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Abstract: In this study, an analytical solution for the buckling of a composite cylindrical shell subjected
to hydrostatic pressure is proposed. The boundary conditions of the composite cylindrical shell
are cantilever-like, with one end fixed and the other end connected to a rigid disk. The differential
equations are solved using the Galerkin method. The axial displacement of the shell is approximated
by the first mode shape of the transverse vibration of the clamped sliding beam. The circumferential
displacement and deflection are approximated by the first derivation of the beam function. Based
on this solution, an analytical formula enabling prediction of the critical buckling pressure and
buckling mode of composite orthotropic cylindrical shells is derived. A finite element analysis and
external hydrostatic pressure test are conducted to verify the proposed approach. The efficiency and
accuracy of the analytical solution in predicting the critical buckling pressure and buckling mode are
demonstrated.

Keywords: composite cylindrical shell; critical buckling pressure; mode; hydrostatic pressure

1. Introduction

Composite materials have been widely used in civil, aeronautical and marine en-
gineering fields due to their excellent mechanical properties, such as their high specific
strength and stiffness [1]. In recent years, composite cylindrical shells have been increas-
ingly applied in underwater vehicles to withstand hydrostatic pressure and improve the
buoyancy-to-weight ratio [2].

Buckling [3–9] is a major failure form for thin-walled composite cylindrical shells.
Hajlaoui studied the buckling and postbuckling analysis of composite shell structures using
modified first shear deformation theory [3,4], enhanced solid-shell elements and transverse
shear correction [5,6]. Some researchers have investigated the buckling of composite
cylindrical shells subjected to hydrostatic pressure using experimental methods. Carvelli [7]
conducted off-shore testing and observed considerable deformation and the collapse instant
of a glass-fiber-reinforced polymer cylindrical shell. Denardo [10] and Gupta [11] carried
out experiments to reveal the mechanisms of shock-initiated buckling of a composite
cylindrical shell. Hur [12] investigated the postbuckling of composite cylinders under
external hydrostatic pressure. Ross [13] studied the buckling of carbon–glass composite
tubes under uniform external hydrostatic pressure. Moon [14] researched the buckling
of filament winding composite cylinders with three winding sequences of [±30/90]FW,
[±45/90]FW and [±60/90]FW under external hydrostatic pressure for underwater vehicle
applications. Tang [15] studied the failure mode of circumferentially corrugated cylinders
under external hydrostatic pressure. In the abovementioned studies, the critical buckling
pressure was determined by the instantaneous pressure when the composite cylindrical
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shell collapsed. An external hydrostatic test helped scholars understand the ultimate
bearing capacity of the shell structure. In recent years, analytical and numerical methods
have been widely used to predict the buckling of cylindrical shells subjected to hydrostatic
pressure. Some researchers have studied the buckling strength of cylindrical shells, focusing
on the influence of winding patterns [16] and imperfection [17–19]. Li [20] evaluated the
critical buckling pressure of pipes under hydrostatic pressure by considering geometrical
imperfections. Almeida [21] predicted the buckling load of composite tubes under external
pressure, whereby cylindrical shells with various winding patterns were tested. Lopatin
derived analytical solutions for the critical buckling pressure of composite cylindrical shells
subjected to external pressure. One was for the buckling of cylindrical shells with rigid
end disks under hydrostatic pressure [22], while the other was for a cylindrical shell with
fully clamped ends loaded by lateral pressure [23]. Matos [24] presented a closed-form
solution for the critical buckling pressure of underwater composite cylinders with arbitrary
configurations. In addition, several studies [25–30] have been conducted on optimization
design to enhance the buckling resistance of cylindrical shells. Messager [31] and Shen [32]
used an optimization algorithm coupled with an analytical model to maximize the stability
limits of thin-walled underwater composite cylindrical vessels. Lee [33] optimized the
design load of a composite sandwich cylinder under external hydrostatic pressure by
applying a micro genetic algorithm and finite element analysis. In the above studies, the
optimization objective was achieved mostly by solving differential equations using the
analytical method or finite element method. From reviewing the above studies, it was
found that the buckling deformation behavior has rarely been reported. In one study, a
cylindrical shell subjected to hydrostatic pressure was closed at both ends, which meant
the deformation phenomenon was hard to observe. This motivated the authors to propose
effective methods to study the buckling behavior of cylindrical shells. To this end, a new
kind of cantilever-like boundary condition is constructed for composite cylindrical shells
under hydrostatic pressure in this work. The buckling deformation behavior is studied
using experimental and analytical methods.

