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Abstract: As one of the widespread physical phenomena in the global ocean system, the ocean front
has a very important influence on underwater sound propagation. Firstly, this paper systematically
reviews several methods for the detection of ocean fronts in the past decades, including traditional
oceanographic methods, artificial intelligence methods, and acoustic methods, highlighting the
advantages and disadvantages of each method. Next, some modeling studies of ocean fronts are
reported in this paper. Based on the above research, we pay more attention to research progress on
the acoustic effects of ocean fronts, including simulation analysis and experimental research, which
has also been the focus of underwater acousticians for a long time. In addition, this paper looks
forward to the future development direction of this field, which can provide good guidance for the
study of ocean fronts and their acoustic effects in the future.

Keywords: ocean front; acoustic effect; detecting method; sound speed profile (SSP); modeling;
experiment

1. Introduction

The study of physical phenomena at various scales in the global ocean system is
becoming a hot topic in oceanography. These physical phenomena exist widely in the
global oceans and often have a certain periodicity. The common physical phenomena
mainly include mesoscale vortexes (named eddies) [1], internal waves [2], and ocean
fronts [3]. Due to complex ocean currents or water masses [4] and the undulating seafloor
topography [5], there are many ocean fronts with different properties and intensities in
the ocean system. In the context of physical oceanography, the ocean front is defined as a
narrow transitional zone between two or several water masses with different properties [3].
In the frontal area, many environmental parameters change drastically, and there is strong
mixing exchange, convergence (divergence), and vertical movement, which have important
effects on underwater sound propagation [6], underwater target detection [7], pollutants
dynamics [8], and maritime search and rescue activities. Among them, the study of the
influence of the ocean front on underwater sound propagation has become the focus of
underwater acousticians [9–13].

In recent years, with the rapid development of satellite observations, numerical models,
acoustic theoretical models, and marine survey experiments, numerous new methods have
emerged to study typical ocean phenomena, such as ocean fronts and their acoustic effects.
It is necessary to systematically summarize and report these new methods to provide more
references in the future. In fact, a few previous studies tend to neglect some specific links
in the whole process of ocean fronts and their acoustic effects due to different emphases.
For example, acoustic experiments may not attach importance to the detection of the ocean
front, or the simulation analysis of the ocean front acoustic effects do not have enough
experimental data as support, which makes the research process incomplete. Therefore, it
is essential for us to summarize the research methods of each link in the whole research
process, to provide good guidance for future comprehensive research in this field.

In this paper, ocean fronts and their acoustic effects are studied. The whole research
process is summarized, and the technical route is given in Figure 1. Firstly, the detection
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methods of ocean fronts in recent decades are reviewed, including traditional oceanographic
methods, artificial intelligence methods, and detection methods based on sound speed
profile (SSP). Next, this paper reports some theoretical modeling studies of ocean fronts,
including oceanographic modeling and sound speed field modeling for acoustic effect
study. Then, the theoretical and experimental research progresses on the acoustic effects of
ocean fronts are reported. Finally, this paper summarizes and prospects the development
direction of this field in the future. Unlike previous reviews, in this review, we focus
on the acoustic effects of ocean fronts. Therefore, from all aspects of the ocean front
research process, including the detection of ocean fronts (Section 2.2), ocean front modeling
(Section 3), and so on, we separate reported acoustic methods from traditional methods.
At the same time, we review the research progress on the acoustic effects of ocean fronts
(Section 4), to highlight the attention paid to the acoustic effects of ocean fronts.
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erties (temperature, salinity, sound speed, nutrients, and so on) that separates broader 
areas with different water masses or different vertical structures (stratification) [14]. The 
ocean front plays an important role in the world’s oceanic and atmospheric environment 
(Figure 1). Ocean fronts are often described as discontinuous because of their abruptness, 
which occurs over a range of lengths, from a few meters to thousands of kilometers. Ocean 
fronts may be transient (a few days), although most are quasi-stationary and seasonally 
persistent; the protruding front is present all year round. The difference in sea surface 
temperature and sea surface salinity across the front can be as large as 10–15 °C and 2–3 
parts per thousand (ppt), respectively, with a typical difference of 2–5 °C and 0.3–1.0 ppt. 
The vertical range of the ocean front is from a few meters to more than a kilometer, with 
major ocean fronts reaching the open ocean bottom at depths exceeding 4 km [3]. 

In the context of physical oceanography, the types of ocean fronts are different due 
to differences in the physical processes that form them, such as estuarine, plume, and 
coastal buoyancy current fronts; mid-shelf fronts; tidal mixing fronts; coastal, topo-
graphic, and equatorial upwelling fronts; shelf-slope/shelf break fronts; western and east-
ern boundary current fronts; marginal ice zone fronts; subtropical convergence fronts, and 
water mass fronts [15]. These ocean fronts also have chemical and biological manifesta-
tions. As a rule, an ocean front in one property can be detected in other properties. For 
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2. Definition and Detection Method of the Ocean Front
2.1. Definition of the Ocean Front

The ocean front is a narrow zone of enhanced horizontal gradients of seawater proper-
ties (temperature, salinity, sound speed, nutrients, and so on) that separates broader areas
with different water masses or different vertical structures (stratification) [14]. The ocean
front plays an important role in the world’s oceanic and atmospheric environment (Figure 1).
Ocean fronts are often described as discontinuous because of their abruptness, which occurs
over a range of lengths, from a few meters to thousands of kilometers. Ocean fronts may
be transient (a few days), although most are quasi-stationary and seasonally persistent; the
protruding front is present all year round. The difference in sea surface temperature and sea
surface salinity across the front can be as large as 10–15 ◦C and 2–3 parts per thousand (ppt),
respectively, with a typical difference of 2–5 ◦C and 0.3–1.0 ppt. The vertical range of the
ocean front is from a few meters to more than a kilometer, with major ocean fronts reaching
the open ocean bottom at depths exceeding 4 km [3].

