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Abstract: The bivariate probability distribution of significant wave heights and mean wave periods
has an indispensable guiding role in the implementation of offshore engineering, which has attracted
great attention. This work gives a new bivariate method to describe the bivariate distribution of
significant wave height and mean wave period at the NanJi, BeiShuang, and XiaoMaiDao stations
from 2018 to 2020. A mixed lognormal distribution is used for univariate probability analysis of
wave data, and the method of connecting two mixed lognormal distributions with copula functions is
applied to construct bivariate distribution. The results show that compared with Weibull and
lognormal distributions, the mixed lognormal distribution shows good performance in fitting
marginal distributions. In the bivariate probability analysis, the conditional model overestimates the
probability of lower wave heights, and the bivariate function model has a poor fitting effect in the
region with larger periods. In contrast, the copula model based on mixed lognormal distribution is
more suited to describe the joint distribution of significant wave height and mean wave period.

Keywords: copula function; joint distribution; marginal distribution; mixed lognormal distribution;
EM algorithm

1. Introduction

Some distributions are adopted to model the important wave parameters [1–5], such
as significant wave heights and mean wave periods, to better understand the extremely
complex marine environment, which is considered to be crucial for coastal engineering
applications and the safety of offshore structures.

In practice, these wave parameters are correlated, so it is appropriate for the joint
distributions to be used for statistical analysis. On the other hand, the modeled results
may have a relatively large bias if we just utilize the univariate probabilistic models in
the statistical analyses, so it is one-sided to study one of them alone. To provide better
assistance in offshore operations and the construction of drilling platforms, studying the
bivariate probability distribution of significant wave heights and mean wave periods has
received growing attention recently [6–8].

Several parametric approaches have been pointed out to simulate the correlation
between these two wave parameters, in which the bivariate function model has been
widely employed [9–11]. Ochi [12] pointed out that a bivariate lognormal function can
be used to simulate the bivariate probability of wave heights and periods. In addition, a
two-dimensional Weibull model was proposed by Kimura [13] to provide a description of
the statistical characteristics of wave heights and periods and discuss the influence of shape
factors and related parameters on the fitting effect of the model. These bivariate methods
mentioned above are very simple and easy to implement, but the problem is that the
requirement for the dataset is relatively high [14]. On the other hand, the bivariate function
models capture the joint behavior of two wave parameters as a whole. In general, different
wave parameters should be fitted with different distributions. The conditional model can
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select different probability distributions for the marginal distributions to fit [15–17]. For
datasets with low correlation coefficients, the conditional model can add weight to the
parts that need attention. However, the disadvantage is that it is difficult to determine the
optimal expressions of the joint functions [18].

The copula function, proposed by Sklar [19], was used for the stock market and fi-
nancial risk assessment. With continuous exploration, it has emerged in the joint analysis
of ocean and water resources variables [20,21]. As a flexible statistical approach, copula
allows any type of distribution function and has an indispensable role in the joint mod-
eling of bivariate variables. The bivariate distribution of two ocean parameters, it can
be decomposed into the marginal distributions of two parameters and a copula function,
and the copula function acts as a bridge between the marginal distributions and the joint
distribution. Gaussian copula, as a common copula function, is widely applied in hydro-
logic analysis [22–25]. In addition, Archimedean copula is also applied to establish the
bivariate distribution due to its good mathematical properties. Compared with conditional
modeling, Dong et al. [26] found that Clayton Copula showed good performance in bivari-
ate probability analysis of group height and length. Iturrizaga and Zavoni [27] proposed
to establish the bivariate distribution of wave heights and periods through copulas to
achieve structural reliability research. Kim et al. [28] pointed out that Frank and Gaussian
copula functions are most suitable for frequency analysis of wave heights and periods on the
Korean Peninsula. At the same time, copula functions also show outstanding performance in
the modeling of multivariate variables [29,30]; it should be noted that asymmetric copulas
have certain advantages in the multivariable modeling process, which can more adequately
simulate the asymmetric correlation between variables [31]. For extreme events, three extreme
copulas were used by Mazas and Hamm [32] to model the bivariate distributions of wave
heights and sea levels, and the return periods were discussed. Li et al. [33] showed that
Gumbel–Hougaard copula could well fit the joint characteristics of extreme waves and surges.

