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Abstract: Video-based ship object detection has long been a popular research issue that has received
attention in the water transportation industry. However, in low-illumination environments, such as
at night or in fog, the water environment has a complex variety of light sources, video surveillance
images are often accompanied by noise, and information on the details of objects in images is
worsened. These problems cause high rates of false detection and missed detection when performing
object detection for ships in low-illumination environments. Thus, this paper takes the detection of
ship objects in low-illumination environments at night as the research object. The technical difficulties
faced by object detection algorithms in low-illumination environments are analyzed, and a dataset of
ship images is constructed by collecting images of ships (in the Nanjing section of Yangtze River in
China) in low-illumination environments. In view of the outstanding performance of the RetinaNet
model in general object detection, a new multiscale feature fusion network structure for a feature
extraction module is proposed based on the same network architecture, in such a way that the
extraction of more potential feature information from low-illumination images can be realized. In line
with the feature detection network, the regression and classification detection network for anchor
boxes is improved by means of the attention mechanism, guiding the network structure in the
detection of object features. Moreover, the design and optimization of the augmentation of multiple
random images and prior bounding boxes in the training process are also carried out. Finally, on the
basis of experimental validation analysis, the optimized detection model was able to improve ship
detection accuracy by 3.7% with a limited decrease in FPS (frames per second), and has better results
in application.

Keywords: deep learning; computer vision; ship object detection; RetinaNet; low-illumination
environment

1. Introduction

In recent years, the water transport industry has primarily supervised ships via
AIS (automatic identification system), but this depends on the construction of shipborne
terminals and shore-based base stations, and cannot play a regulatory role in the case of
ships that have not installed AIS, or that have intentionally turned off AIS in order to carry
out illegal activities, and, therefore, evidence cannot be obtained on the spot. In light of
these regulatory issues, video surveillance has emerged as a necessity due to its possessing
the characteristics of intuitiveness and readability. However, traditional video surveillance
can only be used for observation and to store evidence; it is not able to intelligently analyze
it. Therefore, ship target detection when using video surveillance is critical. Many scholars
are currently conducting research on video-based ship object detection technology, and
object detection under low illumination is one of the most difficult tasks, representing a
hotspot and a source of major difficulty in current research.
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1.1. Object Detection Methods

Methods for video-based object detection can be broadly categorized into two types:
traditional object detection algorithms and deep learning detection approaches.

In traditional object detection algorithms, the general technical framework consists of
horizon detection, background subtraction, and foreground segmentation. In particular,
horizon detection methods can be classified as follows: methods based on line features [1],
methods based on area modeling [2], and hybrid methods incorporating both methods [3].
Background subtraction methods can be classified into three categories: the first determines
whether each pixel belongs to the foreground or the background based on statistical infor-
mation from a single image; the second calculates the probability that pixels belong to the
foreground and background using GMM (Gaussian mixture model); and the third extracts
image features from each pixel or small area and calculates the probability that it belongs
to the foreground or background [4]. Foreground segmentation employs morphological
methods to generate detection results based on the results of background subtraction. The
specific detection algorithm generally employs the HOG (histogram of oriented gradients)
method in conjunction with SVM (support vector machine) [5]. In addition, the majority of
such methods use the method of artificial feature extraction. However, this is difficult to
apply in cases of object detection at multiple scales in complex environments, such as at
low illumination, due to its high subjectivity and single feature.