This work is from our series of studies, including [34], where the buckling of composite
cylindrical shells with clamped ends under hydrostatic pressure was investigated. In the
present investigation, an analytical solution for the buckling of composite cylindrical shells
under hydrostatic pressure with one fixed end and one cantilever-like end is proposed.
The first mode shape of the transverse vibration of the clamped sliding beam function and
its first derivation are chosen to approximate the axial displacement and circumferential
displacement of the shell, respectively. The Galerkin method is used to solve the differential
equations. Furthermore, analytical examples are conducted to predict the buckling pressure
and buckling mode of the composite cylindrical shell. An external hydrostatic pressure test
is carried out and the buckling deformation shape is observed. The deviations between the
analytical and experimental results are discussed. Eventually, the efficiency and accuracy
of the proposed approach are validated.

2. Linearized Buckling Analytical Solution

The geometry of the composite cylindrical shell with cantilever-like boundary condi-
tions is shown in Figure 1. The length of the shell is L, including the left fixed boundary and
the right rigid end disk. The radius of the middle surface is R. The composite cylindrical
shell is subjected to uniform external hydrostatic pressure p, which can result in shell
buckling.
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Figure 1. Composite cylindrical shell with cantilever-like boundary conditions under hydrostatic
pressure.

Here, linearized buckling equations are used for the orthotropic cylindrical shell [35]:

∂Nx
∂x +

∂Nxy
∂y = 0

∂Nxy
∂x +

∂Ny
∂y +

∂Mxy
R∂x +

∂My
R∂y = 0

∂2 Mx
∂x2 + 2 ∂2 Mxy

∂x∂y +
∂2 My
∂y2 −

Ny
R + N0

x
∂2ω
∂x2 + N0

xy

(
2 ∂2ω

∂x∂y −
∂υ

R∂x

)
+ N0

y

(
∂2ω
∂y2 − ∂υ

R∂y

)
= 0

(1)

in which Nx, Ny and Nxy are the longitudinal, circumferential and shear membrane force
resultants, respectively; Mx, My and Mxy are bending and twisting moments, respectively.
The constitutive equations are expressed as [36]:

Nx = A11ε0
x + A12ε0

y, Ny = A12ε0
x + A22ε0

y, Nxy = A66ε0
xy (2)

Mx = D11kx + D12ky, My = D12kx + D22ky, Mxy = D66kxy (3)

in which Aij and Dij (i, j = 1, 2, 6) are the extensional and bending stiffness, respectively;
ε0

x, ε0
y and ε0

xy are longitudinal, circumferential and in-plane shear strains, respectively; kx,
ky and kxy are bending and twisting deformation, respectively. According to thin shell
theory [31], the geometric equations are:

ε0
x =

∂u
∂x

, ε0
y =

∂υ

∂y
+

ω

R
, ε0

xy =
∂u
∂y

+
∂υ

∂x
(4)

κx = −∂2u
∂x2 , κy =

∂υ

R∂y
− ∂2ω

∂y2 , κxy =
∂υ

R∂x
− 2

∂2ω

∂x∂y
(5)

in which u and υ are the in-plane displacements along axial and circumferential directions,
respectively; ω is the deflection of the middle surface.

Equations (1)~(5) should be supplemented with boundary conditions at two ends. For
the fixed end, it is assumed that the axial displacement of the edge of the cylindrical shell is
zero and takes its minimum value. This can be achieved by:

∂u
∂x
|x=L = 0 and Nx|x=L = 0 (6)
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For the right end, this is connected to the rigid disk, allowing axial displacement with
its maximum value. This boundary condition yields:

ε0
x =

∂u
∂x

, ε0
y =

∂υ

∂y
+

ω

R
, ε0

xy =
∂u
∂y

+
∂υ

∂x
(7)

As for the circumferential displacement υ and deflection ω, they should satisfy the
following conditions according to the buckling mode of the cylindrical shell shown in
Figure 2:

υ|x=0,L = 0, ω|x=0,L = 0 (8)
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Taking the prebuckling state of the shell for the membrane, the resultants N0
x , N0

y and
N0

xy in Equation (1) are determined:

N0
x= −pR/2, N0

y= −pR, N0
xy = 0 (9)

Substituting the constitutive equations, geometric equations and the resultants of the
prebuckling state into Equation (1), the following presentations are obtained in terms of
displacements u, υ and ω:
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(
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(
∂3υ

R∂x2∂y −
∂4ω

∂x2∂y2

)
+ D66

(
2∂3υ

R∂x2∂y −
4∂4ω

∂x2∂y2

)
− D12

∂4ω
∂x2∂y2

+D22

(
∂3υ

R∂y3 − ∂4ω
∂y4

)
− 1

R

{
A12

∂u
∂x + A22

(
∂υ
∂y + ω

R

)}
− pR

2
∂2ω
∂x2 − pR

(
∂2ω
∂y2 − ∂υ

R∂y

)
= 0

(10)

