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Abstract: Submarines’ manoeuvrability both in intact and degraded operating conditions is the main
design concern starting at the very early stages of design. This increased complexity of the design
process compared to a surface vehicle can only be handled by using dynamics numerical simulations
on both the vertical and horizontal manoeuvring planes. To this aim, a 6-DoF method is presented,
validated, and applied to study the manoeuvring characteristics of several vessels. The analysis
has been conducted considering two standpoints, i.e., to verify the design handling capabilities of
the vehicles at low and high speeds and to study the off-design residual abilities in the eventual
case of emergency operations with jammed/lost-control surfaces. The influence of different design
features, such as, e.g., the stern plane “+” and “x” configurations, fairway size and positioning, hull
dimensional ratios and restoring capabilities have been analysed in terms of impact on turning ability,
course and depth changing abilities, and vertical/horizontal course stability, including the vertical
damping ratio and critical velocity.

Keywords: submarines; underwater vehicles; manoeuvrability; stern planes; rudder; design

1. Introduction

State-of-the-art dynamic manoeuvring simulations are made of prediction methods
built with a modular structure cross-combining semiempirical, numerical, and experimental
data gathered within historical dataset knowledge. Considering surface vessels, there are
plenty of references dealing with such approaches for single-screw vessels [1–6], twin-
screw vessels with either traditional [7–11] or podded propulsion systems [12–14], and
working vessels [15–17]. Parallelly, the scientific community is increasingly focusing on
the direct system identification for autonomous surface shipping applications [18–20] from
free-running tests, eventually combining the approaches of the CFD-RANSE methods [21].
Starting from the MMG framework by Kose and Ogawa [22,23], different approaches
have been developed, focusing on the IMO manoeuvring design goals [24]. On the other
hand, while fewer methods are available in the literature to assess the manoeuvring
characteristics of underwater vehicles, there is a complete lack of modular regression
models and comparative campaign matrixes useful for design purposes.

Considering Munk theory [25] initially developed for airships and torpedoes [26],
different approaches foster relatively simple methods for assessing the manoeuvring capa-
bilities of submarines, mainly treating them as simple ellipsoidal shapes or only including
the appendages in terms of stability and controllability derivatives. Indeed, different from
surface vehicles, submarine hydrodynamics should be studied in 6-DoF by splitting the
horizontal and vertical planes’ manoeuvring performances to enable the identification of
many terms. While there is no particular difference with respect to surface vehicles on
the horizontal plane aside from the stern-dipping phenomenon or the surface proximity
effect, vertical plane manoeuvring prediction requires additional design considerations
due to the pitching restoring moment caused by the vertical misalignment of the centre of
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gravity with the centre of buoyancy [27]. These effects on the handling of the vehicle need
an additional positional dependency term independent from the vessel speed to the set
of equations, thus increasing the order of the ODEs involved. As a result, the complexity
of the directional stability analysis on the vertical plane rises, becoming speed-dependent
and introducing the possibility of both oscillating convergent behaviours and/or divergent
solutions. Then, thanks to the speed dependency, from a design perspective, the vertical
sailing stability at a constant depth, the eventual damping factor of the oscillations, and
the depth-changing controllability are turned into additional requirements. Indeed, the
stern planes may become ineffective in keeping control of the sailing depth when operating
below a critical velocity. The sail or bow planes are typically installed to overcome this
problem in lower speed ranges to best apply the vertical force near the neutral point, i.e.,
the longitudinal centre of pressure of the vessel sailing with an angle of attack—for full
details see Appendices A and B.

Within this framework, the mostly applied semiempirical methodology that meets
the demand of a linear manoeuvrability assessment is the so-called AEW approach [28].
This approach has been developed for submarines showing a cross-plane rudder config-
uration only, splitting the hull, fairway, and control plane contributions separately while
including their mutual interactions. This methodology addresses the amplification or loss
of effectiveness of the control surfaces when mounted onto the ellipsoid hull or trunk of
cones, such as in the case of the stern planes and rudders. The interaction effects are then
divided into two components: a body-on-wing contribution and a wing-on-body one [29].
Particular focus is given to the effects of the vortex shed by the fairway tip on the hull
lifting capabilities and the consequent upper stern plane inflow angle modification. This
method is suitable to assess the manoeuvring performances over straight sailing, providing
a comprehensive analysis of the vessel’s stability and controllability but accepting very
small perturbations around the linearization point. Consequently, such a model is not
adequate for full nonlinear manoeuvres, such as turning, harsher dynamic zigzag testing,
and fast emersions emergency operations.

On the other hand, a standardized mixed analytical nonlinear form of equations was
laid out by Feldman and Gertler [30,31] and Bohlmann [32], suiting the towing tank captive
model testing experience. The latter revised model encompasses classical linear terms with
the addition of semiempirical nonlinear modelling arising from the crossflow drag theory
in the direct and cross-planes of motions. Its most peculiar feature is the inclusion of an
out-of-plane stern-dipping term due to the shedding of the sail tip vortex when horizontally
drifting, plus an additional unsteadying effect: This vortex, in fact, induces a crossflow
along the hull which breaks the symmetry of the hydrodynamic pressure field between the
deck and keel. The control plane models are kept within a linear framework. The resultant
wide and complex analytical form of the equations needs to be fed a large computational
(RANSE) and/or experimental captive model testing (CMT) dataset. However, determining
the whole sets of coefficients is not a practicable option for parametric design studies.

Some authors have dealt with this problem by using, e.g., CFD-RANS methodologies
to evaluate fully appended hydrodynamics [33–36] for tailfin sizing [37], the effectiveness of
tailplanes mounted onto hulls [38,39], and the vortex structures shed onto the tailplanes [40].
More recently, some authors exploited the possibility of coupling dynamic simulation
models with RANSE methodologies [41,42] to assess cross-plane vs. x-plane designs [43,44]
to study highly unsteady rising manoeuvres with consequent roll instabilities [45] or for the
analysis of manoeuvring at periscope depth [46]. Finally, the system identification approach
of submarine dynamics from free-running model tests [19,47,48] supplies a powerful and
complementary approach to the proper settling of simulation models when combined with
historical EFD knowledge and CFD methodologies.

There are two largely used public benchmark case studies that are the so-called DARPA
Suboff, for which experimental captive model tests are available [49], and the newer BB2
submarine, for which free-running tests have been performed [50]. Most of the studies
specifically address these two geometries, but almost none of them aim to evaluate the
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effect of the variation of different design parameters on the manoeuvrability characteristic
of the vessels.

In this perspective, a manoeuvrability prediction method has been developed com-
bining the AEW approach, Gertler model, and experience developed at the Department
of Naval Architecture of the University of Genoa (DITEN) on surface ships into a new
dynamic simulation model capable of capturing the main effects with a reduced number
of terms. This model has been validated and used to compare different submarine design
configurations.

