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Abstract: Wake effects commonly exist in offshore wind farms, which will cause a 10–20% reduction
of whole power production as well as a 5–15% increase of fatigue loading on the wind turbine
main structures. Obviously wake interaction between floating offshore wind turbine (FOWT) is
more complicated, and needs careful assessment which is a prerequisite for active wake control
(AWC). The primary objective of the present research is to investigate in detail how the wake inflow
condition, streamwise spacing, turbulence intensity, and wind shear influence the power performance,
platform motion dynamic and structural loading of FOWT. FAST.Farm, developed by the National
Renewable Energy Laboratory (NREL), was used for simulating two tandem FOWTs in different
conditions. Comparisons were made between FOWTs in different conditions on power performance
and platform motion dynamic, which were presented through both time and frequency domain
analysis. Damage equivalent loads change in FOWTs interference under typical working conditions
were discussed and summarized. Half wake inflow would pose many challenges to the downstream
FOWT. These research studies can be incorporated into further offshore wind farm wake models,
providing applicable AWC strategies to reduce wake interference effects for higher energy production
and for the longer life of FOWT.
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1. Introduction

In order to achieve sustainable development and address global climate change,
governments around the world are striving to develop wind power to provide clean energy.
The 93.6 GW of new installations in 2021 brings global cumulative wind power capacity
up to 837 GW by 2021. The offshore wind market has grown from 2.2 GW in 2016 to 21.1
GW in 2021, bringing its market share in global new installations from 4% to 22.5% [1].
It is estimated that floating offshore wind will grow from 17 MW in 2020 to 16.5 GW by
2030 [2]. It is foreseeable that offshore wind power will play an even more important role
in the future of energy. However, wind power, especially offshore wind power, faces many
urgent problems, such as the existence of the wake effect, reducing the power generation
of downstream wind turbine (WT) and aggravating the fatigue load of WT structures. In
large offshore wind farms, WT wakes increase fatigue loads on WT rotors by 5–15% while
causing average power losses which are of the order of 10–20% of total power output [3–5].

Most of the research on wind farm wake is focused on wake loss models. The analysis
model represented by the famous Jensen model [6,7] is one of the two kinds of wake loss
model research methods. More comprehensive models, such as the Larsen model [8],
Frandsen model [9], Gaussian models [10,11], and Geometric model [12], were proposed
on this basis. On the other hand, the Eddy Viscosity Model (EVM) [13], the Deep-Array
Wake Model (DAWM) [14], and the Large Array Wind Farm (LAWF) model [15] were
computational fluid dynamics (CFD) -based models and were developed by making correc-
tions to the original models, which were proved to be somewhat effective. The dynamic
wake meander (DWM) model [16] was proven accurate at predicting single-turbine wake
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development, providing a way to model both power production and loads on WTs in
wind farms. Furthermore, another group of more sophisticated CFD-based models named
Large-Eddy Simulation (LES) models have recently been used to study turbine wakes
with great spatial and temporal resolution [17–21]. Nevertheless, LES models require large
computational resources [22].

Some scholars have studied the influence of wind farm wake on WT load. Per Vol-
und [23] concluded two main effects of wakes on the dynamic load of WT blades. In
addition, wake-induced fatigue in offshore wind farm attracted attention [24,25]. Therefore,
the influence of wake on the load of WT blades and other components in offshore wind
farms is worth further study.

However, theoretical and numerical studies and experiments in the past mainly fo-
cused on the power loss caused by the wake effect. Some scholars have conducted numeri-
cal simulation research on wake interference between two WTs. A WT located downwind
of another suffers a reduction in its aerodynamic power output if subject to impingement
by the wake of the upstream WT. Simulations performed [26] suggest that WTs located even
six times rotor diameter apart may experience a 40–50% reduction in power for tip speed
ratios in the range six to eight. Computations [27] were carried out at different streamwise
and crosswind displacements between the WTs, simulation study of flow field and power
were done for both full wake and partial wake operation of the downstream WT. The wake
interference between wind turbines in offshore wind farms is worth further study because
of the high operation and maintenance costs.

Recently, there is a rapid demand for the development of floating wind farm because
of the excellent wind energy resources in the abysmal sea [28], accompanied by the gradual
deployment of spar and semisubmersible wind turbines [29]. Scholars [30] have found
that despite nine rotor diameters between the turbines, wake effects were observed in
the measured floater motions of the downstream floating offshore wind turbine (FOWT)
during study on the Hywind Scotland wind farm which is known as the world’s first fully
operational floating wind farm.