In recent years, the performance of deep learning-based object detection algorithms has
surpassed that of traditional algorithms in many fields with increases in data volume and
computing power. Deep learning is a data-driven method that trains the model on a large
number of datasets in order to achieve the desired level of cognitive ability [6]. This method
does not require artificial design features and has a greater capacity for generalization. Deep
learning-based object detection algorithms can be divided into two-stage and one-stage
algorithms. The former first generate candidate object frames, which are then classified
and regressed, and include R-CNN (region-based convolutional neural network) [7], Fast
R-CNN [8], and Faster R-CNN [9]. The latter do not generate object candidate boxes and
instead rely solely on a neural network to complete classification and regression, with these
including SSD (single-shot Multibox detector) [10], YOLO (you only look once) [11–13],
FCOS (fully convolutional one-stage object detection) [14], and RetinaNet [15]. Scholars
have improved and perfected ship object detection algorithms in recent years using deep
learning models. Zou et al. [16] tested Faster R-CNN and SSD on SMD datasets [17],
obtaining mAP (mean average precision) values of 84.33% and 80.23%, respectively, and
used ResNet [18] to replace the infrastructure VGG (visual geometry group), obtaining an
mAP of 88.08%. Scholler et al. [19] used a long-wavelength infrared image dataset to test
Faster R-CNN, RetinaNet, and YOLOv3, and obtained mAP values of 81%, 86%, and 90%,
respectively. Significantly, RetinaNet’s mAP was improved to more than 90% after image
preprocessing. The attention mechanism [20] was added to the classification and detection
network in the RetinaNet model to enhance the network feature extraction ability, and the
improved RetinaNet model demonstrates good detection performance.

Ship object detection is similar to general object detection. Furthermore, the accuracy
of the two-stage detection network is greater than that of the one-stage detection network,
but the detection speed is slower. Thus, this paper used RetinaNet as the basic detection
algorithm in order to achieve real-time edge detection, and improved its network architec-
ture based on the technical characteristics prevailing in low-illumination environments, in
order to improve object detection accuracy without significantly reducing detection speed.

1.2. Object Detection Methods in Low-Illumination Environments

Object detection based on deep learning in settings with low illumination generally
can be viewed as a specific improvement over the standard object detection algorithm.
LV [21] proposed a low-illumination image object detection algorithm based on improved
SSD, and the original low-illumination image was enhanced using an image enhance-
ment algorithm based on Retinex theory. In this method, a dual-branch SSD structure
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is designed, and the ResNet50 network is used to replace the original VGG16 feature
extraction network. The dual-branch structure incorporates a differential feature fusion
module (DFF) to improve the model’s extraction effect on complementary features and
the algorithm’s detection accuracy on low illumination image objects. LI [22] proposed an
algorithm for the fusion of infrared and visible images under different visual angles based
on saliency detection, using a Mask R-CNN network to extract the object saliency regions
in the infrared image, locally fusing each object region with the visible image according
to the field of view conversion model point, and combining the main infrared image with
a clear visible background. The fused image can help with object detection in low-light
situations. To address the issue of low accuracy of multi-scale pedestrian object detection in
low-illumination environments, CHEN [23] proposed a pedestrian detection method based
on YOLOv5s and infrared and visible image fusion. The generation countermeasure net-
work is utilized to generate the visible light and infrared fusion image dataset. The SENet
(squeeze and excitation networks) channel attention module is incorporated into YOLOv5s
so that the network can pay more attention to the highlighted objective, thus enhancing
the mAP of pedestrian detection. A network model of radar and camera feature fusion
was proposed by CHANG [24] for the impact of bad scenes, such as low light, rain, and
fog, on the detection capability of intelligent driving vision systems. The radar attention
mechanism feature module RCBAM (radar of convolutional block attention module) was
built using millimeter wave radar information and an attention model. Because radar data
are not easily impacted by weather or light, the addition of the RCBAM module’s feature
fusion network can considerably enhance the object detection network’s robustness and
anti-interference capability. Based on the single-stage object detection algorithm RetinaNet
in deep learning, LIU [25] combined the characteristics of the SAR (synthetic aperture radar)
image with less feature information, adopted the idea of multi-feature layer fusion, and
proposed a more appropriate loss function calculation method. Based on the traditional
YOLOv3, an enhanced YOLOv3 algorithm for ship detection was proposed by NIE [26].
The prediction box uncertain regression, the negative logarithm likelihood function, and
the improved binary cross-entropy function were used to redesign the loss function, and
the non-maximum suppression (NMS) algorithm with Gaussian soft threshold function
was used to post-process the prediction boxes. Their experimental results indicate that
the proposed method is capable of delivering enhanced ship detection in adverse weather
and environmental conditions, such as fog and low-light settings, as well as in navigation
environments with complicated backdrops.