In the context of physical oceanography, the types of ocean fronts are different due to
differences in the physical processes that form them, such as estuarine, plume, and coastal
buoyancy current fronts; mid-shelf fronts; tidal mixing fronts; coastal, topographic, and
equatorial upwelling fronts; shelf-slope/shelf break fronts; western and eastern boundary
current fronts; marginal ice zone fronts; subtropical convergence fronts, and water mass
fronts [15]. These ocean fronts also have chemical and biological manifestations. As a
rule, an ocean front in one property can be detected in other properties. For example,
temperature fronts are almost always associated with sound speed fronts since seawater
sound speed is a function of temperature, salinity, and pressure (depth). Major fronts
are associated with fronts in other properties, such as nutrients, ocean color, chlorophyll,
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and turbidity. The concurrent physical, chemical, and biological manifestations of the
same front are typically collocated, although relatively minor spatial offsets have been
observed between locations of the same fronts in different properties. As an important
factor affecting the characteristics of underwater sound propagation, the SSP reflects the
vertical distribution structure of the seawater sound speed [16–19]. Due to the drastic
changes in temperature and other environmental parameters, the SSP in the sea area where
the ocean front exists will also have drastic changes [11,20,21]. The presence of an ocean
front changes the structure of the SSP at a certain distance and depth, which will have a
great impact on underwater sound propagation.

2.2. Detection Methods of the Ocean Front
2.2.1. Traditional Oceanographic Methods

During the last several decades, there has been significant advancement of our accrued
knowledge and understanding of oceanographic phenomenology, circulation, and variabil-
ity in global and specific regional oceans. It is important to recognize the role of ocean fronts
in describing regional circulation. Figure 2 shows the distribution of main ocean fronts in
some global sea areas according to [3]. From a regional modeling and prediction perspective,
the identification of an ocean front may be associated with different processes relevant to the
local regional dynamics and phenomenology. For example, a large-scale Gulf Stream mean-
dering frontal system also defines the boundaries of unique water masses, which, in turn,
defines the boundary of the basin and sub-basin-scale gyres in a synoptic state [22]. With
the continuous development of satellite technology and numerical models, many real-time
remote sensing data of the global surface ocean, combined with increasingly mature numer-
ical model results with high spatial and temporal resolution and a large range of on-site
observation data, the research on the spatiotemporal detection and evolution mechanism
of global ocean fronts has gradually become one of the hot spots in physical oceanogra-
phy. There are several methods of detecting ocean fronts from satellite data and images,
using the gradient [23,24], cluster-shade algorithms [25], or histogram algorithms [26,27].
In the world’s oceans, Kahru et al. [28], Moore et al. [29], Ullman and Cornillon [30,31],
Kostianoy et al. [32], and Park et al. [33], used satellite remote sensing sea surface tempera-
ture (SST) data to study the ocean front in the Baltic Sea, the Antarctic, the Pacific Ocean and
its coasts, the South Indian Ocean, and the Japan Sea, respectively. Hickox et al. [34] used
Pathfinder SST data set (https://www.nodc.noaa.gov/satellitedata/pathfinder4km53/
(accessed on 1 October 2022)) from 1985 to 1996 to study the sea surface temperature fronts
in the East China, Yellow, and Bohai Seas and defined 10 sea surface temperature fronts that
generally exist in the study area. Wang et al. [35] analyzed the distribution positions and
seasonal changes of several major fronts in the north of the South China Sea by calculating
the frequency of front occurrence using the multi-year monthly average satellite remote
sensing SST data. Chu et al. [36] studied the seasonal change of the South China Sea front
using the GDEM (Generalized Digital Environmental Model) climate state data set, and
pointed out that there is a front in the northern continental shelf area of the South China
Sea along the east coast of Vietnam to Luzon Island in the Philippines; the maximum
gradient of the front is 50 m above the current subsurface. Chen [37] summarized the
achievements of predecessors and systematically summarized the ocean front existing on
the surface/underwater in the Bohai Sea, the Yellow Sea, and the East China Sea, using
satellite data and open data. Zhu et al. [38] analyzed the mixing characteristics of the
Subarctic Front (SAF) in the Kuroshio-Oyashio confluence region based on temperature,
salinity, and current data obtained from surveys and remote sensing.

From the perspective of oceanography, the traditional method of detecting ocean front
is the most intuitive and has broad significance, but it should be noted that the frontal zone
detected can sometimes contain too many spikes and become chaotic, leading to a negative
effect for visual interpretation. Additionally, most conventional methods that focus on
extracting the ridges of fronts struggle with false fronts due to imperfect data. Further,

https://www.nodc.noaa.gov/satellitedata/pathfinder4km53/
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choosing appropriate thresholds for them is another dilemma, which sometimes leads to
too many frontal ridges in unwanted areas or too little than needed in the region of interest.
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lines represent the boundary of the Large Marine Ecosystems (LMF).