The overview of existing literature reveals that there are few studies on wake in-
teractions on FOWTs, especially for semi-submersible FOWTs. We hypothesized that
certain wake inflow conditions could increase the risks of stability and reliability in semi-
submersible FOWTs. A better understanding of the performance of FOWTs under different
wake inflow condition may provide new insights into floating wind farm design, operation
and maintenance and active wake control. As a result, the focus of this paper is on the
following points:

(1) The power performance, platform response and the load response of the semi-
submersible FOWTs components were analyzed and evaluated under different wake
inflow conditions.

(2) Streamwise spacing, turbulence intensity (TI) and wind shear were considered in
order to further study the influence of wake on the semi-submersible FOWTs.

The structure of this paper is laid out as follows. The software, model and simulation
settings are introduced in Section 2. In Section 3, the power performance, platform response
and structural loading under different conditions are compared and analyzed by statistical
analysis in the time domain and power spectrum analysis in the frequency domain. Finally,
Section 4 presents this study’s conclusions about how different wake conditions affect
performance in semi-submersible FOWTs, and discusses the shortcomings of this paper,
considering the future research direction.

2. Methods and Materials
2.1. Dynamic Analysis Tool

FAST.Farm is a midfidelity multiphysics engineering tool [31] developed by the Na-
tional Renewable Energy Laboratory (NREL) for predicting the power performance and
structural loads of WTs within a wind farm. A summary of the simulation approach
comparison is provided in Table 1. FAST.Farm considers additional physics for wind
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farm-wide ambient wind in the atmospheric boundary layer, meanwhile, it uses OpenFAST
to solve the aero-hydro-servo-elastic dynamics of each individual turbine [31]. FAST.Farm
has one driver and four modules: Super Controller Module, OpenFAST Module, Wake
Dynamics Module, Ambient Wind and Array Effects Module. In addition, TurbSim [32], a
preprocesssor to FAST.Farm, was used for generating turbulent wind files.

Table 1. Comparison of simulation approach.

Simulation
Approach Principle Fidelity Computational

Expense
Structural
Method

Semi empirical
model Wake loss model Low-fidelity Low N/A

FAST.Farm Dynamic wake meandering Mid-fidelity Low ElastoDyn
SOWFA Large eddy simulation High-fidelity High Rigid body

FAST.Farm is based on the principles of the DWM model which typically includes
three submodels: velocity deficit, wake meandering and wake-added turbulence [31]. The
information needed to calculate various parameters, as shown in Figure 1.
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Figure 1. Information flowchart for FAST.Farm simulations [31].

2.2. Turbine Characteristics

In this study, all simulations concern the NREL 5 MW OC4-DeepCwind semi-submersible
FOWT. The rated power of the FOWT is 5 MW, while the diameter of the rotor and hub
height are 126 m and 90 m, respectively. Furthermore, cut-in and rated rotor speed respec-
tively are 6.9 rpm and 12.1 rpm. Please refer to [33,34] for more detailed parameters of the
FOWT.

2.3. Ambient Wind and Wave Conditions

Eighteen different wind files were generated by TurbSim for FAST.Farm, accompanied
by 3 kinds of mean wind speed, 3 kinds of TI, and 2 kinds of wind shear. White noise
spectrum was used for irregular wave model. Ambient wind and wave conditions were
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shown in Table 2 in which wind parameter settings refer to an offshore wind farm located
about 10 km from the coast of Jiangsu province, China [35,36].

Table 2. Wind conditions and wave condition setting.

Parameter Value

Mean wind speed 8 m/s 10 m/s 12 m/s
TI 0.06 0.08 0.10

Turbulence model IECKAI
Shear power law exponent 0.13 0.17

Significant wave height of incident waves 1.2646 m
Peak-spectral period of incident waves 10 s

In addition, The IEC Kaimal (IECKAI) model [32] assumes neutral atmospheric sta-
bility, which is defined in IEC 61400-1 3rd edition [37]. The spectra for the three wind
components (K = u, v, w), are given by

SK( f ) =
4σ2LK/u

(1 + 6 f · LK/u)5/3 (1)

where σ is the standard deviation and can be estimated by the TI, f is the cyclic frequency,
LK is an integral scale parameter and u is the mean wind speed at hub height.

