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Abstract: With the increasingly strict regulations for the energy-saving and emission-reduction
technology of ships, minimizing fuel cost and thus reducing the carbon intensity index (CII) is
one of the most critical issues in the design and operation of merchant ships. More recently, many
wind-assisted devices, such as rotors, wind sails, etc., have been investigated and designed to utilize
renewable wind energy. With the equipment of wind-assisted rotors, the optimization of ship routes
becomes more important because the effect of this wind-assisted device highly depends on the local
wind field along the shipping route. In this paper, an improved ship weather routing framework
based on the A* algorithm has been proposed to determine the optimal ship route and ship operations
with wind-assisted rotors. The proposed framework effectively utilizes different sources of data,
including ship design, weather forecasting and historical sailing information, to produce a better
estimation of fuel consumption under the effect of sea states. Several improvements on the classic A*
algorithm, including directed searching and three-dimensional extension, are proposed to improve
the routing effect and efficiency. Finally, the proposed method was applied to test cases of a VLCC
operating from China to the Middle East and the results show that the total fuel consumption could
be reduced compared to the minimum distance route.

Keywords: weather routing; A* algorithm; carbon intensity index; wind-assisted rotors; operation
optimization

1. Introduction

Due to the increasing attention on ocean environment protection, many measures
have been put forward to reduce greenhouse gas emissions, improve energy efficiency
and reduce fuel consumption. The Maritime Environment Protection Committee (MEPC)
in International Maritime Organization (IMO) at MEPC 78 (June 2022) has discussed and
adopted a series of guidelines [1–4] for short-term measures, including the revised Ship
Energy Efficiency Management Plan (SEEMP) and the Carbon Intensity Indicator (CII)
coefficient revision. CII is a new method to measure CO2 emissions from ship operations.
In terms of ship operations, CII will be used as an indicator to characterize the actual
operational energy efficiency level of ships. In addition, as an indicator of the operational
carbon intensity of ships, CII will also be used to measure whether shipping greenhouse gas
emissions meet the requirements of the IMO preliminary strategy. After the enforcement
of these rules, the attained CII of a ship will be calculated based on the data collected
throughout the previous calendar year, and the CII grade for the current year shall be
determined based on the CII discount rate. The CII grades are A–E, and ships that have
received grade E for one year or grade D for three consecutive years must propose a plan
to improve their grade and record it in SEEMP.

In recent decades, various new concepts of Energy Saving Devices (ESDs) and in-
novative hull forms have been developed in improving the overall propulsion efficiency
to meet the increasingly restrictive EEDI requirements [2]. As the traditional efforts on
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hydrodynamic energy saving is gradually reaching their limit, some innovative Energy-
Saving Devices such as wind-assisted rotors and wind sails were adopted and equipped on
ship decks to produce additional thrust. These types of ESDs are more dependent on the
weather condition, thus the selection of ship routes will directly affect the effectiveness of
these devices.