According to pertinent research and analysis, the specific application scenario of ship
object detection in low-illumination environments determines that the technical challenges
encountered by the general object detection algorithm are exacerbated, thereby increasing
the performance requirements for the model. The existing algorithms suffer from the
following technical issues:

(1) In low-illumination environments, such as at night, the light source is complex,
background light interferes, the ship image is underexposed, contrast and brightness are
low, and image quality is poor, resulting in less available information and trouble extracting
sufficient effective features. Currently, the general object detection algorithm has limited
ship object extraction capability and insufficient accuracy.

(2) In the ship monitoring image, both small ships, such as fishing boats and tugboats,
and large ships, such as cruise ships and container ships, can be seen in the same frame.
This means that the scales of the image data can be very different from one goal to the
next. Smaller objects in the CNN model will correspond to smaller and smaller areas on
the feature map, or they may even disappear during the convolution and pooling process.
Additionally, if the network’s receptive field is much bigger than the object’s size in the
deeper layer, it will be hard for the object to show up in the feature map.

(3) The ITU-R M.1371-5 proposal divides ships into dozens of types, such as passenger
ships, freighters, oil tankers, tugs, sailboats, and yachts. Different subdivided ships look
very different in shape, texture, and other ways. In real life, the camera’s view angle
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is usually not fixed, and ship images taken from different angles show ships that are
various sizes, in different places, and with different attitudes. Furthermore, the water
environment is more complicated than the land environment, and some general object
detection algorithms can mistake ship reflections, water waves, and shore buildings for
other things.

According to the above analysis, there are still numerous challenges to be tackled in
ship object detection in low-illumination environments. In deep learning object identifica-
tion, the low-level feature maps contain rich high-resolution features and narrow receptive
fields, which facilitates the detection of image targets with low-illumination. However,
high-level feature maps have semantic information with low resolution, which is essential
for detecting massive objects. For the challenges, such as the diversity of ship object scales,
the lack of available information in images, and the diversity of ship object shapes in loca-
tions with poor illumination environments. The effectiveness of a new object identification
approach based on the RetinaMFANet (multiscale feature and attention network), which
incorporates the multiscale feature fusion network and attention feature detection network,
is evaluated through a design experiment.

2. The Framework of RetinaMFANet

This RetinaMFANet method combines the features of low-light images with less
information, improves the lower image feature layer, fuses multiscale basic network feature
information, and then adds an attention mechanism to the features extraction network to
focus on the area of interest, which improves the accuracy of detection.

2.1. Feature Extraction Network

The feature extraction network of RetinaMFANet employs a deep residual network
(ResNet) [18]. In general, the deeper the neural network, the more information it can obtain,
and the more features it has, the better it works. Simply increasing the depth will result
in gradient dispersion or gradient explosion, which will degrade network performance.
However, the ResNet method introduces skip link lines and employs the concept of cross-
layer connection to directly transmit the previous layer’s output to the rear via identity
mapping. Even if the network depth is increased, the network model will not degrade (as
shown in Figure 1).
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RetinaMFANet is interesting because it uses the ResNet50 architecture and has five
blocks with three convolutional layers each. In Table 1, the network structure parameters
are shown.

Table 1. Feature extraction network (ResNet50) parameter.

Layer Name Output Size 50-Layer

Conv1 112× 112 [7× 7, 64], stride 2

Conv2_x 56× 56

[3× 3] max pool, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv3_x 28× 28
 1× 1, 128