σ = TI · u (2)

where the integral scale parameter is defined to be

LK =


8.10 · 0.7 · 60, K = u
2.70 · 0.7 · 60, K = v
0.66 · 0.7 · 60, K = w

(3)

The spectra of mean wind speed show that the low-frequency oscillations dominate
the wind, which is displayed in Figure 2.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 4 of 24 
 

 

rotor and hub height are 126 m and 90 m, respectively. Furthermore, cut-in and rated ro-

tor speed respectively are 6.9 rpm and 12.1 rpm. Please refer to [33,34] for more detailed 

parameters of the FOWT. 

2.3. Ambient Wind and Wave Conditions 

Eighteen different wind files were generated by TurbSim for FAST.Farm, accompa-

nied by 3 kinds of mean wind speed, 3 kinds of TI, and 2 kinds of wind shear. White 

noise spectrum was used for irregular wave model. Ambient wind and wave conditions 

were shown in Table 2 in which wind parameter settings refer to an offshore wind farm 

located about 10 km from the coast of Jiangsu province, China [35,36]. 

In addition, The IEC Kaimal (IECKAI) model [32] assumes neutral atmospheric sta-

bility, which is defined in IEC 61400-1 3rd edition [37]. The spectra for the three wind 

components（𝐾 = 𝑢, 𝑣, 𝑤）, are given by 

𝑆𝐾(𝑓) =
4𝜎2𝐿𝐾 𝑢⁄

(1 + 6𝑓 ⋅ 𝐿𝐾 𝑢⁄ )5 3⁄
 (1) 

where 𝜎 is the standard deviation and can be estimated by the TI, 𝑓 is the cyclic frequen-

cy, 𝐿𝐾  is an integral scale parameter and 𝑢 is the mean wind speed at hub height. 

𝜎 = 𝑇𝐼 ⋅ 𝑢 (2) 

where the integral scale parameter is defined to be 

𝐿𝐾 = {
8.10 ⋅ 0.7 ⋅ 60,   𝐾 = 𝑢 
2.70 ⋅ 0.7 ⋅ 60,   𝐾 = 𝑣
0.66 ⋅ 0.7 ⋅ 60,   𝐾 = 𝑤

 (3) 

The spectra of mean wind speed show that the low-frequency oscillations dominate 

the wind, which is displayed in Figure 2. 

Table 2. Wind conditions and wave condition setting. 

Parameter Value 

Mean wind speed 8 m/s 10 m/s 12 m/s 

TI 0.06 0.08 0.10 

Turbulence model IECKAI 

Shear power law exponent 0.13 0.17 

Significant wave height of incident waves 1.2646 m 

Peak-spectral period of incident waves 10 s 

 

Figure 2. Spectrum of IECKAI turbulent wind. Figure 2. Spectrum of IECKAI turbulent wind.

2.4. Simulation Settings

For the simulation settings, a X × Y × Z = 6000 × 1000 × 350 m low-resolution
domain and two X × Y × Z = 180 × 170 ×170 m high-resolution domains were used
by FAST.Farm, and simulations were carried out with time length of 2000 seconds and
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time step of 0.0125 second. The main flow direction was along X axis direction, and 6 km
longitudinal length of the domain were sufficiently large enough for the wakes to propagate
downstream, meanwhile, the lateral and vertical dimensions were large enough to allow
for meandering of the wakes. Wind fields were clearly identifiable in Figure 3 [38].
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Figure 3. The full-field turbulent wind with an average speed of 12 m/s: (a) time-varying wind speed
at hub height; (b) full field wind speed distribution.

In lateral, the position of the FOWT 1 was fixed, while the position of the FOWT 2 varied
at intervals of 10 m along the direction perpendicular to the main flow direction, as shown
in Table 3. Numerous simulations were run within FAST.Farm on the operation of FOWTs
under the conditions of 21 different kinds of wake conditions, such as no wake, quarter wake,
half wake, three quarters wake and full wake inflow, which is illustrated in Figure 4a.

Table 3. FOWT 1 and FOWT 2 position setting.