Ship weather routing is an efficient way to help improve the ship’s operational effi-
ciency and reduce the shipping cost from the view of an economic long-term voyage. The
underlying purpose of this economical ship routing is to establish the optimum path and
operational profile for the long-distance voyage, as the shortest route is not always the
fastest or the most economical way due to the effect of various sea states. Traditionally,
the ship’s route is determined by the captains based on their experience and personal
capability. This could be improved with advanced technologies included in the Integrated
Bridge System such as Electronic Chart Display and Information Systems (ECDISs) which
could obtain real-time weather forecasts data, display ship and environment information
and provide route planning [5]. There are numerous methods, programs and software
that have been developed and equipped on ships in operation. The core algorithms for
these methods could be simply divided into two categories [6]: cell-based methods and
cell-free methods. The cell-based methods require a discretization of the sea chart and
generate the ship’s path by searching the discrete cells. The most widely used cell-based
methods are the A* algorithm [7,8] and the Dijkstra algorithm [7]. The latter one is the
most classic path-routing algorithm based on graph theory and the A* algorithm is an
advanced version of the Dijkstra algorithm that introduces the greedy property to improve
the searching efficiency. For better speed planning in weather routing, a 3D Dijkstra op-
timization algorithm [9] was also proposed to generate globally optimal ship routes that
encounter less harsh offshore environments and reduce fuel consumption. Some other
modifications are also proposed to improve different applications such as greenhouse gas
emission control [10]. Cell-free methods are derived from the classical routing practices in
navigation. The main idea of the currently developed cell-free method derives from the
classical way of ship routing based on conventional paper charts such as the isochrone
method. For example, the classic isochrone method [11] proposed by Hanssen and James
could determine an economical route but has some difficulty with voyages with many
obstacles. Some improvement [8] has been made to solve this problem and was exten-
sively applied to the simultaneous determination [6] of ship routes. Recently, an improved
method [10] that considered the advantages and disadvantages of both cell-based methods
and cell-free methods was proposed to improve the cell-based path planning algorithm for
the generation of optimal weather routes. Meanwhile, comprehensive software for ship
weather routing is designed [12] where the wave condition is taken as the optimization ob-
jective, and the A* algorithm is used to achieve the optimal route generation. On the other
hand, the cell-free method is not confined by the discretization of a sea chart and could
make a continuous search of all directions and positions. Roh overviewed the most widely
used ship-routing methods and proposed an improved version with the consideration of
obstacles [13]. The 3D dynamic programming algorithm [14] is also a cell-free method that
could generate an optimal path and speed profile. In addition to the above two categories,
many studies transform the weather route-planning problem into an optimization problem
for solving. In study [15], a ship meteorological route path-optimization algorithm based
on a multi-objective genetic algorithm was proposed by considering ship characteristics
and rough weather conditions. With the minimization of total voyage time and total
fuel consumption as the optimization objective, the optimal route and speed are realized.
Some evolutional methods such as the improved ant colony algorithm were introduced
to improve the convergence speed and avoid the local optimum for a ship’s weather path
generation [16]. The result shows that the optimized route planned by the algorithm can
avoid dangerous areas in the term of the voyage and ensure the safety of the ship at sea.
In addition, based on the original fractional order particle swarm optimization algorithm,
the new coefficients of the fractional order velocity update formula are improved to avoid
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falling into local optimization [17]. On this basis, the ship weather route of a VLCC tanker
is optimized with the minimum fuel consumption.

Another important issue in weather routing is the estimation of total fuel consumption
(TFOC) among sea states. As the performance of the ship changes with sea states, the total
resistance will increase in severe sea states with high waves, and thus, ship speed will
reduce with the same engine power compared with still water conditions. Additionally,
with the equipment of wind-assisted rotors, the rotor system will produce a favorable thrust
in sea states with a strong side wind. The estimation of total fuel consumption should
consider both wave-added resistance [18,19] and rotor-added thrust [20] and then help to
generate the most efficient path and operation file. The TFOC could be estimated according
to theory-based or practice-based methods [6]. Roh [8] established a method for estimating
fuel consumption by calculating the horsepower compensation due to a bad sea state
following the theory-based method of ISO 15016 [21]. On the other hand, Lee et al. utilize
a practice-based method with past ship-operation data. This is an easy-to-use way with
the help of a nonlinear multiple regression model. In recent years, with the development
of big data, artificial intelligence technologies and machine learn-based methods have
been widely used in ship fuel consumption estimation. Many studies have applied the
black box model of neural network to the prediction of shipping fuel consumption [22–27].
Based on the noon report data and automatic monitoring data, such as support vector
machine, random forest, extra tree regression and artificial neural networks, and concluded
that random forest and extra tree had the best prediction performance [22]. Similarly,
BP neural network, deep belief network, K-nearest neighbor, decision tree and support
vector regression were used to establish ship fuel consumption prediction models, and
the applicability and advantages of these algorithms were explained in detail [24]. Taking
wind speed, draft, water velocity, rudder angle and ship speed as input parameters, an
artificial neural network model could be applied for fuel consumption prediction based on
the measured sailing data [25]. Additionally, methods combining artificial neural networks
and multiple regression are widely used to estimate the power and fuel consumption
of ships [26], and it could better realize the real-time prediction and is more adaptive to
possible changes in the ship environment. In addition, a more systematical forecasting
framework [27] for ship fuel consumption based on the least absolute shrinkage and
selection operator regression algorithm is a new trend.

In this paper, an improved ship weather routing framework towards low carbon
shipping and CII reduction is proposed based A* algorithm and complex FOC estimation
models. This article is organized as follows: Section 2 gives the main methodology, includ-
ing data-acquisition, improvement of the classic A* algorithm and estimation methods for
fuel consumption and CII. A detailed analysis based on a VLCC ship from China to the
Middle East is provided in Section 3 to illustrate the effect of the proposed methods. In
Section 4, a short conclusion is presented and a plan for future research is given.