In previous work, simple parametric probabilistic methods have often been used to fit
marginal distributions, such as the Weibull distribution, Forristall distribution, lognormal
distribution, and Gamma distribution [17,26,34]. Owing to their simple forms, it is difficult
to describe the marginal distributions adequately when the probability distributions show
some special features. Therefore, based on the advantage that copulas allow any type
of marginal distribution function, a mixed lognormal distribution is proposed to fit the
marginal distributions, which are combined with three common Archimedean copula
functions to establish the bivariate distributions.

The rest of this paper is arranged as follows. Section 2 introduces the approaches to
fitting univariate distribution and gives the construction of mixed lognormal distribution
in detail. At the same time, it also presents the methods of describing joint distribution.
Section 3 gives the research area and provides a statistical analysis of data. In Section 4, we
discuss the fitting of marginal distribution and analyze the joint probability of significant
wave heights and wave periods. In addition, the findings are summarized in Section 5.

2. Methodology
2.1. Univariate Distribution Methods
2.1.1. Common Distribution

In this work, we assume that x and y represent the significant wave height (Hs) and
mean wave period (Tz), respectively. Weibull and lognormal distributions, as two common
distributions, have been obtained as the widespread application in statistical analysis of
wave parameters [18,35]. Its probability density functions are defined as follows:

f (x, α, β) =
α

β

(
x
β

)α−1
exp
{
−
(

x
β

)α}
, x > 0 (1)

f (y, µ, σ) =
1√

2πσy
exp

{
− [ln(y)− µ]2

2σ2

}
, x > 0 (2)
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where α and β are the shape and scale parameters, and µ and σ are the expectation and
standard deviation of ln x, respectively.

2.1.2. Mixed Lognormal Distribution

It is assumed that the distribution of the ocean parameter, z, can be represented by a
mixed lognormal distribution, which is composed of k parts. The specific form is as follows:

f (z|ξ) =
k

∑
j=1

αj f j
(
z|θj
)

(3)

where ξ = (α1, · · · , αk, θ1, · · · , θk) indicates a series of parameters of the mixed lognormal
distribution; αj denotes the scale factor satisfying ∑k

j=1 αj = 1. θj is the parameter of the
jth lognormal distribution. In general, k is required to be greater than or equal to 2. When
k = 1, the mixed lognormal distribution becomes a general lognormal distribution.

Evaluating the value of k is a primary consideration when applying the mixed log-
normal distribution to the probability analysis of ocean parameters. Bayesian Information
Criterion (BIC) is a practical method to select the number of mixture components. It
penalizes the model more when the amount of data is large and prefers to choose the
simple model with fewer parameters, which can effectively prevent the occurrence of
overfitting problems. Therefore, the BIC is used to determine the best value of k for the
mixed lognormal distribution in the following form:

BIC = −2L(ξ) + Nξ log(N) (4)

in which N denotes the sample size and Nξ represents the total amount of parameters of
the mixed lognormal distribution; L(ξ) is the log-likelihood function, with the specific form
as follows:

L(ξ) =
N

∑
i=1

log f (xi|ξ) =
N

∑
i=1

log

(
k

∑
j=1

αj f j(xi|θj)

)
(5)

Usually, the smaller the BIC value, the better. Therefore, we determine the optimal k
value by minimizing the BIC.

In view of the parameter complexity of the mixed lognormal distribution, it is difficult
to be solved by maximum likelihood estimation (MLE). In the present work, we introduce
the Expectation-Maximization (EM) algorithm, which is a method of maximum posterior
probability estimation. Each iteration of the EM algorithm needs to go through two parts:
the E step and the M step. The main task of the E step is to obtain the expectation of the
likelihood function through the samples and the proposed model, which is usually called
the Q function, expressed as:

Q(ξ) =
N

∑
i=1

k

∑
j=1

αj f j
(
xi|θj

)
∑k

s=1 αs fs(xi|θs)
ln
(

f j
(
xi|θj

))
+

N

∑
i=1

k

∑
j=1

αj f j(xi|θj)

∑k
s=1 αs fs(xi|θs)

ln αj (6)

The main task of the M step is to calculate ξ when the function Q(ξ) reaches its
maximum value through continuous iteration, the specific steps are as follows:

ξ(r+1) = argmax Q
(

ξ(r)
)

(7)

The former part of Equation (6) is maximized by Gibbs’ inequality, and the proportion
coefficient of the mixed lognormal distribution is obtained as follows:

α
(r+1)
j =

1
N

N

∑
i=1

α
(r)
j f j(xi|θ

(r)
j )