2.2.2. Artificial Intelligence Methods

Ocean fronts have been a subject of study for many years, and a variety of methods
and algorithms have been proposed to address the problem of ocean fronts. However, all
these existing ocean front recognition methods are built upon human expertise in defining
the front based on subjective thresholds of relevant physical variables. In recent years,
deep learning methods, especially convolutional neural networks (CNNs), have been
applied to various remote sensing images processing tasks, such as cloud detection [39]
and water body extraction [40]. With numerous learnable convolutional kernels, CNNs
can extract rich features and use them to identify target objects from complex backgrounds.
Therefore, deep learning is becoming an important part of several research-driven and
operational geoscientific processing schemes, and functions as a provider of contextual
cues for physical modeling [41]. A few researchers have begun to explore deep learning
methods for extracting ocean fronts. Lima et al. [42] used an image classification network to
determine whether a small patch from a grayscale SST image contained ocean fronts. Based
on that, they later proposed a multi-scale deep framework (MDF) to better locate ocean
fronts and reflect their strength [43] (Figure 3). To meet the need for visual interpretation
and automatic ocean front detection in significant frontal areas, a novel method based on
deep learning is proposed by Li et al. [44]. In this method, a deep learning model with
U-Net architecture was designed to detect and locate significant frontal zones in grayscale
SST images. The results showed that the proposed method could not only merge messy
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fronts but also capture the overall patterns of frontal zones and work with conventional
methods to get a better frontal ridge extraction result. Li et al. [45] designed a bi-directional
edge detection network (BEDNet) based on their collected ocean front data set. BEDNet
mainly contains four stages, which can achieve bi-directional multi-scale information fusion.
Moreover, they combined the dice and cross-entropy loss function to train the network,
which obtained the fine-grained ocean front detection results. Lima et al. [46] proposed
a deep learning approach for ocean front recognition that can automatically recognize
the ocean front. It has fewer layers compared to existing architecture for the ocean front
recognition task. In addition, they extended the proposed network to recognize and classify
the ocean front into strong and weak ones. Due to the weak edge property of the ocean
fronts, Li et al. [47] formulated ocean front detection as a weak edge identification problem
and proposed the weak edge identification network (WEIN) for ocean front detection.
The experimental results, in comparison to the traditional and deep learning approach,
demonstrated the superiority of WEIN for ocean front detection. Xie et al. [48] proposed a
semantic segmentation network called location and seasonality enhanced network (LSENet)
for multi-class ocean fronts detection at the pixel level. This method could identify and
distinguish various categories of ocean fronts with different behavior characteristics at
different times and regions. Random forests are powerful classification and regression
tools that are commonly applied in machine learning and image processing. Sun et al. [49]
proposed cooperative profit random forests (CPRF). Experimental comparisons with several
other existing random classification forest algorithms were carried out on several real-world
data sets, and CPRF achieved promising results in ocean front recognition. Evolution Trend
Recognition (ETR) was proposed by Yang et al. [50] to recognize the trend of ocean fronts.
A novel classification algorithm was first proposed for recognizing the trend of ocean fronts.
Then, the GoogLeNet Inception network was trained to classify the trend of ocean fronts.
Experiment results showed that the proposed ETR algorithm was highly promising for
trend classification of ocean fronts. Table 1 is a summary of the use of machine learning or
depth learning to detect ocean fronts.

Table 1. Use of artificial intelligence methods to detect ocean fronts.

Researchers Models/Methods Effects/Objectives Datasets/Resources

Lima et al. [42] Convolutional neural
networks (CNNs)

Determination of ocean fronts National Oceanic and
Atmospheric Administration
(NOAA)

Lima et al. [43] Multiscale deep framework (MDF) Location and reflection of
ocean fronts

Global satellite SST images

Li et al. [44] A deep learning model with
U-Net architecture

Better frontal ridge extraction of
ocean fronts

Grayscale SST images

Li et al. [45] Bi-directional edge detection
network (BEDNet)

Fine-grained detection of
ocean fronts

365 images based on the
gradient of SST

Lima et al. [46] Deep convolutional neural
networks (deep CNNs)

Recognition and classification of
ocean fronts

Remote sensing (RS) data

Li et al. [47] Weak edge identification
network (WEIN)

Better recognition of ocean fronts 365 RS images from satellite

Xie et al. [48] Location and seasonality
enhanced network (LSENet)

Pixel level detection of multi-class of
ocean fronts

the Advanced Very
High-Resolution Radiometer
(AVHRR) SST daily data

Sun et al. [49] Cooperative profit random
forests (CPRF)

Better recognition of ocean fronts Fourteen real-world datasets

Yang et al. [50] Evolution trend recognition (ETR) Recognition of the trend of
ocean fronts

OFTreD and OFTraD
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Compared with traditional oceanographic methods, these artificial intelligence meth-
ods based on machine learning or depth learning have played a unique advantage in
the detection accuracy of the ocean front. With the further popularity of ocean big data,
artificial intelligence methods will be more widely used and promoted. However, the
shortcomings of their unclear physical meaning will gradually emerge, which is also a
problem that needs to be solved in the future.