2. Methodology
2.1. Problem Definition

For the navigation of ocean-going commercial vessels, the theoretically shortest path
is the great circle route from spherical trigonometry. For better sailing decisions in com-
plicated natural geographical environments, weather conditions and dynamic navigation
circumstances, improved routing strategy and decision-making software shall be developed,
incorporating the control of novel energy-saving devices such as wind-assisted rotors.

The main task of improved weather routing in this article is to find the optimal
path and optimal operation profile based on weather information, the ship’s basic design
performance and historical sailing data of similar ships. The optimal path consists of a series
of ship heading and voyages, and the operation profile should give the suggested ship
speed (or main engine RPM) in every voyage. Compared to the conventional ship routing
problem, there are some changes with the consideration of wind-assisted rotors. Rotors’
air-dynamic properties should be included in the estimation of TFOC and dynamic CII
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which highly depend on ship heading and wind direction. The resultant operation profiles
should contain the direction and speed of the rotors’ rotation. Therefore, the improved
weather-routing method in this paper consists of three basic parts:

• Acquisition and the pre-process of the environment and ship information.
• Estimation of the ship’s fuel consumption and CII considering wind-assisted rotors.
• Optimization of the ship’s path and operational profile.

With sufficient environment data and the appropriate TFOC estimation model, the
weather-routing problem could be defined as an optimization problem with object functions,
design variables and constraints. As shown in Equation (1) the objective function is the
TFOC of the whole voyage which depends on the design variables including route R, ship
speeds VS and rotor spinning ratio α.

Minimize TFOC (R, Vs, α) (1)

Subject to


testimated − trequired ≤ 0

Q ≤ Qmax

θi−1 − σ < θi < θi−1 + σ

(2)

where Q is the shaft torque of ship and Qmax represents the maximum torque limited by
the main engine, which depends on ship types and the selection of the main engine; θ is
the rudder angle and σ refers to the change limitation of the rudder angle.

Three additional constraints are applied in this study including required voyage time,
maximum torque and heading angle change. First, the ship should arrive at the destination
before the latest time, that is the testimated should be less than the trequired. Then, in case of
safety, the torque of the main engine should not exceed the security boundary according to
the standard. In addition, the change of heading angle is constrained to a limited degree σ.

Compared with previous studies, the estimation of TFOC should consider the effect
of wind-assisted rotors. The additional thrust generated by rotors in a positive wind
environment could compensate for the energy lost due to bad sea states. Thus, the optimal
rotation speed of rotors should be selected in every ship voyage and their effect on TFOC
should be considered. Additionally, it should be noted that the solution to the weather-
routing problem is a long-term and large-scale path planning and operation optimization
problem. Thus, the simultaneous effect of the ship’s motion on rotors or rotors’ effect on
the ship’s acceleration of motion is not considered in this paper. The whole framework
provided in Figure 1 is based on the statistical perspective with a small-scale effect filtered
all over the voyage.

2.2. Data Acquisition and Pre-Processing

As shown in Figure 1, an efficient weather-routing system requires the ship’s design
information and weather information for path planning and voyage optimization. Addition-
ally, if any historical sailing data is available for the current ship or similar ships, the data-
driven method could be used to improve the FOC and CII estimation for better routing.

2.2.1. Ship’s Design Information

For a ship with wind-assisted rotors, the basic ship design information consists of the
ship’s calm water resistance, propulsion performance, main engine profile and rotor’s air
dynamic performance. The ship’s resistance and propulsion performance could be obtained
from the towing tank test and the rotor’s air dynamic performance comes from the wind
tunnel test or a numerical simulation for different designs. These basic design data could
provide a baseline for the estimation of fuel consumption and the effect of energy saving
from wind-assisted rotors in complex ocean environments.
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Figure 1. Scheme of the proposed weather-routing framework.

In this paper, a Very Large Crude Carrier (VLCC) with complete model test data, sea
trail data and noon report data on sailing is under investigation. The principal dimensions
of the ship and wind-assisted rotors are listed in Table 1. Six wind-assisted rotors with a
height of 30 m and a diameter of 5 m were designed for this ship. The ship’s performance
in calm water including effective power and delivery power is achieved by model test
from the towing tank of China Ship Scientific Research Center (as shown in Figure 2).
Figure 3 gives the openwater performance curve of the propeller along with the lift and
drag coefficients of wind-assisted rotors according to our numerical simulation. Thus, the
powering change in real sea state due to waves and winds could be calculated by our
prediction model and the overall fuel oil consumption could be obtained according to the
SFOC curve (Figure 2) of the main engine.
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Table 1. Principal dimensions of the VLCC.