3× 3, 128
1× 1, 512

× 4

Conv4_x 14× 14
 1× 1, 256

3× 3, 256
1× 1, 1024

× 6

Conv5_x 7× 7
 1× 1, 512

3× 3, 512
1× 1, 2048

× 3

1× 1 Average pool, 1000-d fc softmax

2.2. New Multiscale Feature Fusion Network

Each level of a CNN model’s features has a different receptive field, as do the sizes
of objects that can be found. A high-resolution feature map are generated with more
information, while deep features are produced by using neural networks to down-sample
shallow features many times. Even though the receptive field is large and the global
semantic information is complete, the loss of detailed information is significant. When
small objects are in the deep feature image, a bigger receptive field makes the matching
area on the feature image smaller. RetinaNet builds multi-scale feature maps using FPN
(feature pyramid networks) [27] and finds objects on multi-scale feature maps with the
suitable object scales and receptive fields. Figure 2 shows how it was built.
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FPN principally utilizes ResNet feature maps at various levels to construct a multi-
scale feature pyramid. Each feature layer is integrated with the deeper layer of high
semantic information to improve the prediction effect of each layer. Furthermore, the shal-
low layer of high-resolution features is better suited for detecting small objects. Regarding
the detection effect, shallow details are better for finding where an object is, while deep
semantic information is better for recognizing what it is. However, during the combination
process, FPN only adds deep-layer information sampled at the same latitude as shallow-
layer information. This combination method ignores the structural error introduced by
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feature map bilinear interpolation. Simultaneously, there is less valuable information in the
low-light environment, which is more susceptible to the impact of error.

Thus, based on the issues of the current network, this paper proposes a new feature
fusion network. The structure is shown in Figure 3. Fusion1 combines three layers with
varying representation capabilities, extracts more potential information from images, and
generates a more detailed feature pyramid. To establish a coupling relationship between
deep and shallow features, Fusion2 uses the FPN-like approach to fuse the feature maps of
different scales adjacent to the pyramid, establishing a connection from deep features to
shallow features. Fusion1 convolves the outputs of the last three convolutional layers of
Conv2, Conv3, Conv4, and Conv5 at the same dimension of 1 × 1, respectively. Addition-
ally, then they are paralleled together and fused again by 1 × 1 convolution of the valid
information to generate the fused M2, M3, M4, and M5. For example, Table 1 (Section 2.1)
displays the network (ResNet50) structure. For the fusion operation of Conv2, Conv2_3,
Conv2_6, and Conv2_9 are the last three layers of Conv2. They will be fed into the Fusion1
unit procedure, which will build the fused feature map M2. The same method is used to
generate M3, M4, and M5, in turn. As the receptive field grows and the fine granularity of
features decreases, the semantic information in these four feature maps become more abun-
dant. M2 is a feature map fused from Conv2 including extra object-specific information.
It is more sensitive to small items and locates objects more effectively. Conv5 has more
semantic information and is more valuable for object categorization; hence, it is used to fuse
the M5 feature map. On the fused feature structure, Fusion2 has built a connection between
shallow features and deep features. L′ is obtained by convolving the shallow feature L by
1× 1 convolution, and H′ is obtained by bilinear difference up-sampling of deep feature H.
To eliminate the aliasing effect, we set C = L′ + H′. It can reduce the structural error of the
feature map via 3× 3 convolution. Thus, this improved network outputs layer enables to
extract more shallow feature information than the original one. The fused P2, P3, P4, and
P5 are the final detection layers.
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2.3. Attention Feature Detection Network

Before being sent to the feature detection sub-network for regression and classification
of the previous bounding box, the detection feature maps P2, P3, P4, and P5 go through
four 3 × 3 convolution layers. The RetinaNet algorithm performs border regression and
classification separately on the feature map to ensure that the two different losses of
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regression and classification have no influence between each other. Furthermore, all
detection layers share a detection head, but each set of parameters is unique, which
improves feature expression ability.

This paper focuses on ship object detection in low-light conditions. It enhances the
detection approach of the RetinaNet feature detection subnetwork by introducing an
attention mechanism to concentrate on the object detection region. CBAM (convolutional
block attention module) [28] combines space and channel attention and uses maximum
and average pooling to guide the neural network to extract object features more precisely.
Figure 4 shows the network structure.
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The CAM (channel attention module) is concerned with implementing which channel
features are more significant. The core notion of CAM is to construct a vector with a length
equal to the number of channels in the network, where each element corresponds to the
weight of each channel in the feature map. The various channels of the convolutional
feature map encode various object attributes. Learning is used to continuously update
the weights of each channel, informing the network which image attributes to prioritize.
This module focuses on directing the network’s attention to the image’s foreground, hence
increasing the network’s focus on significant features. It can improve the collection of
valuable information about objects in low-illumination and make feature extraction for
classification tasks more effective. Figure 5 depicts its structure. The input feature maps are
pooled using maximum and average pooling to aggregate the spatial information of the
feature map. The output features are added to the main elements using the MLP (multilayer
perceptron) sharing network, and the weight coefficients between them are obtained using
sigmoid function scaling. To obtain the final feature map, the weight coefficients are
multiplied by the input feature map.
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The channel attention module can be expressed as:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