∑k
s=1 α

(r)
s fs(xi|θ

(r)
s )

(8)
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The value of θ is obtained by taking the derivative of the second half:

∂Q(ξ)

∂θ
= 0 (9)

It should be noted that the EM algorithm can only guarantee that the parameter
estimation sequence converges to the stable point but not to the maximum point. Therefore,
in the application, the selection of the initial value becomes very important. The common
method is to select several different initial values randomly for iteration and then compare
the estimated values to choose the best one. In addition, to ensure the accuracy of the
solution, the following stopping criteria are selected:∣∣∣ξ(r+1) − ξ(r)

∣∣∣ < ε (ε > 0) (10)

By replacing the probability density function f j
(
z|θj
)

in Equation (3) with the distribu-
tion in Equation (2), the specific forms of the mixed lognormal distribution can be obtained,
which will be used to fit Hs and Tz.

2.2. Joint Distribution Models
2.2.1. Conditional Model

The conditional model is a method to obtain joint probability density based on the
total probability theorem. It needs to know the density function of Hs and the density
function of Tz conditional on Hs. The formula is as follows:

f (x, y) = f (x)× f (y|x) (11)

where f (x, y) is the bivariate probability function of two ocean parameters, f (x) is the
marginal probability of Hs, f (y|x) is the conditional probability of Tz. In this study, Weibull
distribution in Equation (1) and lognormal distribution in Equation (2) are selected as the
specific forms of f (x) and f (y|x), respectively. The parameters of f (x) can be obtained by
MLE, and the parameters of f (y|x) can be calculated as follows:

f (y|x) = 1
y
√

2πσy(x)
exp

{
−
[
ln(y)− µy(x)

]2
2σy(x)2

}
y > 0 (12)

{
µy(x) = A1 + A2xA3

σy(x) = B1 + B2exp(B3x)
(13)

where µy(x) and σy(x) are the expectation and standard deviation of ln(y). By dividing
Hs into several intervals, we can get the µy(x) and σy(x) of corresponding intervals. In
this way, we can get several arrays of

(
x, µy(x)

)
and (x, σy(x)), and obtain the coefficients

Ai and Bi of Equation (13) through the nonlinear fitting.

2.2.2. Bivariate Function Model

A bivariate lognormal distribution was pointed out by Ochi [12] to describe the joint
characters of wave heights and periods and performed well in the case of small wave
heights, with the specific formula as follows:

f (x, y) =
1

2πxyσxσy
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
(ln x− µx)

2

σ2
x

−
2ρ(ln x− µx)

(
ln y− µy

)
σxσy

+

(
ln y− µy

)2

σ2
y

]}
(14)

where µx, σx are the expectation and standard deviation of ln x, µy, σy are the expectation
and standard deviation of ln y. ρ is the correlation coefficient of x and y.
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2.2.3. Copula Model

A copula function, which describes the correlation between variables, connects the
joint distribution and the marginal distributions. The bivariate distribution of two ocean
parameters x and y can be obtained by the following formula:

F(x, y) = C(G(x), H(y)) (15)

where F(x, y) is the bivariate distribution, G(x) and H(y) are the marginal distributions of x
and y, respectively and C(·, ·) is a copula function. By taking the derivative of Equation (15),
the probability density function (PDF) f (x, y) of variables x, y can be obtained:

f (x, y) = c(G(x), H(y))·g(x)·h(y) (16)

where g(x)· and h(y)· are the PDF of marginal distributions G(x) and H(y), respectively.
In addition, c(·, ·) can be given by the following Equation (16).

c(G(x), H(y)) =
∂C(G(x), H(y))

∂G(x)∂H(y)
(17)

Archimedean copula, as a common copula family, has been widely used in marine
and coastal engineering because of its easy construction and calculation and some good
properties. Therefore, Gumbel, Clayton, and Frank copulas are used in the bivariate
statistical analysis of Hs and Tz. Table 1 presents their PDF and generator functions, in
which u and v are distribution functions, θ is a parameter that represents the correlation
between variables.

Table 1. The structure of three copula functions.