Items Description Value

LPP [m] Length between the
perpendiculars 332.6

B [m] Beam 60
T [m] Design draft 20.5
∇ [m3] Displacement 318,250.3
Nrotor Number of rotors 6

Drotor [m] Diameter of rotor 5
Hrotor [m] Height of rotor 30

2.2.2. Weather Information

Weather routing needs the ocean geographic and ocean weather information to opti-
mize the best route path and operation profile. The geographic data could be obtained from
the ECDIS system or other electronic chart data sources. As a cell-based path-planning
method will be used in this paper, a rasterization step is, firstly, performed with variable
grid resolution to generate computational mesh for the routing algorithm. As shown in
Figure 4, a grided mesh is generated according to the given longitudinal and latitudinal
resolution. If the center of each grid cell locates in the polygon of land or an island, this
cell will be labeled 0 or labeled 1 which means it is accessible for ships. It could be figured
out that the resolution of the grid will affect the resultant path from P0 to Pn and this
weakness will be reduced by improving the resolution of the grid. Figure 5 shows the
computational grid generated from a real geographic map with a spatial resolution of 0.1◦

for both longitudinal and latitudinal directions.
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The ocean climate and weather information including the wave, wind and current is
another essential prerequisite for weather routing, along with geographical information.
For better routing, both real-time weather forecast data and historical climate re-analysis
data are required for modeling and optimization. In this paper, the most recent and
widely used reanalysis dataset ERA5 from the European Center for Medium-range Weather
Forecasts (ECMWF) is used. ERA5 is the fifth generation ECMWF atmospheric reanalysis of
the global climate covering the period from January 1950 to the present and could provide
an hourly estimation of a large number of atmospheric, land and oceanic climate variables,
including 10 m wind speed, 10 m wind direction, mean wave height, mean wave direction
and mean wave period. The weather data acquired from ECMWF is coarse and will be
interpolated to the computational grid worldwide to compute wind- and wave-added
resistance and FOC in path planning (Figure 6). As can be seen in Figure 7, the significant
wave height and wind distributions on the north Pacific Ocean for three continuous days
from 1 November 2020 have obvious differences. Thus, instantaneous real-time path
planning and voyage optimization shall be performed day-by-day to predict, assimilate
and optimize the route.
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2.2.3. Historical Sailing Information

Historical sailing data, such as on-board monitoring data or noon report data, is an
important complement for hydrodynamic modeling, FOC modeling and data calibration.
Ideally, all required on-board data should be correctly and timely monitored through
distributed sensors for a highly intelligent ship. However, the most available historical
sailing data for ships in operation is the noon report data collected every day at noon
artificially or automatedly. Thus, the noon report data is not continuous data that reflect
the hourly change of sea states and the ship’s response.

The most useful data for modeling and navigation is the navigational data and main
engine’s data, including the ship’s speed over ground, trajectory, main engine speed, power
and fuel consumption. Additionally, the weather information, including the wave, wind
and current, could be utilized as a reference because only rough directions and levels
are provided based on meteorological stations or even human observation which is not
very credible.

Figure 8 shows a VLCC’s noon report data of a single voyage from the port of Basrah,
Iraq to Zhoushan, China. Variables such as ship speed and main engine RPM have an in-
stantaneous value at 12:00 am every day and variables like fuel consumption and traveling
distance have a cumulated amount from 12:00 am the last day. As shown in Figure 9, the
main engine power is linearly related to the third power of RPM which is consistent with
the model test. However, the relationship between cumulated fuel consumption and RPM
is hard to identify. This is mainly because, at every record time, the main engine RPM may
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change between noon yesterday to the current. The variable weather conditions could have
a large effect on the overall fuel consumption.
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2.3. Improved A* Algorithm for Ship Weather Routing

The A* algorithm is one of the most popular graph search algorithms that finds the
shortest path from the starting point to the target point in a mapped area. A* was devel-
oped in 1968 to combine formal approaches such as the Dijkstra algorithm and heuristic
approaches like Best-First-Search (BFS). When utilizing the A* algorithm to generate an
optimal route for a ship’s operation, a mapped area was, firstly, introduced by discretizing
the sea chart. Figure 4 illustrates the representation of sea and land with discrete cells.
Then, the path from starting point (P0) to the arrival point (Pn) is represented by a series of
connecting lines between cell centers.
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The classic A* algorithm used for path routing could not be directly used for the
weather-routing problem with both optimal route search and operation optimization tasks.
Previous researchers solved this problem by regarding the two tasks separately. They
performed path searching with a fixed-speed state and then modify the speed on the path
to achieve the optimal operation profile (Park and Kim, 2015; Joo et al., 2012; Bang and
Kwon, 2014).