In particular, three submarine designs presented in Section 2 have been extensively
studied. The modelling approach is described in Section 3.1, and the validation both
in terms of a captive model and free-running tests are shown in Sections 3.2 and 3.3,
respectively. Finally, the developed method is used as a design tool for a submarine
configuration. The reference design intact condition is described in Section 4.1, including
the effect of the variation of different design features, such as the stern plane “+” and
“x” configurations, fairway size and positioning, hull dimensional ratios, and restoring
capabilities. The speed dependency analysis is presented in Section 4.2, and the analysis in
degraded conditions is then shown in Section 4.3.

2. Case Studies

The selected benchmark fleet was made of the three submarines shown in Table 1.
The DARPA Suboff is a model scale research submarine from the Defence the Advanced
Research Projects Agency (DARPA) Suboff project at the David Taylor Research Centre
(DTRC) where captive model tests have been carried out [49]. The simple vehicle geometry
is widely acknowledged to be unrealistic (the fairwater is too small, the torpedo is a simple
revolution body, and it has small stern planes and no bow control surfaces) and course
unstable. Very few attempts of manoeuvre simulation have been done, resulting in a
large spread of results due to its strongly unstable property [51,52]. The second vessel,
called the SWE, is a demo submarine from the Swedish navy [53]. Results of captive and
free-running model tests are available even if there is no reference; these data come from
numerical simulations or experimental tests. The third one, called the SMG, is a real but
decommissioned submarine, according to which both captive model tank tests and full-
scale manoeuvres are available. These results are reported in this work, but the geometry is
confidential.

The selected vessels are described in more detail in Table 1 in terms of nondimensional
ratios. The main particulars of the hull, fairwater, and control planes are referred to as the
bare hull longitudinal area projected onto the vertical plane (Av) and the horizontal plane
(Ah). In particular, the rudder and stern plane characteristics, indicated by the subscript ‘r‘
and ‘s‘, respectively, refer to the + or x configuration to the percentage of movable control
area over the fin area, the total fin area over the vertical and horizontal projected areas
of the hull (Ar/Av and As/Ah), and the percentage of the hull-projected trunk area. The
latter can either be At/Ar or At/As; the trunk is indicated by the subscript ‘t’, the portion
of the hull radially included between its longitudinal symmetry axis and the root of the
considered fin. The ratio At/As plays a key role in terms of increasing the body-on-wing
effectiveness and as an amplification factor of the wing-on-body effect. The same quantities
were evaluated for the fairwater, indicated by the subscript ‘f’, and for the bow-panes,
indicated by the subscript ‘b’. The location with respect to the midship is indicated as a
percentage of the length of the vessel. The SWE and SMG submarines rely on + and x stern
plane configurations, respectively, and are representative of a modern and realistic class of
submarines.
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Table 1. Submarines—case studies.

DARPA SWE SMG
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3. Description of the Mathematical Model

The simulation approach used relies on a 6-DoF modular MMG-inspired model [2,22]
suitable for design purposes with ad-hoc developed parametric design options. The
contributions from the bare hull, the appendage system, and the propulsion and control
means were split, considering their mutual interactions and according to the canonical
Newton equations as described by Bohlmann [32] and Feldman [31]. A summary of the
breakdown modelling is presented next.

A standard reference system was adopted for the vehicle, i.e., centred amidship along
the longitudinal axis passing through the propeller centre, as displayed in Figure 1a.
Considering that the vehicle induced velocities at specific location [uR, vR, wR], several local
reference systems were introduced, e.g., at each control surface, to evaluate the in-plane
reference velocities chord-wise ahead of co, span-wise out of so to the tip, and perpendicularly
in the thickness-wise to direction according to the right-hand rule, as shown in Figure 1b. The
stern planes were numbered from one to four from the vertical lower rudder and moving
in a clockwise direction if looking from the stern according to the mounting angle Γ. The
methodology provided the lift L and drag D for the generically installed control plane by
assessing the chord-wise and thickness-wise inflow velocity within the plane section itself
according to the resultant velocity VR and effective angle of attack δe, as shown in Figure 1b.
The resultant X̃ and Ỹ forces were finally projected onto the vehicle reference according to
the mounting angle rotation.

3.1. Modelling

Bare Hull. The linear lift and nonlinear crossflow drag of the bare hull were predicted
in the framework of a strip theory-based approach, relying on slender body sectional theory
as fostered by Clarke [53] and later by Bohlmann [32]. More details can be found from
Toxopeus [54] and Piaggio [14]. According to this approach, the hull shape was defined
by transverse sections. The forces were divided into linear components based on slender
body theory including real-fluid corrections for the uv and ur terms and into a fully viscous
nonlinear contribution that relies on quadratic crossflow drag theory.
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Such a method is able to encompass arbitrary sectional shapes by using simple el-
lipsoids forms with two-dimensional added mass formulations. Figure 2 sketches the
sectional approach where each section accounts for a contribution of forces and moments
on the horizontal plane. By including viscous corrections, this methodology allows for a
bow–stern unbalancing of forces according to the potential Munk theory.
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From the 2D sectional added masses, linear properties at the generic section at the
coordinate ξ were assessed on the horizontal and vertical planes according to the following
equations:

myy(ξ) =
1
2 ρ π H(ξ)2 CH(ξ)

mzz(ξ) =
1
2 ρ π B(ξ)2 CV(ξ)

(1)

where H(ξ) is the sectional vertical axis height, and B(ξ) is the horizontal axis breadth
while CH(ξ) and CV(ξ) are the nondimensional coefficients, respectively.

The 3D distribution of the forces was derived accordingly by integration from bow
to stern. A viscous semiempirical correction was applied to the ideal Munk theory by
modifying the added mass gradient at stern shapes [55], resulting in new distributions of
crossflow due to drift and rotation. In the horizontal plane, these terms are named Muv

yy
and Mur

yy. The linear derivatives were obtained by integration as in the following equations:

Y .
v = −

∫ bow
stern Muv

yy dx Y.
r = −

∫ bow
stern Mur

yy dx
N .

v = −
∫ bow

stern xMuv
yy dx N.

r = −
∫ bow

stern xMur
yy dx

(2a)

Yuv = −Muv
yy

∣∣∣stern Yur = −Mur
yy

∣∣∣
stern

(2b)



J. Mar. Sci. Eng. 2022, 10, 2014 6 of 38

Nuv = −
[

Muv
yy

∣∣∣∣stern +
∫ bow

stern
Muv

yy dx
]

Nur = −
[

xMur
yy

∣∣∣∣stern +
∫ bow

stern
Mur

yy dx
]

(2c)

Classic crossflow drag formulations were considered to include the nonlinear effects
for large kinematics according to the horizontal and vertical crossflow velocities locally
induced by the vehicle’s motions at each section:

v(x) = v + rx
w(x) = w− qx

(3)

For instance, in the horizontal plane, the nonlinear contribution was obtained through
the integration of the sectional contributions according to the following equations:

Yc f d = −0.5ρ
∫ bow

stern CDh(x) v(x)|v(x)| H(x) dx
Nc f d = −0.5ρ

∫ bow
stern CDh(x) v(x)|v(x)| H(x)x dx

(4)

where CDh(x), the horizontal crossflow drag sectional distribution, was evaluated according
to semiempirical 2D formulations as a function of the breadth over height section ratio
B/H and the sectional coefficient Cx. The same method was applied on the vertical plane.