F′ = MC(F)⊗ F (2)
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where F denotes the input feature map, F′ presents the output of this module, MC indicates
the channel attention operation, AvgPool means the use of average pooling for input
features, MaxPool denotes the use of maximum pooling for input features, MLP denotes
multi-layer perceptron operation, σ which denotes sigmoid function, and symbol⊗ denotes
element by element multiplication.

The SAM (spatial attention module) focuses on which parts of the space features are
significant and can determine which areas of the image’s information warrant attention.
The SAM generates a mask of the same size as the original feature map, and the value of
each element in the mask represents the pixel weight at the corresponding location in the
feature map. After learning, the individual weights are regularly modified, which informs
the network of the places that require attention. The primary objective of the module is to
improve the target localization effect and emphasize the target scoring weights that must be
localized in space. It can enhance the acquisition of ship target location information, making
it more applicable to location extraction regression tasks. Figure 6 depicts its structure. To
obtain two feature maps, the input feature map (C× H ×W) is pooled to the maximum
and average of a channel dimension (1× H ×W). The two feature maps are spliced, and
the dimension is reduced to one feature map via a convolution layer (1× H ×W). The
spatial weight coefficients are then generated using the sigmoid function, and the final
feature map is obtained by multiplying the input features of the module with the spatial
weight coefficients.
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The spatial attention module can be expressed as:

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (3)

F′′ = Ms(F)⊗ F (4)

where F denotes the input feature map, F′′ means the output of this module, MS which
indicates the channel attention operation, AvgPool denotes the use of average pooling
for input features, MaxPool denotes the use of maximum pooling for input features, f 7×7

presents a 7 × 7 convolution operation, σ which denotes sigmoid operation, and symbol ⊗
denotes element by element multiplication.

2.4. Loss Function

The loss function used in this paper’s algorithm is divided into position loss and
classification loss. The position loss function is as follows:

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1(lm

i − ĝm
j ) (5)

where, xk
ij represents the intersection and merge ratio (IoU) between the j-th real frame of

the i-th bounding box of class k. lm
i and ĝm

j represent the four location parameters of the
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bounding box and the four parameters of the real box, respectively. L1 loss is shown in
Equation (6).

smoothL1(x) =
{

0.5x2, |x| < 1
|x| − 0.5, others

(6)

Considering the imbalance problem of positive and negative samples, RetinaNet
adopts focal loss as the classification loss. Focal loss is improved in the cross-entropy loss
function (CE loss), and the CE loss is shown in Equation (7).

CE(y) = − 1
n

n

∑
t=1

[
I
{

y = y′t
}

log(pt)
]

(7)

where n represents the total number of bounding boxes, and y′t is the correct category
corresponding to the t-th bounding box. pt is the predicted category of the t-th bounding
box. I is the symbolic function, and the judgment condition is in curly brackets.

The optimized cross-entropy loss function focal loss expression is shown in Equation (8).

FL(pt) = −α(1− pt)
γ ln(pt) (8)

where the expression for pt is shown in Equation (9).

pt =

{
p, y = 1
1− p, others

(9)

α is the weighting factor, which is used to control the weight of positive and negative
samples on the total loss. Its smaller value can reduce the weight of negative samples,
generally taken as 0.25. γ is the modulation coefficient, the purpose of which is to reduce
the weight of the easily classified samples, so that the model training can focus more on
the hard-to-classify samples, generally taken as 2. From the formula, we can see that when
the positive and negative samples are not uniform, the loss caused by negative samples
decreases significantly. Additionally, when the samples are homogeneous, the loss is only
appropriately reduced, thus attenuating the classification error caused by uneven samples.