Considering the buckling mode of the cylindrical shell shown in Figure 2, u, υ and
ω are periodic functions of the circumferential coordinate y, which can be represented as
follows:

u = U(x) cos
ny
R

, υ = V(x) sin
ny
R

, ω = W(x) cos
ny
R

(11)

in which n is the number of circumferential waves in the buckling mode of the shell, while
the functions U(x), V(x) and W(x) are determined by the buckling shape of the shell along
its axial direction. Substituting Equation (11) into Equation (10), the following system of
homogeneous ordinary differential equations is obtained:

A11
∂2U(x)

∂x2 − A66
n2

R2 U(x) + (A12 + A66)
n
R

∂V(x)
∂x + A12

1
R

∂W(x)
∂x = 0

(−A66 − A12)
n
R

∂U(x)
∂x +

(
−A22 − D22

R2

)
n2

R2 V(x) +
(

A66 +
D66
R2

)
∂2V(x)

∂x2

+
(
− A22n

R2 − D22n3

R4

)
W(x) + (2D66 + D12)

n
R2

∂2W(x)
∂x2 = 0

−A12
1
R

∂U(x)
∂x +

(
A22n

R2 − D22n3

R4 + pn
R

)
V(x) + (D12 + 2D66)

n
R2

∂2V(x)
∂x2

+
(

A22
R2 − D22n4

R4 + pn2

R

)
W(x) +

(
2D12n2

R2 + 4D66n2

R2 − pR
2

)
∂2W(x)

∂x2 − D11
∂4W(x)

∂x4 = 0

(12)

The Galerkin method is used to solve the differential equations to find the instability
pressure of a cylindrical shell subjected to hydrostatic pressure. To utilize this method, an
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approximation function should satisfy the boundary conditions. Considering the charac-
teristics of axial displacement, the function U(x) can be approximated by the first mode
shape of transverse vibration of uniform single-span beams with clamped sliding boundary
conditions.

U(x) = UconsF(x) (13)

in which the unknown constant, F(x), is the clamped sliding beam function, which is
determined by [37]:

F(x) = cosh
λx
L
− cos

λx
L
− σ

(
sinh

λx
L
− sin

λx
L

)
(14)

in which λ = 2.36502037, σ = 0.982502207. The graph of this function is shown in Figure 3.
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Following from Equations (11), (14) and (15) are obtained. Thus, the boundary condi-
tions of axial displacement shown in Equations (6) and (7) are satisfied.

U(x) = UconsF(x) (15)

Considering the constitutive equations in Equation (2) and geometric equations in
Equation (4), the boundary conditions of the expression Nx in Equations (6) and (7) are
transformed into the following form:

Nx|x=0, L = A11
∂U(x)

∂x
cos

ny
R

+ A12

(
n
R

V(x) +
1
R

W(x)
)

cos
ny
R

= 0 (16)

Substituting Equations (13) and (14) into Equation (16), the boundary conditions are
reduced to:

Nx|x=0, L = A12

(
n
R

V(x) +
1
R

W(x)
)

cos
ny
R

= 0 (17)

As the buckling mode of the shell is characterized by a wave in the longitudinal
direction, the circumferential displacement υ and deflection ω can be approximated by the
first derivation of the clamped sliding beam function. V(x) and W(x) can be selected in the
following form:

V(x) = Vcons
∂F(x)

∂x
(18)

W(x) = Wcons
∂F(x)

∂x
(19)

where Vcons and Wcons are unknown constants, while the first derivation of F(x) is given by:

∂F(x)
∂x

=
λ

L
Φ(x) (20)

where:

Φ(x) = sinh
λx
L

+ sin
λx
L
− σ

(
cosh

λx
L
− cos

λx
L

)
(21)
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A graph of the approximated function is shown in Figure 4. It can be seen that the
boundary conditions given in Equations (8) and (17) are satisfied. Hence, it is verified that
the three unknown functions V(x), W(x) and U(x) can be approximated by Equations (21)
and (14), respectively.
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According to the Galerkin procedure, substituting Equations (13), (18) and (19) into
Equation (12), the following residuals are obtained:

Rx =
(

A11
∂2F(x)

∂x2 − A66
n2

R2 F(x)
)

Ucons + (A12 + A66)
n
R

∂2F(x)
∂x2 Vcons +

A12
R

∂2F(x)
∂x2 Wcons

Ry = (−A12 − A66)
n
R

∂F(x)
∂x Ucons +

{(
− A22n2

R2 − D22n2

R4

)
∂F(x)