Appendages. The fairwater (sail), bow planes, and stern planes/rudders contributions
account for the hull sectional geometry on which they are mounted. In particular, the
mutual interaction effects may be distinguished into two counterparts [28,56]: the body-
on-wing effect, i.e., an increase in the effective aspect ratio with respect to the isolated fin
(tip-induced downwash), and the wing-on-body interaction, i.e., an amplification of the
forces due to an extension of the fin pressure fields onto the hull part below.

Starting from the isolated fin, the hydrodynamic modelling might include a spade,
horn/skeg, and flap features. Lift and drag formulations were developed according to
experimental evidence dCo

L
dα , stall, and post-stall hydrodynamics by varying the following

parameters [57–60]:

- Effective Aspect ratio “are”;
- Taper ratio “λ”;
- Sweep angle “Λ”;
- Tip shape “τ” (squared or faired);
- Thickness ratio “t/c”;
- Horn percentage “Ahorn/AR”;
- Flap percentage “Aflap/AR”.

As far as the hull mounting interaction is concerned, given the generic pair of fins
mounted on the elliptical or circular section, the total wingspan was defined as the full
extent in between the fin tips, including the (imaginary) part of the bluff body in between
the roots of the fins, as shown in Figure 3, given the installation angles of Figure 4. Such an
additional part has a dimension r, and the resultant wingspan is b = 2(r + s). Considering
the exposed control surface area, A = cs, the upper bound of the effective aspect ratio is
are = b2/Ae , where Ae is the effective planform area. Given the span s and mean chord c,
the isolated lift slope dCo

L
dα of the fin was evaluated according to:

Ae = A + cr

are =
(s+r)2

Ae

(5)

The circulation effectiveness should then be diminished due to the fact that the imag-
inary, additional part of the effective wing is a bluff geometry. Moreover, the body will
share a part of the fin load but in a smaller amount due to its relative size and curvature
with respect to the fin. Ideally, with a radius of curvature that tends to be infinite, the body
will not perceive any amplification as it would with a wall-mounting wing (solid mirror
plane effect) with the consequence of a doubly effective aspect ratio. On the contrary, with a
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radius of curvature that tends to zero, the wing becomes the direct union of the two isolated
fins, as they should be joined at their root, again, with zero amplification on the body.
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Considering the linear slope coefficient of the whole effective projected planform dCo
L

dα ,
the interactions were considered separately for the stability and controllability features
of the vessel [29]. In terms of stability, i.e., fixed fins or movable planes but with zero
geometric angles, the two interactions were included within the coefficients K∗b(w)

and K∗w(b)
,

as shown in Figure 5. In terms of controllability, a loss of effectiveness was experienced due
to the gap opening at the root of the planes when a nonzero geometric angle of the plane
was set. This can be assessed according to two analogous terms kb(w)

and kw(b) , as shown in
Figure 6. Then, an efficiency decay term in controllability γδ was evaluated as a ratio with
respect to the stability contribution according to the following equation:

γδ =
A
[
kb(w)

+ kw(b)

]
Ae

[
Kb(w)

+ Kw(b)

] (6)
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Figure 5. Stern control surface—stability loss due to fins at the tail end of hulls with respect to the
full-span equivalent wing [29].
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Figure 6. Control surface—control over stability contribution for elliptical sections [29].

Consequently, the effective lift slope and angle of attack, given the geometric angle δ
and local drift angle βR and acting on the whole equivalent area Ae, become:

dC
′
L

dα =
dCo

L
dα

(
K∗b(w)

+ K∗w(b)

)
δe = γδδ− βR

(7)

For fixed fins such as, e.g., the fairwater, a similar theory was used, as shown in
Figure 7. The equivalent isolated wing was first considered, i.e., the mirrored pair of fins
joined at the root for the aspect ratio according to the single fin area A. The effectiveness
was then increased, and amplification was added:

dC′L
dα =

dCo
L

dα

(
Kb(w)

+ Kw(b)

)
δe = −βR

(8)
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Figure 7. Control surface—interaction factors for fins on cylindrical bodies of circular section [29].

For both the movable and fixed fins, the effective crossflow angle βR took the hull
and sail-induced wake fields into account due to the lifting bound and trailing vortexes
detached. The downstream-induced velocities by the sail, in fact, broke the symmetry
of the lower and upper shell flow fields both in terms of longitudinal and crossflow
components, finally impinging onto the planes and rudders. According to Pattison [28],
specific straightening coefficients can be introduced to correct and deteriorate the upper
tail plane’s functioning with respect to the sail lift without modifying the shadowed planes
with respect to the hull when drifting and rotating. With this purpose, specific cfd studies
have been undertaken according to Franceschi [10] at UNIGE and will be an object of a
near future publication.

Finally, the complete lift curves were obtained according to trigonometric definitions
to couple the effects of both stability, due to the effective angle of attack δe given the local
crossflow angle βR, and control, due to the plane δ or flap angle α f , while encompassing
the stall angle [14]. In particular, the stall angle was highly anticipated due to the absence
of the propeller wash benefit in terms of KT/J2. In terms of drag, the contributions of the
zero-angle drag, i.e., the viscous and form resistance, induced drag due to lift, and crossflow
drag [60], were linearly summed. The effects of possible movable parts, such as flaps or
the complementary to the fixed skeg part, were included by a shift of the curves. This
was obtained with the term ∂C0

L

(
α f

)
as a function of the flap chord extension, the trailing

edge geometry, and the span extension [61–63], as shown in Figure 8, and by varying the
zero-angle drag CDo

(
α f

)
:

CL = ∂C0
L

(
α f

)
+ ∂CL

∂α sin δe cosζ δe

CD = CDo

(
α f

)
+

C2
L

e π are f f
cos δe + cCFD sin2 δe

(9)

The described approach allowed for the assessment of an arbitrary stern plane con-
figuration by evaluating the inflow components at each control surface reference system
in terms of the angle of attack, absolute velocity, lift, and drag forces. The global forces in
the submarine reference system were then obtained by rotating the components of force
according to the local inflow angle and geometric mounting angle.



J. Mar. Sci. Eng. 2022, 10, 2014 10 of 38J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 11 of 38 
 

 

  
(a) (b) 

Figure 8. Flapped control surfaces—effect on lift [61]. (a) Chord-wise extent and trailing edge an-
gle. (b) Span-wise extent and taper ratio. 

3.2. Captive Model Testing—Validation 
Pure drift, pure yaw, and pure rudder tests on the horizontal plane as well as pure 

vertical drift (also called the angle of attack), pure pitch, and pure stern plane tests in the 
vertical plane were used to validate the captive model tests in a PMM approach with im-
posed kinematics. The corresponding lateral force Y, yaw moment N, and roll moment K 
were reported for the former series while the vertical force Z and the pitch moment M 
were studied for the latter series. 

