33% 26%
Tanker ULCC 3667 24% 33% 26%

Other 1776 17% 45% 22%

Table A3. Auxiliary Boiler Load Defaults (kW) [32].

Vessel Type
Auxiliary Boiler Load Defaults (kW)

Sea Maneuvering Berthing

Bulk 0 109 109
Container 0 506 506
Passenger 0 1000 1000

General Cargo 0 106 106
Ro/Ro 0 109 109
Tanker 0 371 3000
Tanker 0 346 346
Other 0 371 371

Table A4. Main Engine Emission Factors (Unit: g/kWh) [32].

Model Year NOx VOC CO SO2 PM10 PM2.5 DPM CO2 N2O CH4

<=1999 14 0.5 1.1 11.5 1.5 1.2 1.5 683 0.031 0.01
2000–2010 13 0.5 1.1 11.5 1.5 1.2 1.5 683 0.031 0.01
2011–2015 10.5 0.5 1.1 11.5 1.5 1.2 1.5 683 0.031 0.01
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Table A5. Auxiliary Engine Emission Factors (Unit: g/kWh) [32].

Model Year NOx VOC CO SO2 PM10 PM2.5 DPM CO2 N2O CH4

<=1999 14.7 0.5 1.1 12.3 1 0.8 1 683 0.031 0.008
2000–2010 13 0.5 1.1 12.3 1 0.8 1 683 0.031 0.008
2011–2015 10.5 0.5 1.1 12.3 1 0.8 1 683 0.031 0.008

Table A6. Auxiliary Boiler Emission Factors (Unit: g/kWh) [32].

NOx VOC CO SO2 PM10 PM2.5 DPM CO2 N2O CH4

2.1 0.1 0.2 16.5 0.8 0.6 0 970 0.08 0.002

Table A7. Fuel Correction Factor [32].

NOx VOC CO SO2 PM10 PM2.5 DPM CO2 N2O CH4

HFO (2.7%S) 1 1 1 1 1 1 1 1 1 1
HFO (1.5%S) 1 1 1 0.555 0.82 0.82 0.82 1 1 1
MGO (0.5%S) 0.94 1 1 0.185 0.25 0.25 0.25 1 1
MDO (1.5%S) 0.94 1 1 0.555 0.47 0.47 0.47 1 1
MGO (0.1%S) 0.94 1 1 0.037 0.17 0.17 0.17 1 1
MGO (0.3%S) 0.94 1 1 0.111 0.21 0.21 0.21 1 1
MGO (0.4%S) 0.94 1 1 0.148 0.23 0.23 0.23 1 1
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