Copulas Bivariate Density Function Generator

Gumbel

exp

{
−
[
(− ln u)θ+(− ln v)θ

] 1
θ

}
×(ln u×ln v)θ−1

u×v×
[
(− ln u)θ+(− ln v)θ

]2− 1
θ

×
{[

(− ln u)θ + (− ln v)θ
]1/θ

+ θ − 1
} (− ln t)θ

Clayton (1 + θ)× (u× v)−θ−1 ×
(

u−θ + v−θ − 1
)−2−1/θ 1

θ

(
t−θ − 1

)
Frank θ×exp[θ×(1+u+v)]×(exp(θ)−1)

(exp(θ)−exp(θ+θ×u)+exp(θ×u+θ×v)−exp(θ+θ×v))2 − ln e−θt−1
e−θ−1

2.2.4. Goodness of Fit

To assess the fitting ability of these models to the joint sample, the squared Euclidean
distance (D2) was introduced [18]. Specifically, the bivariate space is divided into m parts
in Hs direction and n parts in Tp direction. D2 can be expressed as:

D2 =
m

∑
i=1

n

∑
j=1

(
pij − qij

)2 (18)

where pij is the probability obtained from the original data satisfying xi < x ≤ xi+1
(i = 1, 2, · · ·m), yj < y ≤ yj+1 (j = 1, 2, · · · n). Similarly, qij is the probability obtained
from the model satisfying the above conditions. Generally speaking, a lower value of D2

indicates a better fitting effect of the model. It should be noted that D2 can only compare
the goodness of fit of different models on the same data set because the number of samples
will affect the size of D2 value. However, this does not affect our ability to compare the
performance of several models in fitting the joint distribution of significant wave height
and mean wave period. At the same time, the size of the grid also affects the D2 value, but
it has no effect on the final conclusion. In this study, the size of the bins is 0.3 m × 0.6 s. Of
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course, the grid division in this study is not arbitrary, and it is consistent with the division
of significant wave height and mean wave period in the process of univariate analysis.

3. Study Area and Data Analysis

The wave data are from the National Marine Data Center (http://mds.nmdis.org.cn/,
accessed on 1 June 2022.). Two stations in the East China Sea, namely NanJi (NJ) station
and BeiShuang (BS) station, are selected as the research objects, as shown in Figure 1. Their
specific coordinates are 27.5

◦
N 121.1

◦
E and 26.7

◦
N 120.3

◦
E, respectively. The East China Sea

is an important transportation hub for China’s maritime interactions with various countries
in the Pacific region. Here, the cold and warm currents converge, and the seawater exchanges
smoothly, which is one of the important fishing grounds in China. Therefore, the analysis
of wave characteristics and parameters, especially the joint distribution of Hs and Tz, is of
positive significance for understanding the wave characteristics in the East China Sea and
has important practical value for the design of the offshore structure, prevention of marine
disasters, and navigation. In addition, the XaiMaiDao (XMD) station located in the Yellow
Sea is selected to further verify the applicability of the methods proposed in this study, with
a specific coordinate of 36.0

◦
N 120.4

◦
E. All data are from 2018 to 2020, and the sampling

frequency is one hour. It is inevitable that there will be a small amount of missing observation
data. Except for the missing part, the rest will be used for simulation experiments.

Figure 2 displays the scatter plots and histograms of Hs and Tz of the three stations.
For the NJ and BS stations, the wave heights are mainly in the range of 0.5–2 m, and the
wave periods are mainly in the range of 4–8 s. As for the XMD station, most of the wave
heights are in the interval of 0–1 m, and most of the wave periods are in the interval of 3–7 s.
In addition, Table 2 shows the statistical information of Hs and Tz. It can be found that the
data of the XMD station is quite different from that of the other two stations. Therefore,
it is feasible to use the XMD station to further illustrate the applicability of the proposed
method. As can be seen from the skewness, the probability distribution curves of the two
wave parameters are skewed to the right; on the other hand, kurtosis indicates that the
probability distribution curves are steep. When fitting the probability density distributions
of Hs and Tz, we should pay attention to these characteristics of the distribution curves.
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Table 2. Statistics for ocean data.

Dataset Statistic Mean Standard Deviation Kurtosis Skewness

NJ
Hs (m) 1.1169 0.4924 10.1386 1.6093
Tz (s) 6.2277 1.2250 6.7266 1.4120

BS
Hs (m) 1.1468 0.5966 9.9534 1.4862
Tz (s) 6.0671 1.2975 7.1869 1.4275

XMD
Hs (m) 0.5069 0.3435 9.9329 2.0887
Tz (s) 5.0290 1.3177 7.4531 1.5932

4. Results and Discussion
4.1. Fitting the Marginal Distributions

First, we conduct an experimental analysis on NJ and BS stations. Before constructing
the bivariate distribution of Hs and Tz, it is necessary to conduct probability analysis on
each variable to determine their marginal distributions. Weibull distribution has been
applied to fit the wave heights [36], and lognormal distribution is a better approach for
probability analysis of wave periods [14]. Therefore, in order to adequately explain the
advantages of the mixed lognormal distributions in estimating the probability of Hs and Tz,
the fitting results are compared with Weibull and lognormal distributions, respectively.