Results of the validation for the SMG, DARPA Suboff, and SWE vessels are shown in 
Figures 9–11, respectively, on the horizontal plane (a,b) and vertical plane (c). Numerical 
results are displayed by coloured solid curves (light blue for the totals) while the dotted 
black markers are used for the benchmark results. An overall good match with the exper-
iments on both the manoeuvring planes is observed as well as a good agreement both in 
terms of linear and nonlinear trends. Moreover, the very good ability in splitting the con-
tributions into the pure motions with fixed controls and plane executions is highlighted 
too. The best results in terms of matching experimental measurements are found for the 
SMG vessel, which is closer to modern submarine designs. Some discrepancies can be ob-
served for the DARPA, which is the most unrealistic design, still preserving relevant ac-
curacy. 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TE
=5 deg

TE
=10 deg

TE
=15 deg

TE
=20 deg

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=1.00

=0.25

=0.50

Figure 8. Flapped control surfaces—effect on lift [61]. (a) Chord-wise extent and trailing edge angle.
(b) Span-wise extent and taper ratio.

It is worth noticing that—in purely geometric and theoretical terms—the x-plane
configuration exploits four planes together in terms of controllability instead of the two of
the cross configuration but with a 45◦ mounting angle with respect to the manoeuvring
plane—see Figure 4. Then, each control force should be consistently projected, i.e., with a
total contribution of 4

√
2

2 = 2
√

2, against the total two of the + setup. On the other hand,
in terms of stability, the contributions of the +-plane and x-plane setups are geometrically
equivalent. Indeed, the inflow at each plane reduces to the same angle to obtain the in-plane
angle of attack. Considering the four surfaces of the x-plane setup, a total contribution
of 4

√
2

2

√
2

2 = 2 was obtained, which is equivalent to the contribution of the two vertical
surfaces of the +-plane setup. Consequently—in this ideal context—the lone x-plane benefit
was about

√
2, i.e., +40%, in controllability while it was the same in terms of stability.

Nevertheless, it should be recalled that the actual functioning and effectiveness of the
configurations vary depending on the interactions with the sail and the hull, as previously
discussed, both in terms of wake and straightening effects. Full details will be included in
the next work in progress. In addition, it should be recalled that all these considerations
apply if the four identical fins are rotated at the same mounting angle. Moreover, the +-
plane solution did not incur the lower rudder span limitation due to the keel line proximity.
A final operative remark concerns the x-plane redundancy on both the manoeuvring planes
in case of failures; this will be discussed in the next sections.

Propeller. The propeller model exploited four quadrant representation curves in terms
of Ct and Cq given the standard design thrust Kt and torque Kq curves and the advance ratio
J = uA

nD . An additional formulation for the lateral force KS = S/ρn2D4 was included to
encompass the unbalancing of tangential forces along the blade revolution in oblique flow.
According to Harris [64] and Dubbioso [65], a linear coefficient including the crossflow
velocity was obtained, counteracting the stern sidestep speed analogously in both the
vertical and horizontal planes:

∂KS
∂v′ := KSv

KSv = 2.12J
(

KQ − J
2

dKq
dJ

) (10)
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This correction term is needed for very unstable submarines since it is the only term
that is able to counteract the yaw/pitch motion when the stern control surfaces are aligned
to the local inflow once the rotation has been triggered.

3.2. Captive Model Testing—Validation

Pure drift, pure yaw, and pure rudder tests on the horizontal plane as well as pure
vertical drift (also called the angle of attack), pure pitch, and pure stern plane tests in
the vertical plane were used to validate the captive model tests in a PMM approach with
imposed kinematics. The corresponding lateral force Y, yaw moment N, and roll moment K
were reported for the former series while the vertical force Z and the pitch moment M were
studied for the latter series.

Results of the validation for the SMG, DARPA Suboff, and SWE vessels are shown in
Figures 9–11, respectively, on the horizontal plane (a,b) and vertical plane (c). Numerical re-
sults are displayed by coloured solid curves (light blue for the totals) while the dotted black
markers are used for the benchmark results. An overall good match with the experiments
on both the manoeuvring planes is observed as well as a good agreement both in terms of
linear and nonlinear trends. Moreover, the very good ability in splitting the contributions
into the pure motions with fixed controls and plane executions is highlighted too. The best
results in terms of matching experimental measurements are found for the SMG vessel,
which is closer to modern submarine designs. Some discrepancies can be observed for the
DARPA, which is the most unrealistic design, still preserving relevant accuracy.

3.3. Free-Running Tests—Validation

The dynamic simulation method was further validated by comparison against a
model/full-scale free-running test. Classic turning circles and zigzag manoeuvres in the
vertical and horizontal planes were considered. At this stage, each submarine was tested in
its original design configuration.

The analysed manoeuvring parameters, shown in Figure 12, were the turning tactical
diameters over the length (Dt/L) by varying the stern rudder angles (10–20–35◦) and the
zigzag overshooting sequence from the first to the third angle (#OVA) in the horizontal
(10/10◦) and vertical (5/5◦) planes. The reference data are depicted with red markers while
the simulated results are shown as the black solid line.

In the case of SMG, the experimental reference consists of both an experimental full-
scale campaign (EXP FS) and a model scale simulation from an extensive captive model
testing campaign (CMT MS). The SWE reference results come from mixed techniques [53]
while the DARPA Suboff belongs to two different simulated datasets, revealing a huge
dispersion due to the highly unstable design of this vessel [51,52]. Indeed, small variations
in the stability index near to zero led to the relevant spread of the results.

Overall, the agreement is satisfactory. The best match is, again, found for the SMG
design. Nevertheless, results for the DARPA Suboff test case should be considered satis-
factory too: To compensate for the linear instability, the vehicle relies on strong nonlinear
effects that are particularly challenging to be properly modelled and measured.

It is worth noticing that one of the valuable features of the proposed approach is
the capability to treat arbitrary geometries and variable stability thresholds, dealing with
results that might change significantly among various configurations. In terms of manoeu-
vrability performance, errors up to 0.3L in turning and 2.5◦ of overshoot (in the horizontal
manoeuvre) are generally considered satisfactory in the reference literature.
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Figure 9. (a) SMG captive model testing validation—horizontal plane. (b) SMG captive model testing
validation—horizontal plane roll. (c) SMG captive model testing validation—vertical plane.
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Figure 10. (a) DARPA captive model testing validation—horizontal plane. (b) DARPA captive model
testing validation—horizontal plane roll. (c) DARPA captive model testing validation—vertical plane.
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Figure 11. (a) SWE captive model testing validation—horizontal plane. (b) SWE captive model
testing validation—horizontal plane roll. (c) SWE captive model testing validation—vertical plane.
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4. Manoeuvring Results

A detailed analysis of the manoeuvring performance of the SMG vessel in both intact
and degraded operating conditions was carried out. This study focuses on the comparison
of the performance in both conditions with particular attention to a speed-dependency
analysis. Moreover, the two possible stern plane configurations, i.e., x- and +-planes,
respectively, were compared, providing a detailed design matrix that might ideally support
the decision-making process at an early stage.

4.1. Design Matrix

The analysis carried out on the baseline SMG design (original) systematically accounts
for variations of the following quantities:

• The sizing and position of all the appendages (a sail) and control means (movable
percentage and +- vs. x-configuration);

• The weight and stability properties (longitudinal centring and restoring BG);
• The sectional and global slenderness of the bare hull (midship sectional area Ax,

dimensional ratios L/B and H/B, and displacement);

The analysed parameters have been varied out of typical ranges to better highlight the
sensitivity trends with respect to the manoeuvring performance.