∂x +
(

A66 +
D66
R2

)
∂3F(x)

∂x3

}
Vcons

+
{(
− A22n

R2 − D22n3

R4

)
∂F(x)

∂x +
(

D12n
R2 + 2D66n

R2

)
∂3F(x)

∂x3

}
Wcons

Rz = − A12
R

∂F(x)
∂x Ucons +

{(
pn
R −

A22n
R2

)
∂F(x)

∂x +
(

D12n
R2 − D22n3

R4 + 2D66n
R2

)
∂3F(x)

∂x3

}
Vcons

+
{(
− A22

R2 − D22n4

R4 + pn2

R

)
∂F(x)

∂x +
(
− pR

2 + 2D12n2

R2 + 4D66n2

R2

)
∂3F(x)

∂x3 − D11
∂5F(x)

∂x5

}
Wcons

(22)

The orthogonality conditions of the residuals to the approximation functions are
presented by the following equation:∫ L

0 RxF(x)dx = 0∫ L
0 Ry

∂F(x)
∂x dx = 0∫ L

0 Rz
∂F(x)

∂x dx = 0

(23)

Substituting the residuals of Equation (22) and approximation functions of Equations (13), (18)
and Equation (19) into Equation (23), the partial differential Equation (12) is transformed
into a system algebraic equation:

b11Ucons + b12Vcons + b13Wcons = 0
b21Ucons + b22Vcons + b23Wcons = 0

b31Ucons +
(
b32 + p n

R J
)
Vcons +

(
b33 − p R

2 K
)

Wcons = 0
(24)

in which:
b11 = A11H − A66

n2

R2 I, b12 = b21 = (A12 + A66)
n
R H, b13 = b31 = A12

R H,

b22 =
(
− A22n2

R2 − D22n2

R4

)
J +

(
A66 +

D66
R2

)
K, b23 = b32 =

(
− A22n

R2 − D22n3

R4

)
J +

(
D12n

R2 + 2D66n
R2

)
K,

b33 =
(
− A22

R2 − D22n4

R4 + pn2

R

)
J +

(
2D12n2

R2 + 4D66n2

R2

)
K− D11

(
λ
L

)4
J,

H =
∫ L

0
∂2F(x)

∂x2 F(x)dx = σ λ
L (1− σλ), I =

∫ L
0 F(x)F(x)dx = L,

J =
∫ L

0
∂F(x)

∂x
∂F(x)

∂x dx = σ λ
L (σλ− 1), K =

∫ L
0

∂3F(x)
∂x3

∂F(x)
∂x dx = −

(
λ
L

)4
L

Equation (24) has a nontrivial solution if the determinant equals zero.

f (n, pn) = det

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 + p n

R J b33 − p R
2 K

∣∣∣∣∣∣ = 0 (25)
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Taking the number of circumferential waves n = 2, 3, 4, . . . , and solving Equation (25),
the corresponding instability pressure pn is obtained. The critical buckling pressure is
determined by:

pcr = min(p2, p3, . . . , pn) (26)

3. Results and Discussion

In this section, the results of calculations of the critical buckling pressure and buck-
ling mode for the composite cylindrical shells with cantilever-like boundary conditions
subjected to hydrostatic pressure are discussed. As shown in Figure 5, the composite cylin-
drical shell has an inner radius Rinner, nominal thickness t and length l. The dimensions of
the shells and stacking sequences are listed in Table 1. The mechanical properties of the
composite material are characterized by elastic moduli E11 and E22, shear modulus G12 and
Poisson’s ratio v12 (listed in Table 2). The corresponding membrane and bending stiffness
coefficients of the shell are calculated (see Table 3) by referring to [12].
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Table 1. Dimensions of the composite cylinders.

ID Stacking Sequence Rinner/mm t/mm l/mm

NO.1 [0/90]12T 158 2.52 564
NO.2 [0/90]12T 158 2.52 600

Table 2. Mechanical properties.

Property Symbol Value Unit

Elastic modulus
E11 162 GPa
E22 9.6 GPa

Poisson’s ratio v12 0.298
Shear modulus G12 6.1 GPa

Table 3. Membrane and bending stiffness coefficients.