2.2.3. Detection Methods Based on SSP

When we pay more attention to the acoustic effects of ocean fronts, the SSP and its
variation characteristics must become a research focus of underwater acoustics. It is a
new method to detect the frontal zone by using cluster analysis of the SSP in recent years.
Clustering analysis is a mathematical method to classify things or objects according to
certain requirements, which uses a fuzzy mathematical language. The goal of cluster
analysis is to collect data to classify based on similarity. The principle of cluster analysis is
that the data in the same category have great similarities, and the data between different
categories are very different. Due to the obvious differences in the structure of the SSP in
the sea area where the ocean front exists, it is a reliable method to perform the category
recognition of SSP to detect the ocean front by using cluster analysis of the SSP. The
classification research of the SSP by cluster analysis was first used in the 21st century.
Mandelberg et al. [51] used the hierarchical clustering method to classify the General
Digital Environmental Model (GDEM) sound speed profiles of the North Atlantic and the
Northeast Pacific. Wang et al. [52] used the World Ocean Atlas 2013 (WOA13) dataset,
adopted the hierarchical clustering method to calculate the number of categories of the SSP
in the Indian Ocean, conducted fuzzy c-means (FCM) clustering on the structure of the
SSP in different seasons and typical SSP, and concluded that there were seven categories of
sound speed distribution in the Indian Ocean. Abiva et al. [53] used principal component
analysis (PCA) and self-organizing map (SOM) to automatically cluster the SSP. This
method was applied to the maritime area of the Strait of Gibraltar to analyze the variation
of the SSP over time and space to characterize the underwater environment. In addition,
Dubberley and Zingerelli [54] applied fuzzy clustering to oceanographic parameters related
to acoustics (mixed layer depth, SST, sound speed gradient, and so on), and divided them
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into multiple categories. The applicability of this method was proved by applying the
parabolic model on World Ocean Database in 2005 (WOD2005) statistical sound speed
profiles and fuzzy clustering categories. Meredith et al. [55] used the hierarchical clustering
method to cluster the SSP obtained from the data in the Master Oceanographic Observation
Data Set (MOODS), to reflect the temporal and spatial changes of the SSP. Liu and Chen [56]
used PCA and SOM methods to cluster the 75–150 m sound speed profiles calculated
by the Unstructured Grid Finite Volume Community Ocean Model (FVCOM) in the East
China Sea region. The results showed that the regions corresponding to each category
extend along the contour line, with the largest fluctuation in northern Taiwan. As far as
the current research is concerned, many studies have applied cluster analysis and other
related methods to the classification of sound speed profiles. As we pay more attention
to the structural characteristics of the SSP in typical ocean environments, there are several
studies on the clustering of the SSP under the mesoscale ocean phenomenon, such as the
ocean front in specific sea areas. Chen et al. [20] used the K-means algorithm for the cluster
analysis of sound speed profiles of the whole sea depth around the Kuroshio extension (KE),
extracted three types of characteristic sound speed profiles, and established the Kuroshio
extension front (KEF) sound speed characteristic model (Figure 4). Liu et al. [57,58] used
the FCM algorithm to cluster the surface sound speed of the KE and determined the surface
position of the frontal zone and its information. Considering the changing characteristics
of the ocean front in different depth ranges, it is necessary to cluster sound speed profiles
of the ocean front in different sea layers to reconstruct the geometric model of the ocean
front, but there are few studies in this regard. Liu et al. [59] divided the set of sound
speed profiles of the Luzon Strait (LS) into three layers and clustered the sound speed
profiles of each layer to reconstruct the three-layer structure of the Kuroshio intrusion front
(KIF). Although it is a layered reconstruction method for the ocean front, the number of
layers is fixed at the beginning, that is, the layering principle is not fully considered, so
the results are completely related to the initial value of layering, and there is no means
to optimize the layering through iteration. Subsequently, they improved the method and
proposed an ocean front reconstruction method based on the K-means algorithm iterative
hierarchical clustering the SSP [60]. Compared with other existing methods, this method
has the key step of iterative hierarchical clustering according to the accuracy of clustering
results. The results of iterative hierarchical clustering of the SSP can reconstruct the ocean
front. Using this method, they reconstructed the ocean front in the Gulf Stream-related
Sea area and obtained the three-dimensional structure of the Gulf Stream front (GSF). The
three-dimensional structure was divided into seven layers in the depth range of 0–1000 m.
According to our report, we summarized the relevant research and results in this area and
produced Table 2 to obtain a more intuitive display.
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Table 2. Application of clustering methods in the ocean environment and sound speed profiles.

Researchers Methods Research Object Data Source

Mandelberg et al. [51] The hierarchical
clustering method

The SSP of the North Atlantic and the
Northeast Pacific

GDEM

Wang et al. [52] FCM The SSP in the Indian Ocean WOA13
Abiva et al. [53] PCA and FOM The SSP of the Strait of

Gibraltar
Observation data

Dubberley and Zingerelli [54] Fuzzy clustering Oceanographic parameters WOD2005
Meredith et al. [55] The hierarchical

clustering method
The SSP MOODS

Liu and Chen [56] PCA and SOM The SSP in the East China Sea FVCOM
Chen et al. [20] The K-means algorithm The SSP of the KE Argo WOA09
Liu et al. [57,58] FCM The SSP of the KE HYCOM
Liu et al. [59] FCM and other methods The SSP of the LS HYCOM
Liu et al. [60] FCM The SSP of the Gulf Stream-related Sea HYCOM

It is worth noting that the identification of the SSP through clustering analysis to
detect ocean fronts is the most direct and crucial for studying the acoustic effects of ocean
fronts. Therefore, this method should be popularized in future research on ocean front
acoustic effects.

3. Theoretical Modeling of the Ocean Front

Ocean front feature modeling is a method to obtain the fine two-dimensional or three-
dimensional structure features of the ocean front quickly and effectively. This is based
on the mathematical model of ocean front spatial geometric structure by using remote
sensing data, limited observation data, and historical data, combined with the typical
structural features of ocean front that have been statistically analyzed at present. Based
on the theme of our report, we divide the theoretical modeling of the ocean front into two
parts: traditional oceanographic modeling, and sound speed field modeling for acoustic
effect research.