For simplicity, the only variations in the resisting diameter, i.e., the breadth B, were
endorsed by varying the volume of the vessel, i.e., the displacing resistant hull; the re-
maining volumes within the deck, keel, and sail, which form the hydrodynamic hull, were
considered neutral. According to this, the following notation has been used to distinguish
the hydrodynamic and manoeuvring effect, even if the modification is virtual and not
compliant to any design criteria: “∇” means a transformation at a constant volume while
“*” refers to fictitious transformations without preserving volume. While scaling the hull,
all the appendages and control surfaces were kept constant by only shifting the mounting
locations consistently.

The following variations were considered:
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- Hull −10% Ax∇—hull reduction of −5% in height H and breadth B (i.e., −10% trans-
verse section Ax), same volume; that is about +10% length.

- Hull +10% H/B*—fictitious increment of hull aspect ratio (+5% H e −5% B).
- Hull +10% H/B∇—from the previous +10%L to compensate for the volume loss.
- Hull_H = B Ax*—modification of the transverse section to axial symmetric, i.e., H = B

maintaining the transverse section area Ax constant. This results in a −10% H e +10%
B. This fictitiously preserves the volume of the resisting hull without deck and keel.

- Hull H = B∇—reduction of H to B, considering neutral the loss of volume from the
deck.

- Rud +20% s0—increase of stern planes and rudders span about +20%, i.e., +20% area.
- Rud +5%L x0—shifts ahead of stern planes and rudders about +5%L.
- Sail +20% s0—raise of sail span +20%, i.e., +20% area.
- Sail +20% x0—shift ahead of the sail 20% with respect to the original position (from

0.62L to 0.75L).
- LCG and B +10%L—virtual +10%L shift ahead of LCG e LCB. It does not include a

shift of buoyant sections to compensate: the hydrodynamic hull is kept.
- BG +20%—raise of +20% stability lever (lowering G).
- Rud 2x rate—doubling the steering slew rate.
- Rud 80% Movable—stern planes and rudders are all 80% movable (compared to the

original configuration having 60% for the horizontal planes and 100% for the vertical
surfaces).

- Rud 100% Movable—all stern planes and rudders 100% movable.
- Rud “+-Eq”—equal reallocation of the total area of stern rudders and planes.
- Rud “x-Eq”—rotation of the previous configuration to x-setup.
- Rud “x-Eq” −20% s0—reduction of −20% span with respect to the previous.
- Rud “x” 60%m—reduction to 60% movable of the previous.

A comparison of the course stability indexes in the two planes, including the damping
ratio at 50% of the full speed and the critical velocity (expressed in knots, full-scale),
is reported. The initial validation of the latter is reported in Appendix B, providing a
good agreement with respect to the experiments on both planes. In addition, results for
the horizontal zigzag 20/20 (ZZ20h) and the Meander test (MEs5b10) are shown. Both
manoeuvres are described in detail in Appendix A. The results are summarized in Figure 13
for 10 knots full-scale vessel speed.

Original design. The original design realized tactical diameters between 4.6–2.5L,
respectively, with 10–35◦ rudder angles and dynamically responds to the ZZ10h with an
overshoot in the range of 12.5–20◦ and ZZ05v in the range of 1.2–1.8◦. The first value refers
to the first overshoot while the second refers to an average measure in between the second
and the third. The ZZ20h cannot be executed due to the stall of the planes, which does
not benefit from the propeller wake acceleration or consequent stall delay. The MEs5b10
requested a second execution time of 1.4L, leading to a maximum trim angle of 6.5◦ and a
depth variation of 0.33L. In terms of stability, the submarine was horizontally, marginally
stable with Gh = 0.06 while on the vertical plane, Gv = 0.67 with a damping ratio DR = 0.7
at 10kn and a critical velocity of about 3kn.

Hull−10% Ax∇. The transverse section reduction while increasing the length of the
hull at the same volume increased the intrinsic stability of the vessel (Gh = 0.6, Gv = 1):
The stern planes and rudders took advantage of the larger lever arm while the hull sizing
reduced with respect to the control surfaces. Therefore, both the stability coefficients
increased. This benefitted the manoeuvres, halving the overshoots (about 10◦-h 0.75◦-v)
at the cost of widening the turning diameters for small helm angles. For larger angles,
the obtained nondimensional turning diameters were comparable. The circles, in terms
of absolute dimensions, would all be larger due to the increased length. The increased
stability allowed for the execution of the ZZ20h with overshoots angles of about 22.5◦-h on
average.
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Figure 13. SMG—Manoeuvring design matrix—10 knots full-scale.

Hull +10% H/B*. The hull aspect ratio increase did not have any relevant effect on
the manoeuvring performance. On the vertical plane, the reduction of hull projected area
with respect to the stern planes slightly reduced the overshooting. On the other hand, the
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horizontal plane manoeuvre remained the same. The only exception was the feasibility of
the ZZ20h, notwithstanding the large overshooting angles (about 40◦ on average). When
the variation of volume was compensated by increasing the length, Hull +10% H/B∇, there
was a benefit in stability, as in the previous case.

Hull_H = B Ax*. The axial-symmetric design of the hull keeping the sectional area Ax
opposed the stability on the vertical plane due to the diameter increase, which resulted
in more relevant hull hydrodynamic forces compared to the control term. The overshoot
raised on average to about 2.5◦-v. On the horizontal plane, the manoeuvres were almost
unaltered. Vice versa, the solution Hull H = B∇, for which only the neutrally buoyant
volume within the deck and keel was eliminated by keeping B constant, experienced
some advantages exactly in terms of the horizontal plane stability (Gh raises to 0.23). This
reduced the horizontal overshoots to about 15◦ (−25%), widening the circles about +0.5L
for small helm angles but keeping the hard-over turning unchanged. The horizontal ZZ20h
still remained unfeasible. The manoeuvres on the vertical plane remained unaltered.

Rud size and position. Increasing the stern plane size led to a significant improvement
in the course stability on both planes (Gh = 0.3, Gv = 0.89). The horizontal and vertical
overshoots diminished consequently (12◦-h, 1◦-v on average) due to the increased area and
aspect ratio. The ZZ20h became feasible with overshoots of about 32◦. The turning circles
slightly increased for small execution angles, but the hard over settings identically reached
a diameter of 2.5L. Shifting ahead the stern plane mounting location slightly reduced the
overshooting. The stability indexes remained unchanged at the cost of a smaller control and
steering lever. The position of the control means played both in stability and controllability.