The probability analysis of Hs and Tz from NJ and BS stations is carried out in this
section, it is necessary to determine the parameter values of distributions before fitting the
wave data. For Weibull and lognormal distributions, the parameters can be solved directly
by MLE. On the other hand, the quantity of mixed components of the mixed lognormal
distribution is given by BIC (Table 3), and the results of other parameters are obtained
with the help of the EM algorithm. Figure 3 presents the probability density functions and
frequency histograms of Hs from NJ and BS stations. Through intuitive comparison, we
can find that the Weibull distribution is not enough to predict Hs in the middle region,
and the mixed lognormal distribution performs well on the whole. As shown in Figure 3b,
the prediction of Hs in the range of 1.2 to 1.8 by Weibull distribution is higher than the
empirical value. At the same time, the empirical distributions and marginal distributions
from the two methods are also plotted in Figure 3. There are obvious differences between



J. Mar. Sci. Eng. 2022, 10, 1971 8 of 16

the Weibull distributions and the empirical distributions, especially in the middle area. In
contrast, the curves of the mixed lognormal distributions are basically consistent with the
curves of the empirical distributions. Therefore, the mixed lognormal distribution may be
a new option to effectively fit Hs.

Table 3. Number of parts of mixed lognormal distribution based on experimental data.

Station Variable Number of Components BIC
(
×104)

NJ
Hs (m) 3 2.3558
Tz (s) 2 6.3125

BS
Hs (m) 4 2.2244
Tz (s) 3 4.8030
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Table 3. Number of parts of mixed lognormal distribution based on experimental data. 
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Figure 3. Probability density functions and Cumulative distributions of Hs : (a,c) NJ station;
(b,d) BS station.

The lognormal distributions and mixed lognormal distributions are used to describe
Tz of NJ and BS stations, and their probability density functions are given in Figure 4.
According to Figure 4a, the lognormal distribution does not provide enough probability
prediction in the range of 5 to 6 and overestimates the probability in the range of 7 to 8. By
comparison, the mixed lognormal distribution can adequately fit the distribution charac-
teristics of Tz. The empirical distributions generated from the two datasets are shown in
Figure 4c,d, from which it can be concluded that the fitting accuracy of the mixed lognor-
mal distribution is higher. In order to more specifically verify the performance of mixed
lognormal distribution in describing marginal probability distribution, this paper uses the
root mean square error (RMSE) as an evaluation index and defines it as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Fe(xi)− Fm(xi))
2 (19)
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where Fe(x) represents the empirical distribution and Fm(x) the theoretical distribution.
Table 4 presents the values of the RMSE test. In general, the smaller the value of RMSE,
the better the performance of this method. The results show that the mixed lognormal
distribution is quite different from the other two methods and has a smaller RMSE value,
indicating that it produces better consistency in fitting field data.
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Table 4. Evaluation indexes of methods for experimental data.

Distribution RMSE

Hs for NJ
Weibull 0.0578

Mixed lognormal 0.0373

Tz for NJ
lognormal 0.0381

Mixed lognormal 0.0172

Hs for BS
Weibull 0.0570

Mixed lognormal 0.0323

Tz for BS
lognormal 0.0272

Mixed lognormal 0.0144

The mixed lognormal distribution, as a flexible statistical method, performs well in
univariate analysis of Hs and Tz. When the marginal distribution shows some special
features, such as heavy tail and saddle shape. Because of its simplicity, it is difficult to
capture these characteristics for Weibull distribution and lognormal distribution, in which
case the mixed lognormal distribution will show a greater advantage. At the same time,
the mixed lognormal distribution may be a new option in the extreme analysis of ocean
parameters.

4.2. Fitting the Bivariate Distributions

It is not easy to construct the joint distributions of Hs and Tz in the mixed sea state [14].
The main purpose of this section is to apply the conditional model, bivariate function
model, and copula model to establish the bivariate distributions of wave data from NJ and
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BS stations under the total sea state. In order to assess the fitting ability of these models,
the squared Euclidean distance is introduced.