3.1. Oceanographic Modeling

Oceanographic modeling here refers to the two-dimensional or three-dimensional
parameterized description of ocean fronts of different types and regions through conven-
tional oceanographic parameters, such as temperature, salinity, and velocity, to show the
outstanding characteristics of ocean fronts. Oceanographers have done a lot of valuable
work over the past decades, which is also helpful to the current research on ocean front
modeling. Gangopadhyay et al. [61] reported feature-oriented regional modeling of ocean
fronts. The large-scale meandering frontal systems such as the Gulf Stream, Kuroshio, and
Brazil current, can be represented by speed-based feature models. Buoyancy forced coastal
water mass fronts, such as the coastal currents, tidal fronts, plume fronts, dense ocean
fronts, and inflow/outflow fronts, can be represented by a generalized parameterized water
mass feature model. The interface region of the deep ocean and the coastal region can be
modeled by a melding of two water masses along and across a prescribed isobath in the
form of a shelf-break front. Table 3 shows the feature model classification of ocean fronts
in the world’s oceans according to [61]. The application of this modeling methodology
for the rapid assessment of any regional ocean, based on limited data and resources, is
now possible. The parameterized description was carried out for different types of ocean
fronts in the Gulf of Maine and Georges Bank (GOMGB) region [62], mainly including the
buoyancy-driven Maine Coastal Current (MCC), the shelf-slope front (SSF), the Georges
Bank anticyclonic frontal circulation system, including the tidal mixing front (TMF), the
basinscale cyclonic gyres, the deep inflow through the Northeast Channel (NEC), and the
shallow outflow via the Great South Channel (GSC). Carrière [63] developed feature models
as parameterization schemes for the range-dependent temperature field when the latter
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is mainly influenced by thermal fronts. The proposed feature-model parameterization is
shown to provide robust estimates of the two-dimensional temperature field even when
the simulated environment presents smaller scale inhomogeneities.

Table 3. The feature model classification of ocean fronts in the world’s oceans [61]. ECSCC: East
China Sea Coastal Current; SCSCC: South China Sea Coastal Current; NEC: North Equatorial Current;
NECC: North Equatorial Counter Current; SEC: South Equatorial Current; SECC: South Equatorial
Counter Current.

Region Deep
(Boundary Currents, Meanders, and Jets)

Coastal
(Water Mass Fronts, Upwelling Fronts,
Transition Regions, Tidal Fronts)

Western North
Atlantic

Gulf Stream, deep western
boundary current

Maine coastal current, Georges Bank tidal fronts,
shelf-slope front

Eastern North Atlantic Azores current, Canary current,
Portugal current

Upwelling fronts in northwest Africa

Western Pacific Kuroshio, deep western
boundary current

Yellow Sea coastal current, Korean coastal current,
ECSCC, SCSCC, Taiwan warm current, Tsushima
current

North Pacific North Pacific current,
California current system

Alaskan coastal current, Alaskan stream, Prince
William sound circulation system

South Pacific East Australian current,
Humbolt current

Upwelling fronts in central Chile

Northwest European
shelf and the Bering Sea

Labrador current, north
Atlantic current

Norwegian current, tidal mixing fronts, Celtic Sea
shelf-break front

Equatorial Pacific Equatorial current systems Upwelling fronts, NEC, NECC, SEC, SECC
Southern Ocean Antarctic circumpolar current Agulhas retroflection current, Weddell front,

Antarctic circumpolar shelf front
Indian Ocean Somali current, Agulhas current,

Western India undercurrent
North Indian coastal current, east
African coastal current

Ocean front feature modeling is very useful as a means of compressing grid data. It can
transmit data to ships at sea and assimilate data into ocean models [64]. For assimilation,
feature modeling is helpful to link the easily obtained satellite remote sensing surface data
with the less common field measurement data to simulate the ocean front structure in a
way of maintaining the oceanographic feature structure.

3.2. Sound Speed Field Modeling for Acoustic Effect Research

Sound speed in seawater is a function of temperature, salinity, and pressure (depth).
Although we can obtain the sound speed distribution of the ocean front according to the
parameterized model of the ocean front in the previous section through the empirical
formula [65], it is more important to use fewer sound speed profiles to obtain the two-
dimensional or three-dimensional sound speed distribution of the ocean front directly,
when we only have the observation data of sound speed. This step is also the core and basis
of studying the acoustic effects of ocean fronts. Based on observational data, a parametric
model of shallow (less than 300 m) deep-ocean fronts was constructed via sound speed
profiles which were trilinear with depth by Rousseau et al. [66]. The model was sufficiently
general to permit the determination of acoustical effects for fronts of varying strengths,
vertical extents, and positions within the propagation range. They introduced a parametric
model including the location and orientation of a shallow-water front, as well as jumps
in sound speed and current across it [67]. A corresponding system of equations might
be inverted so that travel-time changes could be used to predict estimates for frontal
geometry, sound speed, and current discontinuities across an ocean front. To research
the behavior of sound near an ocean front in a region with wedge bathymetry, the front
was parameterized as a zone of variation with inshore and offshore boundaries parallel
to a straight coastline [68]. By analyzing Argo data and the sea surface height (SSH) data
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in this Kuroshio Extension area, a two-dimensional sound-speed feature model (SSPFM)
characterizing the KEF is proposed by Chen et al. [20]. With reanalysis data from the
hybrid coordinate ocean model, a three-dimensional sound-speed environment of the KEF
is established, which establishes the foundation for the following acoustic effect research.
According to the two-dimensional parameterized model of the ocean temperature front
constructed by Carriere [63], Liu et al. [69] built a two-dimensional parameterized feature
model of the ocean front based on the SSP (Figure 5), calculated, and compared the influence
of the ocean front on convergence area by setting different ocean front environment.
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Figure 5. Ocean front model based on SSP [69]: (a) the variation of melt function with the range in
ocean front model. The blue lines show the melt function at 0.1 and 0.9, respectively, while the red
line represents the melt function at 0.5; (b) three typical sound speed profiles as input of ocean front
model; and (c,d) the distribution of sound speed field of ocean front with different intensity output
from the model.