2.3.1. Directed Route Searching

The original route searching strategy of the classic A* algorithm was modified to
improve efficiency with higher physical realizability. At each time step, the accessible
neighborhoods for next step searching are defined by a vector set Ω which consisted of N
displacement vectors. In our version, Ω will be updated in the real-time path searching
according to the ship’s current heading direction instead of a constant vector set for 4 or
8 directions. That is, Ω is a function of spatial location X and time t.

Ω(x, t) = Cn ∩ F(Ψ, δ, V) (3)

where Cn is the classical constant searching region depending on the layer number n which
defines the search range at each step. F(Ψ, δ, V) is the variable searching region depending
on the ship’s heading direction Ψ, rudder angle δ and ship speed V.

As shown in Figure 10, assume that there is a move from Pn to Pn+1 based on the
heading direction and the motion characteristics of the vessel. F(Ψ, δ, V) is defined as a
fan-shaped region by searching radius r and heading angel’s changing interval [a, b]. The
change of heading angle β must belong to the available range which is determined by the
maneuverability of the ship. Regarding the numerical implementation, grid cells in the
fan-shaped region will be selected to perform a unit Boolean operation with a constant
region Cn. For example, assume that n = 1 and radius r = 1.5∆, where ∆ is the grid size, the
resultant Ω (green cells) and its related directions could be achieved as shown in Figure 11b.
A nonsymmetric interval [a, b] is acceptable in situations where the ship’s maneuverability
is affected by sea states. Figure 11c,d give the search result with and without obstacles.
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2.3.2. Three-Dimensional A* for Speed Optimization

In previous studies, the shortest route planning and speed optimization are always
separate steps in weather routing. For ships sailing in severe sea states with wind-assisted
rotors, the overall performance of ship and related fuel consumption has a strong relation-
ship with ship speed. In this paper, we would like to incorporate speed optimization with
path planning task so that two tasks could be fulfilled in one framework with synchronized
evaluation of fuel consumption and CII to achieve the best result. Thus, another improve-
ment is to extend the A* algorithm to a three-dimensional one and the 3rd dimension is
defined as ship speed (Figure 12).
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As shown in Figure 13, the operation optimization task could be directly achieved
by searching the optimal calm water ship speed (equivalent to main engine power). The
accessible searching region in speed direction is also predefined to constraints the speed
variation. When the optimal route and main engine power are obtained, the operation
profile could be achieved by simply interpolating the ship performance curves.
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2.3.3. Cost Function and Heuristic Function

As A* is a graph traversal and path-search algorithm which is formulated in terms
of a weighted graph, the most important part of its application to different scenarios is to
formulate the cost function and heuristic function to be minimized. Specifically, A* selects
the optimal path that minimizes

f (n) = g(n) + h(n) (4)

where g(n) is the cost function which defines the cost of the path from the start node to the
nth node; h(n) is a heuristic function that estimates the cost of the optimal path from the
current node to the end.

Both the cost function and heuristic function are problem specific. The cost function
reflects the real cost from the start node while the heuristic function is an estimation of
the future based on the specific greedy strategy. The efficiency of A* will highly depend
on the candidate-searching region (defined in the last sub-section) and the selection of
the heuristic function. Generally, the Manhaton distance or Euclidean distance are the
most widely used for cost function and heuristic function in a shortest path searching
problem. For the weather-routing problem in the real world, the Euclidean distance is more
appropriate to construct the basis of these two functions. Additionally, modifications based
on the TFOC estimation and CII computation are introduced to find the optimal route with
a reduction in TFOC and CII.

The cost function with the effect of the sea state is expressed as
g(n + 1) = g(n) + ∆g

∆gn = Hw(n)·
√
(xn+1 − xn)

2 + (yn+1 − yn)
2

(5)

where ∆g represents the change of ship cost (FOC or CII) in every sailing segment from
node n to n + 1, and Hw(n) is the state effect coefficient in this sailing segment related to
the wave, wind and the resultant engine RPM.