3. Experimental Verification and Result Analysis
3.1. Evaluation Index of Detection Performance

The most commonly used indicator to measure detection accuracy in the field of object
detection is IoU (intersection over union). Furthermore, IoU can be regarded as the ratio of
the area of the intersection area of bounding box D and labeled bounding box G to the area
of the union area. It is shown in Equation (10).

IoU(D, G) =
|D ∩ G|
|D ∪ G| (10)

By setting a threshold value for the cross-merge ratio, detections above this threshold
are considered TP (true-positive). Detection results below this threshold are considered as
FP (false-positive). The combined labeled enclosing frame data are FN (false-negative). The
accuracy rate P and recall rate R of the model can be calculated in Equations (11) and (12),
respectively.

P =
|TP|

|TP|+ |FP| (11)

R =
|TP|

|TP|+ |FN| (12)
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By plotting the precision-recall curve, the area enclosed by this curve and the two axes
of precision and recall is calculated. That is, AP (average precision) is the area under the PR
curve, and its expression is shown in Equation (13).

AP =
∫ 1

0
P(R)dR (13)

If the dataset contains multiple categories, mAP is the average of the AP values of the
different object categories. AP and mAP avoid the impact of the unequal confidence in
different models on the evaluation. Thus, these two methods are suitable for most models
in the field of object detection.

3.2. Dataset Construction

High-quality datasets are essential prerequisites for training excellent performance
models in the object detection algorithm based on deep learning. There are currently
two types of ship object images [17,29–33]. The first is a monitoring image obtained from
cameras installed on land and the ship. The majority of monitoring images come from VIS
(visible light) or infrared sensors. The second type of image is remote sensing imagery
obtained from satellite sensors, which are typically collected by radar. SAR (synthetic
aperture radar) is a popular remote sensing technology. Table 2 summarizes some publicly
available ship object detection datasets.

Table 2. Public datasets for ship object detection.

Dataset Data Type Sensor Label Categories Data Amount

MarDCT video/land-based VIS/IR DCT 12
SMD video/mixed VIS/NI DT/7 + horizon 36/12,604

SeaShips image/land-based VIS D/6 168/31,455
Buoy video/buoy VIS horizon 10/998

MODD2 video/USV VIS D/2 * 28/11,675
SEAGULL video/UAV VIS/IR/NI DT/5 19/151,753

Note: In the data type, USV means unmanned boat, UAV means unmanned aircraft. In sensors, VIS denotes
visible light, IR denotes infrared sensor, NI denotes near-infrared sensor. In the label category, D denotes object
detection, C denotes image classification, T denotes object tracking. The number after the slash indicates the
number of vessel categories. * indicates that it is divided into two categories: large obstacle and small obstacle.
The number before/after the slash in the data volume indicates the number of videos/frames.

This work focused on the detection of ship objects in low-light environments. There
are few images of ship data available, and the publicly available ship dataset cannot be used.
Thus, using a shore-based camera in the Nanjing section of the Yangtze River Channel,
the experiment acquired a large number of ship image materials, including 1258 images,
and generated a ship image dataset in low illumination conditions. The dataset was then
annotated with “LabelMe” annotation software and converted to MS COCO (Microsoft
common objects in context) dataset format. To guarantee the validity of the experimental
results, the dataset was separated into training and test sets in a 7:3 ratio, and the images
were dispersed equitably according to the object scale and density. Figure 7 illustrates a
portion of the dataset’s ship object photos.
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3.3. Image Multi-Random Augmentation

The dataset presented in this research was collected primarily for ship object detection
in low-light situations. The overall number of photos is very modest, which can be increased
through image multi-random augmentation. This paper increased the expressiveness of
the dataset and the model’s robustness by randomly dithering the image’s brightness,
contrast, saturation, and hue, as well as translating, rotating, cropping, and zooming, to
simulate complex environment changes, such as the ship sinking and floating, and uneven
light brightness.