Sail. The sail sizing was not relevant in terms of manoeuvring since it is located
around the pivot point during the turning and the neutral point (the pure drift centre of
pressure). In fact, its angle of attack during the manoeuvre neutralized once the turning
started. This avoided generating too huge of heeling moments. In this case, the sail was
positioned at 0.62L, astern the neutral point, which was located at about 0.82L. The stability
index in the horizontal plane slightly raised (Gh = 0.09) with minor reductions of the
overshooting (−2◦-h). Its specific positioning pulled back the neutral point around 0.75L
while increasing the resistance to yaw. Vice versa, pushing the sail ahead to 0.75L had a
destabilizing effect, causing a relevant increase of the overshoots (up to 28◦-h during the
ZZ10h). Correct longitudinal positioning is then a key feature of the design. Moreover,
the smaller the angle of attack on the sail and/or the smaller the vertical extension, the
smaller the snap-roll. The effects in terms of turning the circle are less relevant except for
the heeling.

Slew Rate. The increase of the slew rate to 200% was ineffective in all the transients.
All the overshoots diminished irrelevantly. The vehicle experienced a fast reaction, thus
was not sensitive to this variation.

Mass. The virtual shift ahead of the centre of mass intrinsically increased the stability
index of the vehicle. The centrifugal force that opposes to yaw moved ahead without
modifying the hydrodynamics of the vehicle (Gh = 0.28, Gv = 0.76). However, this shift
was fictitious and did not take into account any variation or shifting of the buoyant and
structural sections. In these terms, it is intuitive that a centre of mass positioned astern
tends to make the stern drift outside the turn. On the contrary, the drift and yaw moments
will tend to compensate and balance as the centre of mass moves closer to the neutral point.
The benefits in terms of zigzag were significant (<9◦-h e < 0.8◦-v) but at the cost of slowing
the vehicle reaction (second execution time 1.6L), i.e., the time constants. The ZZ20h could
be realized with an overshoot of about 15◦. On the other hand, the parameter was very
sensitive in terms of turning, widening the tactical diameters around +1.6L with the smaller
helm angle of 10◦, and +0.6L with the hard-over setting. The variation of BG was not
relevant on the horizontal plane except for the snap roll because of the larger lever arm
between the lowered centre of mass and the vertical centre of pressure. The variation of BG
was more sensitive in the vertical plane. The damping ratio reduced significantly (to 0.44)
while the critical velocity increased up to 4 kn, which is a not desirable effect for low-speed
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manoeuvring. The increased restoring capability reduced the vertical overshoots to values
smaller than 1.2◦-v and slightly slowed down the dynamics. The response to the Meander
test was slower and less stiff with maximum trim angles reduced to 6◦ and a depth change
of 0.22L. The stern planes experienced more difficulty in counteracting BG to vary the
vehicle angle of attack useful in changing depth. This was made clear by the increase up to
4kn of the critical velocity and the reduction of the damping ratio. The stability moment,
indeed, became more influent with respect to the hydrodynamic control forces.

Rud movable area. The reduction of the movable portion of all the control surfaces
to 80% (originally the rudders were at 100% while the stern planes were at 60%) led to a
slight reduction of the ZZ10h overshoots while making it possible to realize the ZZ20h with
overshoots smaller than 30◦. De facto, the modification reduced the steering capabilities
of the submarine, i.e., the only control action in the rudder and counter-rudder sequences.
This triggered a dynamic system with the same stability properties (in stability terms, with
a zero angle, 100% of the surface accounts in terms of stability—i.e., Gh does not vary). In
terms of the vertical plane, the system response became faster and stiffer (since the original
configuration considered a 60% movable area). By turning all the stern control surfaces to
100%, the vertical plane phenomenon increased, raising the overshoot to 2.5◦-v, reducing
the second execution time of the meander test (0.95L) and increasing the maximum pitch
angle to 7.6◦ and the depth change (0.33L).

+-Rud Eq. area reallocation. The fair reallocation of the area on the four stern control
surfaces, all 100% movable, penalized the horizontal planes while improving the perfor-
mance of the vertical ones (considering that the original design was unbalanced in terms
of areas). The stability indexes changed accordingly [Gh = 0.41, Gv = 0.65]. Better con-
trollability on the horizontal plane was experienced while the vertical manoeuvre became
stiffer. The overshoots almost halved on the horizontal plane (around 10◦-h on average)
while doubling on the vertical plane (2.6◦-v on average) with values almost identical to
the solution, +100% movable, with the original distribution of areas. There was a relevant
impact of the exciting and restoring forces in this comparison. On the other hand, the
ZZ20h became feasible with a maximum overshooting angle of about 25◦.

x-Rud Eq. setup. The variation from the equivalent +-setup to the equivalent x-setup
increased the control action by about an ideal factor

√
2, i.e., +40%, keeping the stability

indexes constant. It resulted in Gh = 0.41 and Gv = 0.65, maintaining the same area as
that of the +-setup. In terms of manoeuvrability, this narrowed the turning circles. The
horizontal overshoots remained unchanged. The ZZ10h overshoots rose to a negligible
quantity due to the higher exciting forces while they were slightly reduced in the ZZ20h
to 23◦. On the vertical plane, the overshooting stiffened at about 3.3◦: The configuration
almost doubled the overshooting if compared to the original design. This is particularly
evident in the Meander test, making this setup the most responsive. The second execution
time halved (0.9L), generating a higher trim angle (9◦) and larger variations of depth (0.45L)
due to the higher hull-induced angles of attack. This means that smaller stern plane angles
may be sufficient to reproduce the same manoeuvring abilities of the original design due to
the higher pitching effectiveness.

x-Rud Eq. variations. Considering the above x-setup reallocation, the reduction of
the span to the extent of −20% destabilized both the manoeuvring planes again, changing
both the overshooting to 15◦-h and 4.5◦v. The vertical plane then became less dampened.
The reduction of the movable surface to 60% (coupled with the above span reduction)
slightly reduced the vertical overshooting by reducing the exiting triggering control force
but still with a substantial difference from the original design. On the other hand, the
horizontal plane manoeuvring was not particularly modified but experienced a reduction
of the turning ability.

In conclusion, the capability of restoring exactly the +-setup manoeuvring features can-
not be achieved directly with an x-setup unless segregated control on the two manoeuvring
planes is undertaken. The +-setup indeed benefits from an intrinsically segregated stability
and controllability featuring the two manoeuvring planes. On the other hand, the x-setup



J. Mar. Sci. Eng. 2022, 10, 2014 24 of 38

is more effective in terms of controllability, with analogous stability featuring, turning the
same control planes to be more effective. Moreover, the latter setup offers a convenient
redundancy of allocation on the two manoeuvring planes. The x-setup control action can
be suitably tuned by reducing the allocation angles according to the manoeuvring plane to
best meet the desired execution readiness and stiffness.

In terms of design features, the x-setup presents fewer limitations in terms of mounting
given the fact that the lower keel line does not limit the extension of the planes directly
in the vertical direction, such as it does for the lower rudder of the +-setup. In terms of
operability, the solution is also effective in case of failure, such as a jammed or lost control
surface, as will be demonstrated in the next sections.

4.2. Speed-Dependency

The speed dependency analysis has been carried out by varying the velocity from
5 kn to 25 knots at full scale. The extreme value of 25 kn has been included to extend the
study to the highest possible operating speed and to provide trends over a broader range.
Results for the +-plane configuration and the equivalent x-plane configuration are shown in
Figures 14 and 15, respectively, focusing on the attitude angles reached by the corresponding
submarine. Dive Fail test “DF” manoeuvre is included (the ‘DFs5b10n7_15s60s’) according
to the definition described in Appendix A.