FOWT 1
(Xi, Yi)

FOWT 2
(Xi, Yi) (X = 630 m/1260 m)

(0 m,0 m)

(X, −200 m) (X, −130 m) (X, −60 m) (X, 10 m) (X, 80 m) (X, 150 m)
(X, −190 m) (X, −120 m) (X, −50 m) (X, 20 m) (X, 90 m) (X, 160 m)
(X, −180 m) (X, −110 m) (X, −40 m) (X, 30 m) (X, 100 m) (X, 170 m)
(X, −170 m) (X, −100 m) (X, −30 m) (X, 40 m) (X, 110 m) (X, 180 m)
(X, −160 m) (X, −90 m) (X, −20 m) (X, 50 m) (X, 120 m) (X, 190 m)
(X, −150 m) (X, −80 m) (X, −10 m) (X, 60 m) (X, 130 m) (X, 200 m)
(X, −140 m) (X, −70 m) (X, 0 m) (X, 70 m) (X, 140 m)
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In longitudinal, a simple two-WTs case where the downstream WT separated by
5D(630 m) and 10D(1260 m) in the wind direction was considered in order to explore the
change of wake influence, as shown in Figure 4b.

3. Simulation Results

In this section, the performance of the downstream FOWTs were discussed in four
subsections: time history exhibition, power performance, platform motion and structural
loading, using the control variables.

3.1. Time History

Figure 5 shows a contour plot of wind speed at hub height with 5D streamwise spacing
and 10D streamwise spacing, along with wind condition 12_0.06_0.13 (mean wind speed_
TI _ shear power law exponent).
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For all simulation cases in this study, the 600 s time series of 2000 s simulation was
selected for analysis to avoid transient effects, which can be seen in Figure 6 taking power
performance for example.
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Figure 6. Power time history of FOWT 1 and FOWT 2 on wind condition 12_0.06_0.13: (a) full wake,
5D streamwise spacing; (b) full wake, 10D streamwise spacing.

3.2. Power Performance

The power performance of the downstream FOWTs were discussed in five subsections,
focusing on the FOWT 2 under different wake inflow condition, streamwise spacing, TI,
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wind shear and power fluctuation. In Tables 4 and 5, the normalized processing took the
rated power as the standard. As can be seen in Table 4, mean power loss of FOWT 2 under
full wake condition can be around 20%, 35% and 25% under 5D streamwise spacing and
mean wind speed at 8 m/s, 10 m/s and 12 m/s, respectively.

Table 4. Normalized mean power of FOWT 2 under full wake condition (standard: rated power).

Case Wind
Condition FOWT 1

FOWT 2
(5D Streamwise

Spacing)

FOWT 2
(10D Streamwise

Spacing)

Interpolation
(5D-10D Streamwise

Spacing)

A1 8_0.06_0.13 0.35 0.15 (−0.20) 0.23 (−0.12) 0.08
A2 8_0.08_0.13 0.35 0.16 (−0.19) 0.24 (−0.11) 0.08
A3 8_0.10_0.13 0.35 0.17 (−0.18) 0.26 (−0.09) 0.09
A4 8_0.06_0.17 0.35 0.15 (−0.20) 0.23 (−0.12) 0.08
A5 8_0.08_0.17 0.35 0.16 (−0.19) 0.25 (−0.10) 0.08
A6 8_0.10_0.17 0.35 0.18 (−0.17) 0.26 (−0.09) 0.09
B1 10_0.06_0.13 0.66 0.30 (−0.36) 0.46 (−0.20) 0.16
B2 10_0.08_0.13 0.67 0.32 (−0.35) 0.48 (−0.19) 0.16
B3 10_0.10_0.13 0.67 0.35 (−0.32) 0.51 (−0.16) 0.16
B4 10_0.06_0.17 0.66 0.30 (−0.36) 0.46 (−0.20) 0.16
B5 10_0.08_0.17 0.67 0.33 (−0.34) 0.49 (−0.18) 0.16
B6 10_0.10_0.17 0.67 0.35 (−0.32) 0.51 (−0.16) 0.16
C1 12_0.06_0.13 0.97 0.66 (−0.31) 0.84 (−0.13) 0.18
C2 12_0.08_0.13 0.95 0.69 (−0.26) 0.86 (−0.09) 0.17
C3 12_0.10_0.13 0.94 0.73 (−0.21) 0.88 (−0.06) 0.16
C4 12_0.06_0.17 0.97 0.67 (−0.30) 0.84 (−0.13) 0.18
C5 12_0.08_0.17 0.95 0.70 (−0.25) 0.87 (−0.08) 0.17
C6 12_0.10_0.17 0.94 0.73 (−0.21) 0.88 (−0.06) 0.15

Table 5. Normalized mean power of FOWT 2 with different position setting (standard: rated power).