4.2.1. Bivariate Distributions with the Conditional Model and Bivariate Function Model

When using the conditional model to establish the bivariate distribution, it is important
to note that the interval of dividing Hs may affect the final fitting performance [24]. In
this present work, the interval of Hs is selected as 0.25 m, and the parameter values of
the conditional model can be obtained by nonlinear fitting. For the bivariate function
model, the bivariate lognormal model has been proven to be useful for describing the joint
behavior of Hs and Tz. The parameters of the bivariate lognormal model can be obtained
by MLE based on experimental data.

The contour plots obtained based on the conditional model and the bivariate lognormal
model are shown in Figures 5 and 6. To intuitively assess the applicability of the above two
models, the empirical distributions obtained from the experimental data are also drawn in
the contour plots. As can be summarized from Figures 5a and 6a, the conditional model
overestimates the probability of lower wave heights and larger periods for NJ and BS
stations. In addition, the conditional model fits the contours of the empirical distributions
poorly. Figure 6b presents the contour plot of the bivariate lognormal model at BS station,
and we can find that this model underestimates the probability of larger wave heights. The
conditional model and the bivariate lognormal model have larger the squared Euclidean
distance, which further verifies that the two methods have a poor ability to fit joint samples,
as shown in Table 5.
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Table 5. The D2 for each model.

Model HsMarginal TzMarginal D2for NJ D2for BS

Conditional model Weibull lognormal 0.1025 0.1211
Bivariate lognormal model - - 0.0961 0.0782

Gumbel copula model Weibull lognormal 0.1120 0.1158
Mixed lognormal Mixed lognormal 0.0436 0.0582

Clayton copula model Weibull lognormal 0.1278 0.1255
Mixed lognormal Mixed lognormal 0.0407 0.0600

Frank copula model Weibull lognormal 0.1238 0.1164
Mixed lognormal Mixed lognormal 0.0564 0.0655

4.2.2. Bivariate Distributions with the Copula Model

In contrast to conditional modeling and bivariate lognormal distribution, the copula
method is different in that it has no requirement on the distribution form of the two
connected variables. Therefore, in this section, two types of copula models are introduced:
one is that Weibull distribution is chosen to fit Hs, and lognormal distribution is chosen to fit
Tz, and then construct bivariate distribution by copula function. The other is that combine
the mixed lognormal distributions proposed in Section 2 with the copula function to obtain
a new copula model for constructing the bivariate distribution of Hs and Tz. In view of
the variety of copula functions, the Gumbel, Clayton, and Frank copulas are selected for
analysis and comparison. The parameters of copulas are solved by the copula f it function
in the MATLAB toolbox.

Figures 7 and 8 display the contour plots of the copula models connecting Weibull
and lognormal distributions. For the NJ station, all three copula models overestimate the
probability of a larger Hs and Tz, which may be caused by the inadequate fitting of Weibull
and lognormal distributions to the marginal distributions. For the BS station, the Gumbel
and Clayton copula models have poor fitting for the lower wave heights. Meanwhile, the
Frank copula model underestimates the probability of smaller wave heights. From Table 5,
we can see that the copula models cannot achieve satisfactory results by connecting the
Weibull distribution and lognormal distribution to establish bivariate distributions.
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BS stations. For the NJ station, the 𝐷2 of Gumbel, Clayton, and Frank copulas are 0.0436, 

0.0407, and 0.0564, respectively. According to the data analysis in Section 3, it is concluded 
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range, as shown in Figure 9, which may be the reason for the smallest value of 𝐷2 for the 

Clayton copula. For the BS station, the 𝐷2 of Gumbel, Clayton, and Frank copulas are 

0.0582, 0.0600, and 0.0655, respectively. The Gumbel copula is optimal for the BS station. 

Figure 7. Contour plots of NJ station: (a) Gumbel copula model Hs−Weibull and Tz−lognormal;
(b) Clayton copula model Hs−Weibull and Tz−lognormal; (c) Frank copula model Hs−Weibull and
Tz−lognormal. Red lines are generated from raw data.
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Weibull and Tz−lognormal; (b) Clayton copula model Hs−Weibull and Tz−lognormal;
(c) Frank copula model Hs−Weibull and Tz−lognormal. Red lines are generated from raw data.