Similarly, the heuristic function is

h(n) = Hw ·
√
(xn − xd)

2 + (yn − yd)
2 (6)

where Hw is the estimated average state effect from the current node to the end related to
the predicted wave, wind and resultant engine RPM. Both Hw(n) and Hw are computed
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in the routing process based on the specific TFOC model and CII computation method
described as follows.

2.4. TFOC Estimation and CII Computation

As shown in Figure 1, the resistance change due to sea states could be estimated based
on the wave-added resistance, wind resistance and rotor-added thrust. Assuming that the
sea state has negligible effect on the self-propulsion factors but has an influence on the
propeller’s open water efficiency due to the variation on propeller loading, the reduction in
propulsion efficiency could be obtained following the recommendation of ISO 15016. Then,
we could have the effective power curve in sea states and the resultant ship speed with a
given engine power.

2.4.1. Effect of Wave and Wind

The severe sea state has a negative effect on ship performance due to the wave-added
resistance. The resultant ship speed could be reduced, and thus additional power is required
to compensate for the speed lost. On the other hand, some sea state with strong side-wind
could help the wind-assisted rotors to produce positive thrust and then compensates for
the wave-added resistance. With environment information (mainly wave and wind), ship
information (ship geometry, engine information and performance curves from experiments)
and given operations (ship heading, engine power and rotor speed), we could obtain the
wave-added resistance by the 2D strip theory [28], the wind resistance according to an
empirical formula (Equation (7)) and the rotor-added thrust by a pre-calculated dataset.
Then, the resultant ship speed in the real sea state could be achieved by a calculation code
of the ship speed loss coefficient proposed and verified by Wei et al. [12]. The error of
estimated speed loss coefficient is less than 3% compared to the experiment result according
to their work.

Rwind =
1
2

ρCxV2
R A/1000 (7)

where ρ refers to the air density, Cx is the wind resistance coefficient, VR is the relative wind
speed and A is the projected area above the water surface.

2.4.2. Effect of Wind-Assisted Rotors

The rotor-added thrust is produced by the magus effect which generates a sidewise
force on a spinning cylindrical when there is relative motion between the spinning body
and the fluid (air). The mechanism of the wind-assisted rotors is illustrated in Figure 14.
Thus, the thrust on the ship could be calculated by Equation (8).

CT = CL · sin β−CD · cos β (8)

where CL is the lifting coefficient, CD is the drag coefficient, CT is the thrust coefficient and
β refers to the relative wind angle. All the coefficients are normalized by 1/2ρv2S, where ρ
is the density of air, V is the relative speed of wind and S is the projected area of the rotor.
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The CL and CD rely on the spinning ratio of the rotor which is defined as α = ΩDrotor
2V ,

where Ω is the rotating speed of the rotor and Drotor refers to the rotor diameter. Based on
Equations (8) and (9) the correlation between the thrust coefficient and the spinning ratio
could be pre-calculated by the CFD method.

CL =
L

0.5ρv2 A

CD =
D

0.5ρv2 A

(9)

RANS solver with SST k−ω model was applied in this study according to our previ-
ous work of Hu et al. [13], where detail information of CFD method, mesh strategy and
verification study could be found. Based on the lifting and drag coefficient computed
by RANS solver shown in Figure 3 the optimal spinning ratio could be selected with the
maximum rotor-added thrust, as shown in Figure 15.
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2.4.3. Neural Network Modeling for Real-Time Routing

As the algorithm searches over 100 thousand possibilities in a single optimization
procedure, the time consumption of running the 2-D strip program in real-time with the
optimization algorithm is unacceptable. Therefore, we introduced a meta-model method
based on an artificial neural network to make a fast prediction of wave-added resistance
and the resultant ship speed. The dataset for Artificial Neural Network (ANN) training was
prepared considering all the possible experienced sea states with the 2-D strip program.

Table 2 shows the input and output data for the supervised training of the ANN
model. A physics-informed Latin Hypercube Sampling method was adopted to generate
the pre-calculation samples which means that the input variables are not independent
but adaptively sampled according to the distribution of weather forecast data. Over
32,000 sets of training data were pre-calculated with the 2D strip program and ship speed
loss calculation so that we could utilize an artificial neural network to build the relationship
between the environment information and the resultant ship speed in real sea states. The
ANN model consists of 5 hidden layers with a sigmoid activation function and 3 output
layers with linear activation function. Figure 16 shows the validation of the trained ANN
model on a short route in the west–north Pacific Ocean. The result shows that the physics-
informed way of sampling could significantly improve the performance of the ANN model.
The minor variation of speed due to sea states change could be captured by the model.
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Table 2. Required training data for ANN modeling.