Case

FOWT 2
(5D

Streamwise
Spacing)

FOWT 2
(10D

Streamwise
Spacing)

Case

FOWT 2
(5D

Streamwise
Spacing)

FOWT 2
(10D

Streamwise
Spacing)

Case

FOWT 2
(5D

Streamwise
Spacing)

FOWT 2
(10D

Streamwise
Spacing)

A1_P1 0.35 0.36 B1_P1 0.67 0.68 C1_P1 0.97 0.98
A1_P2 0.35 0.36 B1_P2 0.67 0.67 C1_P2 0.97 0.98
A1_P3 0.35 0.35 B1_P3 0.66 0.67 C1_P3 0.97 0.98
A1_P4 0.35 0.35 B1_P4 0.66 0.66 C1_P4 0.97 0.97
A1_P5 0.34 0.34 B1_P5 0.65 0.65 C1_P5 0.96 0.97
A1_P6 0.34 0.34 B1_P6 0.64 0.64 C1_P6 0.96 0.97
A1_P7 0.33 0.33 B1_P7 0.63 0.63 C1_P7 0.96 0.96
A1_P8 0.32 0.32 B1_P8 0.61 0.62 C1_P8 0.95 0.95
A1_P9 0.31 0.32 B1_P9 0.60 0.61 C1_P9 0.94 0.94

A1_P10 0.30 0.31 B1_P10 0.57 0.59 C1_P10 0.93 0.93
A1_P11 0.28 0.30 B1_P11 0.54 0.58 C1_P11 0.91 0.92
A1_P12 0.27 0.29 B1_P12 0.51 0.56 C1_P12 0.89 0.91
A1_P13 0.25 0.28 B1_P13 0.48 0.54 C1_P13 0.86 0.90
A1_P14 0.23 0.27 B1_P14 0.45 0.53 C1_P14 0.83 0.88
A1_P15 0.21 0.26 B1_P15 0.41 0.51 C1_P15 0.79 0.87
A1_P16 0.19 0.25 B1_P16 0.38 0.50 C1_P16 0.76 0.86
A1_P17 0.18 0.24 B1_P17 0.35 0.48 C1_P17 0.72 0.85
A1_P18 0.16 0.24 B1_P18 0.33 0.47 C1_P18 0.69 0.84
A1_P19 0.15 0.23 B1_P19 0.31 0.47 C1_P19 0.67 0.84
A1_P20 0.15 0.23 B1_P20 0.30 0.46 C1_P20 0.66 0.84
A1_P21 0.15 0.23 B1_P21 0.30 0.46 C1_P21 0.66 0.84
A1_P22 0.15 0.23 B1_P22 0.31 0.46 C1_P22 0.66 0.84
A1_P23 0.16 0.23 B1_P23 0.32 0.46 C1_P23 0.68 0.85
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Table 5. Cont.

Case

FOWT 2
(5D

Streamwise
Spacing)

FOWT 2
(10D

Streamwise
Spacing)

Case

FOWT 2
(5D

Streamwise
Spacing)

FOWT 2
(10D

Streamwise
Spacing)

Case

FOWT 2
(5D

Streamwise
Spacing)

FOWT 2
(10D

Streamwise
Spacing)