The speed effect was relevant in terms of overshooting and dynamic attitude during
the transient phases of all the zigzag and the Meander tests. This is due to the balance
between the inertial and the hydrodynamic forces on the horizontal plane and the restoring
forces on the vertical plane. By increasing the speed, the overshoot angles doubled in both
planes. Both the attitude and depth changes increased accordingly. Vice versa, no effects
were expected in terms of turning apart from travelling the same turning circle with a
different velocity and different heel angle.
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By dropping the speed, the vertical controllability of the +-plane configuration de-
creased. Reaching the 5◦ trim threshold angle with a helm execution of 5◦ then became
impossible. The control action was not sufficient to create the pitching moment if compared
to the restoring capability. Indeed, the lower the velocity, the lower the hydrodynamic drift
moment on the hull collaborating with the plane’s action. The plane’s moment became
irrelevant and cancelled out with the hull forces. By excessively increasing the speed,
over-critical trim angles greater than 20◦ may be reached both in terms of the Meander
test and dive-fail crash-stop. In the latter manoeuvre, the head achieved 11L with a depth
change of 5L, reaching unfeasible trim angles.

On the other hand, the x-setup was more sensitive overall to the stern-plane actua-
tions, spanning over greater ranges of overshoot angles by changing the velocity. This
configuration maintained controllability at the lower velocity too, turning feasible both the
vertical zigzag and the Meander test. Finally, it is evident that excluding only one of the
stern planes led to a relevant lateral reach in the dive fail-stopping mode but significantly
diminished the longitudinal reach to a maximum of 6.5L.

4.3. Failure Scenario

The failure of the stern steering planes was modelled by considering the surfaces
to be jammed in a sequence at defined angles or that they would be lost. According to
Figure 16, in the case of horizontal manoeuvre with +-setup, the failed plane was the lower
vertical (#1) while for the x-setup it was the portside lower (#1). In the case of vertical
manoeuvres with the +-setup, the failed plane became the portside horizontal (#2) while
it remained the same (#1) for the x-setup. Indeed, with the x-setup, it was not possible
to segregate the degrees of freedom in terms of failure since it was redundant in terms of
controllability in the crossed planes. It was also assumed that in the +-configuration, the
opposing rudders, and planes could be executed decoupled, which is not the case with
some existing submarines. If this assumption could not be met, the handling of the vehicle
would be completely lost without any chance to manoeuvre further.
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The control surfaces were jammed respectively to 10–5–0◦ in the counter manoeu-
vring direction of the initial turning. They were alternated in favour or not in terms of
overshooting. It was also considered the scenario with the complete loss of the control
surface, i.e., not generating any force. The abbreviation used to identify each manoeuvre
is ‘xRFy’, where ‘x’ is the rudder id, ‘RF’ stands for rudder failure, and ‘y’” is the jammed
angle ‘10–5–0◦’ or the loss ‘L’. All the manoeuvres were approached at 10 kn.

Figure 17 displays the turning circle results while Figure 18 shows the horizontal
zigzag comparison. As a visual support, the trajectory plots only depict the turning circles
(35◦ and 10◦) and the horizontal zigzag (10/10◦) in the intact and 1RF5 condition—i.e.,
plane #1 failure at 5◦. The histograms, on the other hand, report the whole series of jammed
and lost rudders in terms of tactical diameter and overshooting sequences. The complete
set of results, including the heel and trim of the submarine, are shown in Appendix C—
Figures A7 and A8.

A smaller loss of turning ability but with relevant dynamic longitudinal and transverse
attitudes was experienced by the x-configuration compared to the + configuration, as shown
in Figure 17a,b, respectively. Indeed, the unbalancing of the whole set of the four control
surfaces had a stronger effect in terms of roll and pitch moment if no countermeasures
were adopted. The turning ability reduction was evident in the TC10 but was progressively
lost while rising the helm angle to the TC20 and TC35, leading to turning diameters like
the original ones. This is due to the stall of the jammed control surface which was set to a
geometric counter-manoeuvring angle, i.e., an effective counter-angle magnified by the drift.
An overall destabilization was observed if the control surface was lost, narrowing the circles
whichever the helm angle. Finally, in the x-setup, the attitude variation led to modifications
of the vehicle angle of attack, and, in turn, to relevant depth-changing velocities. These
should be compensated by using the bow planes or by setting differential angles around
the average stern plane’s setpoint. For instance, the latter differential correction on the
stern planes of 5◦ and 10◦ with a time delay to the execution in the trajectories is proposed.
This means that, e.g., from the turning setpoint, the portside and starboard side planes
set asymmetric to pitch the bow down, i.e., to 35◦ ± 5◦ and 35◦ ± 10◦, while keeping the
turning contributions. As a result, the emersion velocity is nullified with a minor turning
ability decay. The +-setup experienced wider turning diameters, especially for the smaller
helm angles, but then exhibited narrower circles at the higher angles.
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Figure 18. (a) SMG +-Eq—Horizontal zigzag in #1 plane jammed or lost condition. (b) SMG x-Eq—
Horizontal zigzag in #1 plane jammed or lost condition.

As shown in Figure 18a, the zigzag stability and controllability features were strongly
degraded in the +-configuration. Given the residual controllability of only one control
surface, there is no safety margin when the jammed angle is large or if the surface is lost.
In fact, the manoeuvre cannot be realized when the surface is lost or if jammed at 10◦.
The overshooting sequences reached 30◦ in the 1RF5 condition when not in favour of the
turn direction. If the surface was jammed on the centreline, on the other hand, all the
manoeuvres became stable, opposing the active trigger action of steering. Vice versa, as
displayed in Figure 18b, with the x-setup, the residual effectiveness of the three control
surfaces was still satisfactory in terms of yaw-checking ability also when the fourth surface
was lost. All overshooting sequences were realizable and more than halved with respect to
the +-setup. The benefits of the x-setup are evident in terms of readiness and control. The
horizontal zigzag trajectories highlighted the loss of symmetry starboard to the portside,
inducing the vehicle to drift progressively to the portside. Moreover, the x-setup did not
suffer a relevant loss of the control period in the degraded condition compared to the
intact condition. The +-setup reduced the control readiness and led to larger flaws in
terms of yaw-checking, increasing the overshoot angles. In case a straight path needs to be
recovered, the x-setup allowed for a more flexible redundancy in differential setpoints to
achieve this goal.
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5. Conclusions

A thorough, modular modelling approach to simulate submarine manoeuvring has
been developed and validated in six degrees of freedom both on the horizontal and vertical
planes. The ability to capture the heterogeneity of a fleet of three very different submarines
in terms of design and manoeuvring implications, ranging from the highly unstable DARPA
Suboff to the most realistic SWE and SMG, has been proven by the comparison of the nu-
merical results against experimental, available data. The validation process has confirmed
the reliability of the proposed method with respect to both captive model testing and
free-running manoeuvres.