Extensional stiffness Value Bending Stiffness Value

A11 2.1736 × 108 D11 115.0268
A12 7.2472 × 106 D12 3.8352
A22 2.1736 × 108 D22 115.0268
A66 1.5372 × 107 D66 8.1349

The instability pressure corresponding to the circumferential buckle wave number n
varies from 2 to 6 and is solved by Equation (26), with the results listed in Table 4. According
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to Equation (26), the critical buckling pressure of the composite cylindrical shells is obtained.
The buckling of the composite cylindrical shell with cantilever-like boundary conditions
under hydrostatic pressure is analyzed using the finite element method. Both static and
stability analyses are conducted in sequence in order to obtain the critical buckling pressure.
The shell is modeled using a three dimensional structural element with six degrees of
freedom at each node, involving translations in the x, y and z axes and rotations about the
x, y and z axes. The results of the critical buckling pressure testing using the finite element
method, analytical solution and experiments [12] are presented in Table 5. Following from
the comparison, it can be seen that the deviations given by the analytical solution are 6.42%
and 11.71%, respectively, while the deviations of the finite element analysis are 21.62% and
24.80%, respectively. For the buckling mode, the analytical solution and finite element
method predict the same result, characterized by four waveforms in the circumferential
direction (see Figure 6).

Table 4. Analytical results.

Circumferential Wave Numbers n 2 3 4 5 6

Instability pressure
pn/MPa

NO.1 4.387 0.9498 0.6385 0.7652 10.337
NO.2 3.9212 0.8675 0.6144 0.7559 10.296

Table 5. Comparison of the critical buckling pressures.

ID
Buckling Pressure/MPa and Buckling Mode

Analytical Method
(Deviation)

Finite Element Method
(Deviation) Experiment [12]

NO.1 0.6385 (6.42%) n = 4 0.7297 (21.62%) n = 4 0.6
NO.2 0.6144(11.71%) n = 4 0.6864 (24.80%) n = 4 0.55
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Furthermore, a composite cylindrical shell with a thickness of 3 mm, length of 405 mm
and inner radius of 100 mm is produced using a T700-12K carbon–epoxy towpreg. The
filament winding sequence is [±90]2/([±20]/[±90]/[±40]/[±90]/[±60]/[±90])2/[±90].
The mechanical properties are E11 = 102 GPa, E22 = 7 GPa, G12 = 8 GPa, v12 = 0.3. An
external hydrostatic load testing is conducted in a hydrostatic chamber. As shown in
Figure 7, one end of the shell is fixed on the flange and the other end is connected to the
rigid disk. This structural form is equivalent to the cantilever-like boundary conditions.
Water is continuously injected into the chamber to apply hydrostatic pressure. Thus,
the composite cylindrical shell is submerged into the chamber and experiences external
hydrostatic pressure on the shell and the rigid disk. Figure 8 shows the buckling mode
observed in the test and using the finite element analysis. The critical buckling pressure
and buckling mode obtained using the analytical method, FEM and testing are listed
in the Table. Through the comparison, it can be seen that the buckling mode predicted
by the analytical solution and FEM is consistent with the experimental result, which is
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characterized by three waves in the circumferential direction. As for the critical buckling
pressure, both the analytical solution and FEM give relatively small deviations. Reviewing
the buckling mode of analytical examples listed in Tables 5 and 6, it is found that the initial
configuration, such as stacking sequence, radius and length, causes changes in the first
mode of buckling and critical buckling pressure of the shell.
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Table 6. Analytical, FEM and experimental results.

Buckling Pressure/Mpa and Buckling Mode n

Analytical Method
(Deviation)

Finite Element Method
(Deviation) Experiment

3.297 (7.75%) n = 3 3.02 (1.31%) n = 3 3.06 n = 3

4. Conclusions

An analytical solution for the buckling of a composite cylindrical shell subjected to
hydrostatic pressure was derived using the Galerkin method. The boundary conditions of
the cylindrical shell are that one end is fixed and the other end is connected to a rigid disk
allowing axial displacement. The axial displacement of the shell is approximated by the
first mode shape of transverse vibration of the clamped sliding beam. The circumferential
displacement and deflection are approximated by the first derivation of the beam function.
Analytical examples were conducted and the calculation results were compared to the finite
element analysis and experimental results. It was shown that the buckling mode of the
composite cylindrical shell predicted by the analytical solution was in good agreement with
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the finite element analysis, while the mode was consistent with the buckling shape observed
in the experiment. As for the critical buckling pressure, the analytical method proposed
in this study gave a deviation of about 10% in comparison with the test results. The
analytical solution derived in the work would be suitable for predicting the critical buckling
pressure and buckling mode for thin-walled composite cylindrical shells with cantilever-
like boundary conditions under hydrostatic pressure. In future research, the transverse
shear effect will be taken into consideration to construct linearized buckling equations to
study the buckling of mid-thickness and thick-walled composite cylindrical shells.
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