A1_P24 0.17 0.24 B1_P24 0.34 0.47 C1_P24 0.70 0.86
A1_P25 0.18 0.24 B1_P25 0.36 0.48 C1_P25 0.73 0.87
A1_P26 0.20 0.25 B1_P26 0.39 0.49 C1_P26 0.77 0.88
A1_P27 0.21 0.26 B1_P27 0.42 0.51 C1_P27 0.81 0.89
A1_P28 0.23 0.27 B1_P28 0.45 0.52 C1_P28 0.84 0.91
A1_P29 0.25 0.28 B1_P29 0.48 0.54 C1_P29 0.88 0.92
A1_P30 0.26 0.29 B1_P30 0.51 0.56 C1_P30 0.90 0.93
A1_P31 0.28 0.30 B1_P31 0.54 0.57 C1_P31 0.92 0.94
A1_P32 0.29 0.30 B1_P32 0.56 0.58 C1_P32 0.94 0.95
A1_P33 0.30 0.31 B1_P33 0.58 0.60 C1_P33 0.95 0.95
A1_P34 0.31 0.32 B1_P34 0.59 0.61 C1_P34 0.96 0.96
A1_P35 0.32 0.33 B1_P35 0.61 0.62 C1_P35 0.96 0.96
A1_P36 0.32 0.33 B1_P36 0.61 0.63 C1_P36 0.97 0.97
A1_P37 0.33 0.34 B1_P37 0.62 0.64 C1_P37 0.97 0.97
A1_P38 0.33 0.34 B1_P38 0.62 0.64 C1_P38 0.97 0.97
A1_P39 0.33 0.34 B1_P39 0.63 0.65 C1_P39 0.97 0.97
A1_P40 0.33 0.34 B1_P40 0.63 0.65 C1_P40 0.97 0.97
A1_P41 0.33 0.35 B1_P41 0.63 0.66 C1_P41 0.96 0.97

3.2.1. Wake Inflow Condition

Figures 7–9 and Table 5 showed discrepancy on the power performance between
FOWTs under different wake inflow conditions. The power increased with almost the
same trend from full wake to no wake at both ends. However, with the full wake as the
center, the power performance on both sides was not completely symmetrical. It should be
emphasized that FOWT 2s (A1_P1- A1_P20, B1_P1- B1_P20, C1_P1- C1_P20) whose rotor
under right-half wake (Yi = −60 m) did not perform as well as FOWT 2s(A1_P22- A1_P41,
B1_P22- B1_P41, C1_P22- C1_P41) whose rotor under left-half wake (Yi = 60 m), which can
be seen in Table 5. Figure 9b illustrated that the difference between wake inflow conditions
is no longer prominent under the action of sufficient streamwise spacing and sufficient TI
and wind shear.
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J. Mar. Sci. Eng. 2022, 10, 1962 9 of 24

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 24 
 

 

（A1_P22- A1_P41，B1_P22- B1_P41，C1_P22- C1_P41）whose rotor under left-half 

wake(Yi = 60 m), which can be seen in Table 5. Figure 9b illustrated that the difference 

between wake inflow conditions is no longer prominent under the action of sufficient 

streamwise spacing and sufficient TI and wind shear. 

  

(a) (b)  

Figure 7. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 8 m/s, 

5D streamwise spacing; (b) 8 m/s, 10D streamwise spacing. 

  

(a) (b)  

Figure 8. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 10 m/s, 

5D streamwise spacing; (b) 10 m/s, 10D streamwise spacing. 

  

(a) (b) 

Figure 9. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 12 m/s, 

5D streamwise spacing; (b) 12 m/s, 10D streamwise spacing. 

  

Figure 8. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 10 m/s,
5D streamwise spacing; (b) 10 m/s, 10D streamwise spacing.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 24 
 

 

（A1_P22- A1_P41，B1_P22- B1_P41，C1_P22- C1_P41）whose rotor under left-half 

wake(Yi = 60 m), which can be seen in Table 5. Figure 9b illustrated that the difference 

between wake inflow conditions is no longer prominent under the action of sufficient 

streamwise spacing and sufficient TI and wind shear. 

  

(a) (b)  

Figure 7. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 8 m/s, 

5D streamwise spacing; (b) 8 m/s, 10D streamwise spacing. 

  

(a) (b)  

Figure 8. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 10 m/s, 

5D streamwise spacing; (b) 10 m/s, 10D streamwise spacing. 

  

(a) (b) 

Figure 9. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 12 m/s, 

5D streamwise spacing; (b) 12 m/s, 10D streamwise spacing. 

  

Figure 9. Normalized mean power of FOWT 2 under different wake inflow conditions: (a) 12 m/s,
5D streamwise spacing; (b) 12 m/s, 10D streamwise spacing.