The analysis in Section 4.1 shows that the mixed lognormal distributions are more
suitable for fitting the probability distributions of Hs and Tz than the Weibull distribution
and lognormal distribution. Combining two mixed lognormal distributions with copula
function may be a good option to effectively simulate the bivariate distribution of Hs and
Tz. The contour plots of copula models with mixed lognormal distributions as the marginal
distributions are shown in Figures 9 and 10. From this figure, it can be found that the three
copula functions based on the mixed lognormal distributions can better fit the curve of the
empirical distributions.

From the contour plots, it is difficult to determine which of the three copula functions
performs best. Table 5 gives the values of the squared Euclidean distance D2 for NJ and
BS stations. For the NJ station, the D2 of Gumbel, Clayton, and Frank copulas are 0.0436,
0.0407, and 0.0564, respectively. According to the data analysis in Section 3, it is concluded
that the wave height data accounts for the largest proportion in the range of 0.5–1.5 m. The
Clayton copula fits the contour plot of the empirical distribution best in the above range, as
shown in Figure 9, which may be the reason for the smallest value of D2 for the Clayton
copula. For the BS station, the D2 of Gumbel, Clayton, and Frank copulas are 0.0582, 0.0600,
and 0.0655, respectively. The Gumbel copula is optimal for the BS station.
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formance comparison of several methods. In addition, the parameters of all bivariate mod-

els are obtained by using the solution methods mentioned earlier. 

The contour plots obtained based on the conditional model and the bivariate lognor-

mal model are shown in Figure 11. From this figure, it can be found that the conditional 

model overestimates the probability of larger wave heights and periods. At the same time, 

the bivariate lognormal model also overestimates the probability of larger wave periods. 

The 𝐷2 of conditional model and bivariate, lognormal model is 1.9359 and 0.8465, respec-

tively, which further verifies that the two methods have poor ability to fit joint samples. 

Figure 12 displays the contour plots of the copula models based on mixed lognormal dis-

tribution. It can be found that the three copula models can better fit the curve of the em-

pirical distribution. The 𝐷2 of Gumbel, Clayton, and Frank copulas are 0.4314, 0.5111, 

and 0.4986, respectively. By comparison, the Clayton copula is optimal for the XMD sta-

tion. 

Figure 9. Contour plots of NJ station: (a) Gumbel copula model based on mixed lognormal distribu-
tion; (b) Clayton copula model based on mixed lognormal distribution; (c) Frank copula model based
on mixed lognormal distribution. Red lines are generated from raw data.



J. Mar. Sci. Eng. 2022, 10, 1971 13 of 16

J. Mar. Sci. Eng. 2022, 10, 1971 13 of 16 
 

 

 

Figure 9. Contour plots of NJ station: (a) Gumbel copula model based on mixed lognormal distri-

bution; (b) Clayton copula model based on mixed lognormal distribution; (c) Frank copula model 

based on mixed lognormal distribution. Red lines are generated from raw data. 

 

Figure 10. Contour plots of BS station: (a) Gumbel copula model based on mixed lognormal distri-

bution; (b) Clayton copula model based on mixed lognormal distribution; (c) Frank copula model 

based on mixed lognormal distribution. Red lines are generated from raw data. 

4.3. Verification 

In view of the similarity of the data from the two stations in the East China Sea, it is 

insufficient to demonstrate the wide applicability of the proposed method. Therefore, the 

three bivariate models involved in this study, namely the conditional model, the bivariate 

lognormal model, and the copula model based on mixed lognormal distribution, are ap-

plied to the XMD station to further illustrate the wide applicability of the new copula 

method. Since the data of the XMD station is different from that of the other two stations, 

in order to make the contour plot size appropriate, we have made appropriate adjust-

ments to the grid division. Although this affects the size of 𝐷2, it does not affect the per-

formance comparison of several methods. In addition, the parameters of all bivariate mod-

els are obtained by using the solution methods mentioned earlier. 

The contour plots obtained based on the conditional model and the bivariate lognor-

mal model are shown in Figure 11. From this figure, it can be found that the conditional 

model overestimates the probability of larger wave heights and periods. At the same time, 

the bivariate lognormal model also overestimates the probability of larger wave periods. 

The 𝐷2 of conditional model and bivariate, lognormal model is 1.9359 and 0.8465, respec-

tively, which further verifies that the two methods have poor ability to fit joint samples. 