The direct significance of the parameterized sound speed field in the ocean front area
is that it can intuitively understand the sound speed distribution of the ocean front, to better
research the acoustic effects of the ocean front. In addition, compared with the traditional
acquisition method, the direct construction of the ocean front sound speed field can reduce
the error brought by the calculation of the SSP in the temperature-salt profile.

4. Acoustic Effects of Ocean Fronts

The ocean front will affect the sound propagation effect in the sea area, which will
have an important influence on the detection performance of the sonar system. For the
study of acoustic effects of ocean front, one method is simulation analysis, that is, the effect
of ocean front on acoustic propagation is described qualitatively or quantitatively by ocean
front parametric model and specific sound field calculation program (this method does
not rely on the actual acoustic experimental data in the study area, which is of general
significance). Another is to conduct field acoustic experiments in the sea area where the
ocean front exists to study the acoustic effects and rules of a specific ocean front.
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4.1. Analysis of the Simulation

The existence of the ocean front changes the original horizontal or vertical uniform
environment, which makes the distribution of sound speed field present an uneven feature.
In this case, the sound rays emitted from the sound source will show different bending,
refraction, and reflection from the normal environment with the increase of the propagation
distance, which will eventually have a significant impact on the reception of the sonar
system. Rousseau et al. [66] used ray theory to investigate the effects of sound-speed
variations produced by shallow (less than 300 m) deep-ocean fronts on short-range acoustic
transmission between surfaced sound source and receiver. Frontal influences on travel time
and geometrical spreading loss are examined, and expressions for per-ray amplitude and
phase are developed for CW transmissions with source and receiver near the surface. All
frontal quantities are demonstrated to produce significant acoustical variations, such as
total field transmission loss (TL) change of more than 6 dB. Heathershaw et al. [12] used
three-dimensional numerical ocean model data as input and calculated the acoustic effects
of relevant mesoscale phenomena. The results showed that for different sound sources
and receiving depths, the effects of the front and eddy increase the TL by 10–20 dB, which
was comparable with the magnitude of the frontal effect that was seen in studies using
analytical models of ocean fronts and with acoustic calculations. From a perspective of
sound propagation, a sloping bottom found in typical shallow-water environments can
cause propagating sound to horizontally refract offshore. Additionally, an offshore ocean
front can cause horizontal reflection/refraction shoreward. Combining these two effects,
Lin et al. [10] believed sound tends to propagate along the front, and “whispering gallery”
modes can be observed. The whispering gallery means that sound waves can continuously
reflect between the ocean front and the coast with little TL, so sound can travel a long
distance along the ocean front. They modeled this effect via a three-dimensional acoustic
propagation program exploited in the Acoustics Toolbox (AT, https://oalib-acoustics.org/
models-and-software/acoustics-toolbox/ (accessed on 1 July 2021)). The results showed
sound energy trapped ahead of the front with observable frequency and modal dependence.
Additionally, when including the foot of the front, which was commonly seen on the
continental shelf and extended inshore along the bottom, the model showed less modal
attenuation, which raised the level of the trapped energy. Based on the above research,
they discussed the consequence of this whispering gallery effect on array processing [70].
Specifically, the influence of an ideal ocean front on the array gains was studied. Since the
sound reflecting from the ocean front forms highly correlated beams, the array gain of a
horizontal hydrophone array would be increased. Computer simulations (including the
Oyashio and the Kuroshio fronts and the eddy model such as a Gulf Stream ring) were
used by Weinberg et al. [71] to investigate horizontal acoustic refraction through strong
ocean fronts and solitary mesoscale eddies. Using purely horizontal refraction, ignoring
other effects, horizontal deflections more than 1◦ were computed. Mellberg et al. [72] used
numerical experiments, including the germinating ray acoustic simulation system (GRASS)
model and the wide-angle finite-difference PE model (IFD/PE) of Lee and Botseas, to
present the environmental acoustic effects of the western Greenland Sea Frontal Zone in
the summer of 1983 along a 185 km west-to-east transect. The front can impart >15 dB
increases in TL in <10 km. They also discussed the effects of the frontal zone on sound
propagation as a function of the location and depth of the acoustic source and the depth of
the receiver, sometimes the TL could be greater than 20 dB. Jin et al. [7] considered normal
mode coupling due to a shallow water coastal front and used oceanographic data from the
1992 Barents Sea Polar Front (BSPF) experiment as input to normal mode and parabolic
equation (PE) acoustic propagation models. Criteria for the sensitivity of mode coupling
to coastal front widths were derived and applied to the BSPF as a representative example.
Shapiro and Thain [73] studied patterns and seasonal variations of underwater noise in the
Celtic Sea by using a coupled ocean model (POLCOMS) and an acoustic model (HARCAM)
in the year 2010. The results showed that when the sound source was on the onshore side
of the front, the sound energy was mostly concentrated in the near-bottom layer in summer.