Category Items Definition

Training Input

Hwave Wave height
Twave Wave period
θwave Wave-approach angle
Vwind 10 m wind speed
θwind Wind-approach angle

P Engine Power

Training Output

Vsref Reference ship speed in calm water
Vsw Resultant ship speed in sea state
Rw Wave-added resistance
Ra Wind resistance
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2.4.4. Estimation of Real-Time Fuel Consumption and CII

With given ship power, the resultant ship speed in real sea state could be obtained.
Then, the total fuel consumption could be achieved by Equation (10),

TFOC =
N

∑
i=1

SFOC(Pi) · Pi · ti =
N

∑
i=1

SFOC(Pi) · Pi · Li
Vi

(10)

where N is the number of voyage segments, Pi and ti is the averaged engine power and the
duration time in every segment. As sailing time ti =

Li
Vi

, the sea state effect coefficients Hw
equals to

Hw(n) =
SFOC(Pn) · Pn

Vn
(11)

where Vn is the average ship speed in node n on computational grid and Pn is its corre-
sponding engine power. As described in our improved A* algorithm, the reference calm
water ship speed is selected as an optimization variable and its corresponding engine
power is calculated from the ship’s speed–power curve.

According to the CII Guidelines G1 [27], the attained annual operational CII of in-
dividual ships is calculated as the ratio of the total mass of CO2 (M) emitted to the total
transport work (W) undertaken in a given calendar year, as follows:

Attained CII = M/W (12)
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The total mass of CO2 is the sum of CO2 emissions (in grams) from all the fuel oil
consumed on board a ship in a given calendar year, as follows:

M = ∑ FCj × CFj (13)

where j is the fuel oil type; FCj is the total mass (in grams) of consumed fuel oil of type in
the calendar year; CFj represents the fuel oil mass to CO2 mass conversion factor for fuel
oil type, in line with those specified in the 2018 Guidelines on the method of calculation of
the attained Energy Efficiency Design Index (EEDI) for new ships [28], and may be further
amended. In case the type of fuel oil is not covered by the guidelines, the conversion factor
should be obtained from the fuel oil supplier supported by documentary evidence, detailed
information could be found in the MEPC guidelines.

For the weather-routing problem, the supply-based transport work (W) can be taken
as a proxy in the absence of data in actual transport work. The transport work is calculated
as the product of a ship’s capacity (C) and the distance traveled (Dt) according to the MPEC
guidelines, that is

W = C · Dt (14)

3. Applications

The optimization method proposed in this paper was applied to the VLCC test case.
In the route optimization procedure, the increase in ship resistance in the sea state will
certainly change the powering curve and thus, lead to the reduction in ship speed while
the existence of the rotor system will compensate for this.

We simulate the ship-routing problem for a VLCC from China to the Middle East
for oil trade. This route makes its way through the East China Sea, the South China Sea,
Singapore, the Indian Ocean and the Strait of Hormuz. A typical characteristic ff the Indian
Ocean route is the strong side-wind which is positive to the wind-added rotors. Similarly,
five routes were generated by the proposed algorithm with different weather, power and
rotor considerations. To analyze the effect of different method combinations, 30 cases
for every combination are simulated based on different dates of departure to achieve a
statistical result of routing. The meaning of the keywords for different method selections in
column 2 of Table 3 are listed for better understanding:

• Shortest Route: Only the shortest path searching based on the Euclidean distance
is applied;

• Weather: Weather routing considering the effect of the wave and wind;
• Speed Optimization: The 3D A* algorithm is activated to optimize the engine delivery

power to achieve the optimal ship speed;
• Rotors: The effect of wind-assisted rotors is considered.

Table 3. Averaged routing results for 30 cases per method combination.