The method has then been applied to study the intact and degraded performance of a
realistic submarine in different operating scenarios, proving its effectiveness as a reliable
design tool to be used at an early stage of the design process. The effect of all the main
geometrical parameters with the details of the hull, sail, and control surfaces has been
studied as well as the speed-dependent handiness of the vessels, which is of relevant
concern for the controllability in both planes. From the comparative analysis carried out
on the stern plane configurations, the x-setup positively demonstrates valuable features
in terms of controllability ranging from the lowest velocities on both the manoeuvring
planes at the cost of stiffer executions in the vertical response. The greater effectiveness in
triggering the manoeuvres leads to the conclusion that smaller execution angles may be
selected. This relieves a greater safety margin in terms of manoeuvring given the evidence,
and also, in case of jammed or lost surface, such a setup guarantees satisfactory, even if
degraded, handling features, but only if the vehicle attitude and depth are monitored and
kept under control by an automatic or manual system.
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Appendix A

Appendix A.1 Meander Test

The Meander tests is a pull-out manoeuvre from the vertical zigzag second execution.
The test is apt to verify the vertical course stability of the vehicle after a disturbance, thus
its ability to change depth and restore a constant depth course. It considers a combined
action of the stern planes and bow planes to impress a maximized variation of angles of
attack of the vehicle to change depth—see Figure A1: After the execution of the planes,
when the vessel reaches a reference pitch angle, the planes reset to zero, and the stability in
the vertical plane is verified. The test philosophy is analogous to a turning pull-out test to
verify eventual residual velocities, in the present case, in terms of pitch oscillation damping
and diving velocity. The presented parameters refer to the second execution time in terms
of promptness, and the maximum overshoot trim in attitude and depth change to verify
the depth change capability and the stability in case of oscillations. The manoeuvre, called
“MEs5b10”, stands for the execution of the stern planes at 5◦ “s” and the bow planes at 10◦

“b” to pitch down. The characteristic quantities are reported in the table and timeseries of
Figure A2.
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Appendix A.2 Dive Fail Test

The dive fail test is a variation of the Meander test and is executed by jamming the
stern planes in the descent direction at the second execution and crash stopping: Starting
from this moment, the bow planes are flipped to compensate the bow upwards, and with
a delay of 15 s, the thrust is reversed at −70% of revolutions with a ramp of 60 s—see
Figure A3. The emergency manoeuvre is called “DFs5b10n7_15s60s”, and the summarising
parameters reported in the histograms are the maximum trim angle, the head reach in the
longitudinal direction, and the depth change vertically to stop. The philosophical rational
concerns the attitude safety assessment and the allowance depth band evaluation in case of
emergency to avoid emerging or overtaking the structural collapse depth. The additional
characteristic quantities are reported in the table and timeseries of Figure A4.
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Appendix B

Linear Stability Indexes

In the following lines, a summary and analysis of the linear stability properties of the
vehicles are reported, in particular: the horizontal stability index Gh, the vertical stability
index Gv, the damping ratio DR at two velocities, the stern planes critical velocity Vc, and
the lower vertical stability velocity threshold Vre>0 in the case of unstable vehicles—for
complete definitions see Feldman (1979).

The horizontal stability index is defined according to the following:

Gh = 1− bv

br
:> 0

where
b′v = N′v

Y′v
h-drift destabilising lever

b′r =
N′r−m′x

′
g

Yr−m′ yaw stabilising lever
The vertical stability index at high-speed under the assumption that the hydrody-

namic forces cancel out the restoring term is defined according to the following:

Gv = 1− bw

bq
:> 0

where
b′w = −M′w

Z′w
v-drift destabilising lever (also called neutral point x′NP)

b′q = −M′q−m′x′g
Zq+m′ pitch stabilising lever

The neutral point is the longitudinal coordinate where, if applied a vertical force,
the vehicle will experience a direct vertical shift, i.e., a depth change without variation of
attitude. Normally, bow planes are installed around this coordinate. At low speeds, this
becomes fundamental when the depth control is lost due to the critical threshold of velocity
trespass. This coordinate corresponds to the longitudinal centre of pressure of the vertical
drift motion, i.e., the above v-drift destabilizing lever.

The critical point, vice versa, is the longitudinal coordinate according to where, if
applied a force, the vehicle will only change trim attitude without varying the depth. This
position relies on the comparison between hydrodynamic forces and restoring moment so
that no resultant unbalanced vertical forces exist. The lower the velocity, the less effective
the stern planes, and the more this point will shift astern. In terms of design, the critical
velocity is identified when the critical point overlaps onto the stern control planes. This
threshold velocity determines if the pitch moment caused by the control surface force will
generate a trim and a sufficient vertical angle of attack to make the vehicle shift in the
direction of the drift force (opposite to the control surface force) or will make drift the
vehicle vertically in the direction of the control surface force (see Figure A5). The point can
be located starting from the pitch equilibrium between hydrodynamic forces and restoring
moment:

− ∆BG
0.5ρL3V2 θ + Z′w

(
x′NP − x′CP

)
βv = 0

By imposing a horizontal course (neutral variation of depth), i.e., with a pitch angle
θ identical and opposite to the vertical drift angle −βv, the following quantities can be
evaluated by once varying the velocity for obtaining the critical point position, and then, by
setting the critical point at the stern planes for obtaining the critical velocity of the current
design:

x′CP = x′NP + ∆BG
0.5ρL3V2Z′w

Critical point (also called trim point)

Vc =
√

∆BG
0.5ρL3 Z′w(x′NP−x′CP)

Critical velocity
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Finally, the damping ratio is a nondimensional index of the oscillations decaying
factor on the vertical plane due to any disturbance around the equilibrium point of straight
sailing. The definition follows standard dynamic system equations written in normal form
in the fashion of damped harmonic oscillators by defining the natural frequencies, the
critical damping, and the damping ratio. The damping ratio will rely on the vehicle velocity.

As a general remark, Feldman and Gertler suggest the following parameter for a good
design both stable and prompt in dynamic response: (i) Gh > 0, about 0.2 (marginally
stable); (ii) Gν > 0; (iii) DR ∼0.7 at moderate speed; DR > 1 at high speed; DR ∼0.2 at low
speed.

The SMG design: As an example, Table A1 summarises the linear stability properties
of the original SMG used as the reference design for the study. The fidelity of the modelling
is substantial. Both the stability indexes and the critical velocities are substantially caught
by the modelling. The vehicle is marginally stable on the horizontal plane while supplying
a greater margin onto the vertical plane to best cope with the speed effect. As an example,
Figure A6 depicts the SMG vertical damping ratio trend with velocity obtained from the
simulation model, which is typical of modern submarines: the experiments positively
remark a value of 0.75 at 10 kn with BG = 0.27m. The critical velocity is well matched
around 3.5 kn.
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Table A1. Linear stability indexes validation.

SMG

EXP MODEL

Gh 0.10 0.06
Gv 0.81 0.67
DR 5 kn 0.58

10 kn 0.75 0.72
Vc 3.50 3.10
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Figures A7 and A8 depict the full results of the +-setup and x-setup designs in the
degraded conditions.
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