Figure 12 displays the contour plots of the copula models based on mixed lognormal dis-

tribution. It can be found that the three copula models can better fit the curve of the em-

pirical distribution. The 𝐷2 of Gumbel, Clayton, and Frank copulas are 0.4314, 0.5111, 

and 0.4986, respectively. By comparison, the Clayton copula is optimal for the XMD sta-

tion. 

Figure 10. Contour plots of BS station: (a) Gumbel copula model based on mixed lognormal distribu-
tion; (b) Clayton copula model based on mixed lognormal distribution; (c) Frank copula model based
on mixed lognormal distribution. Red lines are generated from raw data.

4.3. Verification

In view of the similarity of the data from the two stations in the East China Sea, it is
insufficient to demonstrate the wide applicability of the proposed method. Therefore, the
three bivariate models involved in this study, namely the conditional model, the bivariate
lognormal model, and the copula model based on mixed lognormal distribution, are applied
to the XMD station to further illustrate the wide applicability of the new copula method.
Since the data of the XMD station is different from that of the other two stations, in order to
make the contour plot size appropriate, we have made appropriate adjustments to the grid
division. Although this affects the size of D2, it does not affect the performance comparison
of several methods. In addition, the parameters of all bivariate models are obtained by
using the solution methods mentioned earlier.

The contour plots obtained based on the conditional model and the bivariate lognor-
mal model are shown in Figure 11. From this figure, it can be found that the conditional
model overestimates the probability of larger wave heights and periods. At the same time,
the bivariate lognormal model also overestimates the probability of larger wave periods.
The D2 of conditional model and bivariate, lognormal model is 1.9359 and 0.8465, respec-
tively, which further verifies that the two methods have poor ability to fit joint samples.
Figure 12 displays the contour plots of the copula models based on mixed lognormal
distribution. It can be found that the three copula models can better fit the curve of the
empirical distribution. The D2 of Gumbel, Clayton, and Frank copulas are 0.4314, 0.5111,
and 0.4986, respectively. By comparison, the Clayton copula is optimal for the XMD station.
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Obviously, the biggest problem of the conditional model and bivariate lognormal 

model is poor flexibility. They may perform well in some special cases, but the fitting 

effect is not satisfactory in most cases. After the analysis of univariate fitting, a copula 

method based on mixed lognormal distribution is proposed to establish the joint distribu-

tion of 𝐻𝑠 and 𝑇𝑧, and satisfactory results are obtained. The characteristics of the copula 
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Obviously, the biggest problem of the conditional model and bivariate lognormal
model is poor flexibility. They may perform well in some special cases, but the fitting effect
is not satisfactory in most cases. After the analysis of univariate fitting, a copula method
based on mixed lognormal distribution is proposed to establish the joint distribution
of Hs and Tz, and satisfactory results are obtained. The characteristics of the copula
function provide the basis for selecting the optimal distribution forms for the marginal
distributions of two variables, which directly affects the performance of the constructed
bivariate distribution. Of course, the choice of copula function type is also a problem, which
reflects the coupling of two ocean parameters. We can choose the best one by comparing
D2 of several copula models.

5. Conclusions

In this work, two mixed lognormal distributions are connected by copula function to
establish the bivariate distribution of Hs and Tz, and compared with the conditional model
and bivariate function model. The squared Euclidean distance D2 is used to verify the
fitting performance of these models.

Since the copula function allows any type of marginal distribution, in order to obtain
the optimal form of marginal distribution, the probability distributions of Hs and Tz are
analyzed. The experimental results show that the Weibull distribution fits the probability
distribution of Hs poorly, and the lognormal distribution underestimates the probability of
Tz in the middle region. In contrast, the mixed lognormal distribution, as a flexible statistical
method, provides satisfactory fitting results for both Hs and Tz. Although the solution of
many parameters brings inevitable drawbacks to the mixed lognormal distribution, the EM
algorithm can effectively solve this problem. In the analysis of bivariate probability, the
conditional model and bivariate function model have poor fitting effect in the region with
larger Tz. The copula model, which connects Weibull and lognormal distributions, performs
poorly in predicting the probability of smaller Hs. In comparison, the copula model based on
mixed lognormal distribution is more suited to simulate the joint distribution of Hs and Tz.

An accurate prediction of the joint distribution of Hs and Tz is of high practical value
in the design of maritime structures and mitigation of marine disasters. The method of
connecting mixed lognormal distributions by copula function may be a new option to
effectively simulate the joint distribution.
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