3.2.2. Streamwise Spacing

Table 5 showed that increasing the distance effectively improves the power recovery,
especially when it was close to the rated wind speed, which can also be seen from Figures
7a, 8a and 9a to Figures 7b, 8b and 9b. In addition, for the same wake inflow state, there was
difference between the power recovery degree of FOWT 2 under 5D and 10D streamwise
spacing. Increasing the distance can effectively mitigates wake effects, averagely increased
FOWT 2 power 8%, 16% and 17% of rated power under wind speed at 8 m/s, 10 m/s and
12 m/s, respectively.

3.2.3. Turbulence Intensity

TI played an important role in power recovery of FOWT 2 under different wake
conditions, as shown in Figures 7–9 which indicated that higher TI was beneficial to wake
recovery of FOWT 2 s, together with Table 5. In addition, higher TI increased FOWT 2
power 1% of rated power under wind speed at 8 m/s approximately, as described in Table 5.

3.2.4. Wind Shear

Wind shear played a small role in mitigating wake influence at low wind speed, but
played a more obvious role at close to rated wind speed. A power increase due to wind
shear was not apparent with the exception of the circumstances when FOWT 2 under full
wake, as shown in Table 5. The contribution of wind shear to wake recovery is more obvious
at above rated wind speed than below rated wind speed, regardless of the streamwise
spacing. Figures 7a, 8a and 9a showed distinctly that the effect of wind shear on wake
recovery was less than that of TI.
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3.2.5. Power Fluctuation

The wake not only caused the power loss of FOWT 2, but also increased the power
fluctuation significantly, especially when rotor of FOWT 2 under right-half wake, as seen in
Figure 10. Furthermore, this also indicated that in the actual operation of offshore wind
farms, the occurrence of the phenomenon often brings great challenges to the wind power
forecasting or battery energy storage systems [39], resulting in the change in active power
of wind farms not being able to meet the requirements of safe and stable operation of power
systems [40].
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Figure 10. STD of FOWT 2 power under different wake inflow conditions: (a) 5D streamwise spacing;
(b) 10D streamwise spacing.

3.3. Platform Motion

The wake, as well as the TI and wind shear, may induce a complex response on FOWTs.
Therefore, it is essential to investigate the platform motion response of the FOWT under
severe states.

3.3.1. Comparison of Time-Domain Response

Having indicated in Figures 11–16 the degrees of freedom (DoFs) surge, sway, heave,
roll, pitch, and yaw motion statistics of FOWT 2 under different wake inflow conditions,
including the maximum, minimum, average, and standard deviation (STD) values.

Different wake inflow conditions caused inequable fluctuations on platform DoFs,
especially for surge and pitch. As observed in Figure 14a, the STD of surge exceed 20%
while STD of surge exceed 30%, showing that the instability of the FOWT 2 platform
increased as a result of half wake condition. After reaching rated speed, the average wind
speed had more influence on the platform DoFs than the wake inflow conditions. In
addition, with the full wake as the center, the platform DoFs performance on both sides is
not completely symmetric as well.

Figures 11–16 showed that higher TI have evident impact on platform DoFs, exclusive
of heave. STD of surge, sway, roll, pitch, and yaw motion were enlarged by 8–20%, 3–20%,
10–25%, 15–22% and 6–28%, as shown in Figure 14a.

In general, there were no significant effects on platform DoFs with variations in
streamwise spacing as well as wind shear under different wake inflow conditions.
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Figure 12. Maximum, minimum, and average of FOWT 2 platform motion under different wake
inflow conditions: (a) 10 m/s, 5D streamwise spacing; (b) 10 m/s, 5D streamwise spacing; (c) 10 m/s,
10D streamwise spacing; (d) 10 m/s, 10D streamwise spacing.
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Figure 13. Maximum, minimum, and average of FOWT 2 platform motion under different wake
inflow conditions: (a) 12 m/s, 5D streamwise spacing; (b) 12 m/s, 5D streamwise spacing; (c) 12 m/s,
10D streamwise spacing; (d) 12 m/s, 10D streamwise spacing.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 24 
 

 

  
(c) (d)  

Figure 12. Maximum, minimum, and average of FOWT 2 platform motion under different wake 

inflow conditions: (a) 10 m/s, 5D streamwise spacing; (b) 10 m/s, 5D streamwise spacing; (c) 10 

m/s, 10D streamwise spacing; (d) 10 m/s, 10D streamwise spacing. 