NO Method Combination TFOC Voyage Time CII

MC1 Shortest Route 100% 100% 100%
MC2 Weather 95.39% 100.47% 93.11%

MC3 Weather, Speed
Optimization 84.78% 108.51% 82.53%

MC4 Weather, Speed
Optimization, Rotors 80.37% 101.9% 78.63%

Table 3 summarizes the averaged routing results over 30 cases per method and object
combination and the results of eight selected cases are shown in Figure 17. It could be
figured out that weather routing could provide a 4.61% reduction in TFOC and a 8.89%
reduction in CII on this voyage with almost the same voyage time. Further, the speed
optimization in a preassigned range could provide a 10.61% additional reduction in TFOC
and 10.58% of CII, respectively. On this basis, with the help of wind-assisted rotors, the joint
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optimization of routes, speed and rotor operation speed could contribute an additional
4.41% reduction in TFOC and 3.90% of CII. As shown in Figure 17, for different cases with
different ocean weather conditions, the fuel consumption, voyage time and attained CII
have great differences but the contributions from different routing techniques are similar.
Due to the third power relationship between the ship’s speed and delivery power, speed
optimization always contributes the most part to the TFOC and CII reduction and always
leads to a lower average speed, and thus a longer voyage time.
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Four typical cases (1, 4, 6, 8) are selected to illustrate the difference of the resultant
routes in geographic maps (Figures 18–21). Considering the effect of s realistic ocean
weather, the optimized routes will differ greatly from the simple shortest route especially
for routes with speed optimization and rotors. The routes from weather routing could
automatedly avoid severe sea conditions to achieve lower fuel consumption. For relatively
mild sea states, like case 1 (Figure 18), the results from three different weather-routing
strategies (MC2, MC3 and MC4) show similar routes. Usually, ships with wind-assisted
rotors prefer to pass through some slightly rough seas to achieve a more beneficial side-
wind for larger thrust from rotors (as shown in Figures 19 and 21). When it meets a wide
range of high ocean waves, the proposed method could plan routes to avoid additional
fuel consumption.
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4. Conclusions

An efficient and improved weather routing framework towards low-carbon shipping
and CII reduction was proposed based on ocean weather forecast information and ship infor-
mation considering the effect of an innovative energy-saving device: the wind-assisted rotor.
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An improved A* algorithm including directed route searching and 3D capacity was
presented in this paper with an enhancement of the searching range, searching efficiency
and good incorporation with the operation optimization such as engine power and rotor
speed. Additionally, based on historical ship report data, towering tank results and high-
fidelity theory-based method for wave-added resistance and the air dynamic of wind-
assisted rotors, a data-driven model for fast prediction of total fuel consumption was
proposed and validated which could effectively replace the real-time calculation of the
ship’s performance in a real sea state. The attained CII could be estimated, along with the
routing task, to help monitor the carbon intensity of the current ship state.

The results show that the proposed method could generate optimized ship routes
according to the local sea environment and the response of the ship. Compared to the
shortest route, different combinations of routing methods could achieve the optimized route
considering sea states that result in a reduction in TFOC, according to the sailing simulation
for different cases. Statistically, weather routing, speed optimization and wind-assisted
rotors could produce a 4.61%, 10.61% and 4.41% reduction in the total fuel consumption,
respectively, in a single route from China to the Middle East and a similar reduction in
the attained CII. The result shows that commercial ships, especially with environmentally
dependent energy-saving devices such as rotors, could benefit a lot from proper weather
routing and operation optimization.

With a joint optimization of ship speed, a higher energy saving could be achieved by
economically modifying the engine power. The wind-assisted rotors could significantly
provide a positive thrust and amplify the effect of route and operation optimization. In the
Indian Ocean, wind-assisted rotors could have significant energy-saving possibilities for
voyages with strong side-wind. The result proved that, with the proposed method, a more
adaptive and economic solution for ship operation could be obtained, especially for ships
with wind-assisted rotors.

In this paper, we proposed a general framework including the optimization method,
TFOC estimation and route-generation procedure for economic ship routing and ship
operation. It needs to be acknowledged that the analysis and simulations performed in this
paper provide an ideal environment for the ship’s operation. It ignored the conditions when
desired operations, such as the speed governing of the main engine and the driving motors
of rotors, could not be achieved ideally. Additionally, the effect of wind-assisted rotors
could be affected by the local properties of winds, waves, the ship’s motion and rudders.
In the future, with more widespread applications of this kind of energy-saving device and
more actual sailing data, the estimation could be more accurate for better routing.

In the future, more realistic models for the estimation of TFOC and safety should be
considered to improve the engineering applicability of the current method. Additional
objective functions should be tested in the economic ship-routing practice and the method
should serve as state-of-the-art software for ships in operation. More detailed information
from electronic sea charts and weather forecasts should be considered and more realistic
demands from ship captains should be fully considered.
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