The luminance dithering of this method was achieved by RGB (red, green, and blue)
images with random.uniform (−32,32). Contrast dithering was achieved by RGB image
*random.uniform (0.5,1.5). Saturation dithering was achieved by the S channel of the HSV
(hue, saturation, and value) image *random.uniform (0.5,1.5). The hue dithering is achieved
by the H channel of HSV image with random.randint (−18,18). This method was designed
to include three layers of random meanings for the multiple random increments of the
image. From the two fixed routes designed, one is chosen randomly with 50% probability.
Each dithering operation was executed with 50% probability. Additionally, the parameters
in each dithering operation are randomly generated. In short, the image multi-random
authentication architecture is shown in Figure 8.
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3.4. The Design of Prior Bounding Box

The ship annotation data show that the ship object is generally slender, and the
width of the bounding box is significantly greater than the height scale. The original prior
bounding box size of RetinaNet is primarily used for general object detection in nature,
and is not fully applicable to the unique needs of ship object detection. According to
NIE [26] and LIU [34], the design size of YOLOv3’s prior bounding box is improved, which
improves the detection algorithm’s mAP value.

The K-means++clustering algorithm was used in this paper to cluster ship object tags
in the training set, and a preset box suitable for the ship object detection task was set
based on the clustering results, with the aspect ratio of this algorithm’s preset box set as
[1.0,2.0,3.0]. The method of clustering real box dimensions can bring the anchor size closer
to the true value, divide the space of scale and aspect ratio into several corresponding
subspaces, and allow the model to better fit the real position of the object, lowering the
training difficulty and making the model easier to learn.

3.5. Analysis of Experimental Results

The experiment was conducted on an Ubuntu 16.04 system with the Pytorch 1.9
framework, and CUDA 10.2 and cuDNN 7.6 were used to accelerate the training. The
threshold value of the prediction probability and NMS were both set to 0.5. In the SGD
(stochastic gradient descent) optimizer, the batch size was set to 16 and the initial learning
rate was set to 0.002. There were a total of 50,000 iterations. Total_loss basically converges
after 50,000 training sessions. Figure 9 depicts the entire training procedure.
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The improved RetinaMFANet was compared to the traditional RetinaNet, Faster R-
CNN, SSD-improved [21], YOLOv3-enhanced [26] algorithms. The algorithm performance
indicators were AP and FPS. Table 3 displays the comparison results. According to the test
results, the standard two-stage detection algorithm Faster R-CNN had a higher detection
accuracy than the one-stage detection method RetinaNet, despite having a slower detection
speed. Because SSD-improved is oriented to general targets and YOLOV3-enhanced is
oriented to ship targets for the object detection algorithm in low-illumination environments,
the detection accuracy of YOLOV3-enhanced is slightly higher. Due to the incorporation of a
multiscale fusion network into the original RetinaNet, the improved detection technique has
raised the model’s computational cost. YOLOv3-enhanced achieved the fastest computing
speed due to the use of DarkNet53. Faster R-CNN is the two-stage detection algorithm
that has the slowest detection speed. The SSD-improved algorithm is also slower due to
the addition of a differential modal perception fusion module. The RetinaMFANet model
outperforms the other four algorithms in terms of detection accuracy, achieving a 3.7%
improvement over the initial detection accuracy, and this approach was only 2.07 FPS
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slower than the fundamental algorithm. In general, the method suggested in this research
is superior for ship object detection in situations with low illumination.

Table 3. Algorithm performance comparison table.

Method Backbone AP/% FPS

Faster R-CNN ResNet50 77.8 19.23
RetinaNet ResNet50 75.2 25.53

SSD-improved ResNet50 76.9 21.88
YOLOv3-enhanced Darknet53 78.0 26.13

RetinaMFANet ResNet50 78.9 23.46

The multiscale feature fusion network and attention feature detection network, as well
as the training process’s image multi-random augmentation and previous bounding box
design modules, were upgraded as part of this paper’s work to improve RetinaMFANet,
which is based on RetinaNet. To more accurately assess each module’s contribution to the
enhanced algorithm, ablation experiments were conducted on each module in this research.
The findings are displayed in Table 4.

Table 4. Ablation experimental results of each module of improved algorithm.