https://oalib-acoustics.org/models-and-software/acoustics-toolbox/
https://oalib-acoustics.org/models-and-software/acoustics-toolbox/
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While in winter, the sound from the same source was distributed more evenly vertically.
When the sound source was on the seaward side of the front, the sound level was nearly
uniform in the vertical. Figure 6 shows some research results according to [73]. Based on
the parameterized model, the influence of the ocean front on the location of the convergence
zone was studied [69]. The results showed that when the sound wave propagated from the
warm water mass to the cold water mass, the convergence area moved forward, and the
degree of the forward movement changed with the intensity of the ocean front; when the
propagation direction was opposite, the convergence area moved backward. In addition,
they applied the melt function to forecast the depth of the convergence area in the ocean
front environment through the parameterized model [58] (Figure 7). The root mean square
error (RMSE) between the forecasting result and the actual calculation result through the
ray model in the second detection convergence area was 43.3 m, and the forecasting effect
was better, which could provide good guidance for the acoustic concealment of the target
under the environment of ocean front.
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Figure 7. The forecasting curve of the depth of the convergence area (the red dotted line) and the cal-
culating results of the model (blue dots) and actual ocean front (black dots): (a) 1 January, representing
winter; (b) 1 July, representing summer. The forecasting results using the melt function were in good
agreement with the model and the actual results, which proved that the melt function was applied to
effectively achieve the depth forecast of the convergence area in the ocean front environment.

4.2. Experimental Study

In recent years, with the enhancement of ocean observation capability and the rapid
development of various underwater acoustic instruments, research on the acoustic effects
of ocean fronts has been greatly promoted, especially the valuable data obtained from
acoustic experiments. This will help us better understand the characteristics and laws
of sound propagation in various specific ocean environments. Lynch et al. [74] used
the high-resolution data from the 1996–1997 New England shelf break experiment to
examine the spatial and temporal variability of the acoustic field in the region of a strong
coastal shelf break front. Several interesting propagation effects were noted; the most
interesting was the inhibition of strong acoustic-bottom interaction by the warm shelf
water beneath the shelf break front, and the existence of small-scale ducts near the front,
due to offshore transport. Ramp et al. [75] used the data of the Asian Seas International
Acoustics Experiment (ASIAEX) in 2001 and found that, as a result of the Kuroshio front,
the sound rays refracted downward. After passing through the shelf break front, the sound
signal attenuated rapidly. They considered the influence of the uncertainty of the marine
environment on the sonar operating distance from the perspective of sound ray propagation.
Using a 93 Hz signal, the Lloyd mirror effect was found by Moore et al. [76] when the sound
source depth was 50 m, and the sound ray was at a small grazing angle. This is because
the presence of the front makes the incident sound wave generate total internal reflection.
The direct and reflected modal rays can constructively interfere, having the potential to
increase the intensity level by 6 dB. Deferrari [77] examined sound propagation for both
environments with data from two similar fixed system propagation experiments: one for
the prograde front environment of the coast of south Florida near the site of the Acoustic
Observatory; and the second for the retrograde front environment of the Mid-Atlantic
Bight. He observed intensity fluctuations and temporal coherencies of broadband acoustic
signals over several octaves to vary with variations of the sound speed. Liu et al. [11]
introduced a joint experiment of ocean acoustic and physical oceanography at the Western
North Pacific fronts. The measurement data for sound waves passed through the ocean
front was processed. It was found that the TL presented some difference when the source
was in the front center and sound waves propagated towards water mass on opposite sides
of the front center (Figure 8). Moore et al. [78] presented acoustic data collected on two
Webb Slocum gliders during the Shallow Water Experiment (SW06) on the continental
shelf off New Jersey. A major goal of these measurements was to quantify the three-
dimensional propagation effects of the ocean front. Jensen et al. [79] calculated propagation
through a real front observed on the Iceland-Faroe Ridge through the oceanographic data
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(conductivity, temperature, depth (CTD) sensors, expendable bathythermograph (XBT),
thermistor chain) in the frontal area. They found that the acoustic effects of the front were
significant (>10 dB), but with a strong dependence on environmental parameters as well
as on source/receiver depth and frequency. Kravchun [80] described the hydrographic
characteristics of the benthic front with the use of data from the international WOCE
experiment. Meanwhile, he estimated the changes introduced by the benthic front into the
phase and group velocities and the vertical structure of modes. In the summer of 1996, an
integrated acoustic-oceanographic experiment was carried out in the Middle Atlantic Bight
to study the dynamics of the shelf break front and the effects of frontal variability on sound
propagation. Chiu et al. [81] reported the results of an acoustic tomographic analysis of
frontal variability.
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With the development of more and more marine acoustic experiments, these valuable
experimental data will help us better understand the characteristics and laws of sound
propagation in various specific marine environments.

5. Conclusions

In this paper, we review the research progress of ocean fronts and their acoustic effects.
The whole research process is summarized, and the technical route is given in Figure 9.
Different from previous studies, we pay more attention to the acoustic perspective. The
definition of ocean fronts, detection methods, modeling research, and the theoretical and
experimental research of acoustic effects are reported in turn, which is easier for readers
to understand.

As a narrow transition zone between two or more water masses with obviously
different properties, the detection method based on an oceanographic perspective has a
clearer physical meaning, but the threshold value of a such method is often difficult to
determine, such as the gradient method. In recent years, with the rapid development
of artificial intelligence, many detection methods are based on machine learning or deep
learning and have achieved good results. However, it should also be noted that machine
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learning methods rely on large data sets. When this condition cannot be met, it may not
be effective. Because we pay more attention to the acoustic effect of the ocean front, the
detection method based on the SSP has also been reported in this paper. This method is
more direct and effective and can establish a direct connection with the acoustic effect of
the ocean front.
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Based on the theme of the report, we divide the theoretical modeling of the ocean
front into two parts: traditional oceanographic modeling, and sound speed field modeling
for acoustic effect research. With the deepening of oceanographers’ research on ocean
phenomena at various scales, their theoretical model research has reached a new height.
These parameterized models have universal significance for studying the characteristics
of ocean fronts and their acoustic effects. At present, research on the parameterization
modeling of the ocean front is still in the simulation stage. How to consider the combination
of modeling research and actual ocean front environment to achieve more accurate results
is a problem that needs to be focused on.

The ocean front will affect the sound propagation effect in the sea area, which will have
an important influence on the detection performance of the sonar system. For the study
of acoustic effects of the ocean front, one method is simulation analysis. In the reality of
limited experimental conditions and insufficient measured data, it is particularly important
to study the theoretical model of the ocean front and its acoustic effects. Another method is
to conduct field acoustic experiments in the sea area where the ocean front exists to study
the acoustic effects and rules of a specific ocean front. These valuable experimental data
help us better understand the characteristics and laws of sound propagation of ocean fronts.

6. Future Trends
6.1. Develop High Resolution and Accuracy Numerical Models

The ocean numerical model is a numerical model that can quantitatively describe
ocean phenomena and their changes. It reflects complex processes such as ocean dynamics,
physics, and their interactions by establishing mathematical and physical equations. It
discretizes the continuous ocean fluid movement, and the earth’s space is divided into three-
dimensional grid structures in longitude, latitude, and vertical directions, and then the
partial differential equations are solved by numerical integration [82]. With the deepening
of our understanding of the oceans and the rapid development of computer technology, the
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development and application of global ocean models have become one of the important
directions of geoscience research. The ocean model can not only be used in the research
of ocean science itself, but also widely used in the simulation and prediction research of
climate and environmental change and provide technical support for the development
of marine resources, national defense security, and other major national needs. With
the continuous deepening of the ocean and climate change research, ocean numerical
models are gradually developing towards higher resolution (the higher the resolution,
the finer the grid), more physical processes (the increase in the number of equations),
and faster computing speed [83]. At present, the number and types of ocean observation
data are increasing, and the computing speed of high-performance computers is moving
from the “P” level (PetaFlops) to the “E” level (ExaFlops) [84]. Artificial intelligence,
especially deep learning, has developed rapidly [85], which provides opportunities for the
rapid development of high-resolution and accurate ocean numerical models, and poses
new challenges.

The three-dimensional ocean circulation model is the core of the ocean system. For
such ocean dynamic phenomena as mesoscale eddies and fronts, the model resolution
is an important factor. Only when the horizontal resolution of the model is less than or
equal to the local first baroclinic Rossby deformation radius, the model can distinguish
mesoscale eddies and fronts. Such a model is called the vortex identification model [86].
Taking offshore China as an example, the China offshore regional operational forecast
system of the National Marine Environmental Forecasting Center has been equipped
with the resolution for the identification of the part of ocean fronts. In the future, more
detailed regional models will be developed in the local sea area, which can simulate some
secondary mesoscale eddies and fronts with smaller spatial scales. For large cross-latitude
sea areas, the difference in Rossby deformation radius is huge, and the seasonal variation
of stratification is large, which has a greater impact on the baroclinic Rossby deformation
radius. Therefore, the setting of model resolution should be considered in the development
of the fine region model.

6.2. Conduct Extensive Ocean Environmental Observation and Acoustic Experiments

The accurate study of acoustic effects of ocean fronts and various typical oceanic
phenomena requires actual ocean hydrological observation data and field acoustic exper-
iment data. At present, we can obtain long-term observation data mainly through buoy
observation technology, submersible buoy observation technology, and seabed observation
technology. In addition, we can also get real-time environmental data of a certain region
through CTD, XBT, Acoustic Doppler Current Profilers (ADCP), and so on. In the future,
we need to conduct more extensive ocean environmental observations to meet the needs
for studying ocean acoustics.

The development of marine acoustics cannot be separated from acoustic experiments.
Many experimental studies on sound propagation in dynamic marine environments have
been carried out worldwide. Shallow sea acoustic experiments mainly include the Barents
Sea Polar Front (BSPF) sound propagation experiment in 1992 [87], the SWARM internal
wave acoustic scattering experiment in 1995 [88], the ASIAEX South China Sea experiment
in 2001 [89], the Yellow Sea acoustic experiment in 2005 [90], the shallow water experiment
in 2006 (SW06) [91], and so on. Deep sea acoustic experiments mainly include the North-
east Pacific experiment (SLICE89) [92], the North Pacific Acoustic Laboratory experiment
(NPAL) [93], the Acoustic Engineering Test (AET) in 1994 [94], theATOC95 experiment [95],
the long-range ocean acoustic propagation experiment (LOAPEX) [96], and so on, which are
carried out by the United States in the North Pacific Ocean and are collectively referred to as
NPAL experiments. In addition, the PhilSea experiment carried out in the Philippines Sea
in the Northwest Pacific from 2009 to 2011 is the first large-scale comprehensive acoustic
experiment carried out in the complex deep-sea area [97]. These acoustic experiments have
greatly promoted our understanding of the marine environment and its acoustic effects
and provided a great reference for the further development of this field in the future. We
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need to further promote the relevant experiments of ocean acoustics to accelerate research
on the acoustic effects of the ocean environment.

The future trends in this field are multifaceted. On the premise of the increasingly
mature theory of ocean acoustics, it is undeniable that enriching ocean hydrological data, in-
cluding satellite observation data, numerical model data, marine survey data, and acoustic
experiment data, will further promote the understanding of typical marine environments
such as ocean fronts and their acoustic effects. Of course, we cannot do without some new
AI methods mentioned previously in the process. We can not only apply AI methods to the
detection of ocean fronts but also acoustic tomography. The new methods in the future will
further provide more help for the study of ocean fronts and their acoustic effects.
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