Multiscale Feature
Fusion Network

Attention Feature
Detection Network

Image Multi-Random
Augmentation

Priori Anchor
Design AP/%

× × × × 75.2√
× × × 77.5√ √

× × 77.7√ √ √
× 78.4√ √ √ √

78.9

Table 4 shows that the four critical modules improve the detection accuracy of the
model, with the multi-scale feature fusion network contributing the most to the algorithm’s
detection accuracy improvement, while RetinaNet employs the conventional FPN module.
This is because the fusion network makes extensive use of the underlying feature infor-
mation and fuses the deep and shallow image features more efficiently. Additionally, the
attention method can assist the model in focusing on the object outline, and the attention
feature detection network allows the model to concentrate more on the important aspects
of the image and increases object detection accuracy. We also verified the effects of parallel
and serial usage of CAM and SAM in low illumination are comparable, while the effects of
parallel (CAM for Class and SAM for Box) are marginally superior to those of serial use. The
model’s ability for generalization is enhanced by the image multi-random augmentation.
The model’s detection accuracy was enhanced by the building of a prior bounding box,
which enables the model to explicitly look for objects that fit the width-to-height ratio of
the ship. Finally, these four modules are utilized comprehensively. When compared to the
traditional RetinaNet, the RetinaMFANet method improved the AP by 3.7% and validated
the effectiveness of each module’s integration.

Finally, visual comparisons between the RetinaMFANet’s detection results and those
from the original RetinaNet, SSD-improved, and YOLOv3-enhanced methods were made.
The RetinaMFANet algorithm performed better than the other three algorithms in terms
of accuracy and missed detection rate when there are many interference elements and
small objects present. The detection outcomes for the identical set of photos are shown in
Figure 10. They are RetinaNet, SSD-improved, YOLOv3-enhanced, and RetinaMFANet, in
that order. RetinaMFANet, which is suitable for ship target detection in various complex
scenarios, can also accurately detect the ship in situations where there is a high likelihood of
ship target overlap and when the ship target is very similar to the navigation background.
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The detection results of Figure 10 demonstrate that the RetinaMFANet algorithm can
accurately locate and identify ship targets, in contrast to the other three algorithms’ serious
miss detection, multiple detections, and ship misidentification issues. This indicates that our
algorithm has better precision and robustness for ship target detection in low-illumination
environments.

Furthermore, the RetinaMFANet algorithm has been evaluated in a high-visibility
environment, and Figure 11 shows the results of the detection of ship objects, particularly
small objects. RetinaMFANet uses a multiscale feature fusion network, which helps it
detect the characteristics of small targets more effectively. As a result, it outperforms the
RetinaNet method in terms of missed and false detections for small ships.
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4. Conclusions

We have completed a lot of improvement work in order to pursue higher AP. Com-
pared with general moving objects, the speed of ship movement is relatively slow. Due to
the practical application effect, the precision and recall of ship target detection are more
important for ship safety supervision. Meanwhile, our algorithm can also meet the require-
ments of real-time detection. The improved RetinaMFANet method primarily addresses the
issues of ship object missing detection and false detection caused by the diversity of ship
objective scale, the lack of image available information, and the variability of ship objective
morphology in low-illumination environments. In order to extract more potential feature
information from low-illumination photos, this method first suggests a new multiscale
feature fusion network structure for the feature extraction module based on the RetinaNet
model’s remarkable performance in general object detection. Moreover, in accordance with
the feature detection network, the anchor box regression and classification detection net-
work is improved by employing the attention mechanism, so that the network structure can
be guided to extract object features. Additionally, it is worth mentioning that the design and
optimization of image multi-random augmentation and prior bounding box in the training
process are also carried out. Finally, the experiments are used to validate the improved



J. Mar. Sci. Eng. 2022, 10, 1996 15 of 16

model’s effectiveness on the dataset of low-light environments. The results demonstrated
that, in comparison to the standard RetinaNet technique, the enhanced RetinaMFANet
approach enhances ship recognition accuracy and has a superior application effect under
the restriction of FPS drop.

The next step will concentrate on the demand for real-time detection at the terminal,
improving object detection speed and accuracy in low-light environments with increased
background light interference, and achieving the goal of covering multiple environmental
scenes and multiple ship objects dynamically.
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