  

(a) (b)  

  
(c) (d)  

Figure 13. Maximum, minimum, and average of FOWT 2 platform motion under different wake 

inflow conditions: (a) 12 m/s, 5D streamwise spacing; (b) 12 m/s, 5D streamwise spacing; (c) 12 

m/s, 10D streamwise spacing; (d) 12 m/s, 10D streamwise spacing. 

  

(a) (b)  

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 13 of 24 
 

 

  
(c) (d)  

Figure 14. STD of FOWT 2 platform motion under different wake inflow conditions: (a) 8 m/s, 5D 

streamwise spacing; (b) 8 m/s, 5D streamwise spacing; (c) 8 m/s, 10D streamwise spacing; (d) 8 
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Figure 14. STD of FOWT 2 platform motion under different wake inflow conditions: (a) 8 m/s, 5D
streamwise spacing; (b) 8 m/s, 5D streamwise spacing; (c) 8 m/s, 10D streamwise spacing; (d) 8 m/s,
10D streamwise spacing.
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Figure 15. STD of FOWT 2 platform motion under different wake inflow conditions: (a) 10 m/s, 5D
streamwise spacing; (b) 10 m/s, 5D streamwise spacing; (c) 10 m/s, 10D streamwise spacing; (d) 10
m/s, 10D streamwise spacing.
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Figure 16. STD of FOWT 2 platform motion under different wake inflow conditions: (a) 12 m/s, 5D 
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3.3.2. Power Spectrum Analysis

In this subsection, five typical conditions were selected for PSD calculation and more
detailed insights on platform motion under different wake inflow conditions.

In contrast to the normal distribution of FOWT 1 hub center wind speed spectrum,
spectral peaks of FOWT 2 hub center wind speed appeared significantly due to wake,
especially in the case of half wake, as seen in Figure 17a. Figure 17b showed that peaks
were mainly in the frequency band of 0.05–0.25 Hz at the selected wave condition. Since the
FOWT 2 s were subject to identical wave excitations in the turbulent wind, the amplitude
of platform motions could be purely attributed to the wind force.
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height).

The performance of platform motion under the different wake inflow conditions
also confirmed the initial hypothesis. Resonant response at the surge natural frequency
was greatest for the rated scenario, when the FOWT operated with the greatest thrust,
meanwhile pitch responses followed a similar trend, this phenomenon was in line with [41],
which were presented in Figures 18–20. Additionally, the unsteady low-frequency change
of wind generation system, as well as the surge natural frequency, existed in the response
spectra for pitch. Figure 20 showed that the frequency range of platform pitch responses at
above rated wind speed is narrower than that at below rated wind speed.

It is interesting to note that the spectral response of surge and pitch was significantly
enhanced when FOWT 2 encountered right-half wake rather than left-half wake or full
wake, while the same trend was also reflected in power performance. Comparing the
spectral data of other motions, it can be observed that full wake has more impact on the
sway, heave, and yaw motion while wake reduced the response of the roll motion.

The platform motions performances of the FOWT 2 with different TI were shown in
Figures 18a–e, 19a–e and 20a–e. The TI effect was only observed within the low-frequency
region, and the platform motions became increasingly violent when the TI increased; a
similar phenomenon had been documented previously in [42]. Furthermore, the influence
of wind shear on the platform motion is insignificant compared with the change of TI, as
illustrated in Figures 18a,b, 19a,b and 20a,b.
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Figure 18. Low-frequency platform motions response of FOWT 2 under particular wake inflow condi-
tions: (a) 8_0.06_0.13, 5D streamwise spacing; (b) 8_0.06_0.17, 5D streamwise spacing; (c) 8_0.08_0.13,
5D streamwise spacing; (d) 8_0.08_0.17, 5D streamwise spacing; (e) 8_0.10_0.13, 5D streamwise
spacing; (f) 8_0.10_0.17, 5D streamwise spacing.

3.4. Structural Loading

This study focused on the analysis of how the structural loading behaved for a waked
FOWT (FOWT 2) under different wake inflow conditions. Fatigue including out-of-plane
moment at the blade root, and tower base fore-aft moment, was examined.

3.4.1. Damage Equivalent Loads Analysis

Damage equivalent loads under simulation cases mentioned above were calculated
to compare the effects of wake interference on load and dynamic performance of FOWT.
Damage equivalent loads (DEL) were calculated according to Equation (4):

DEL =

(
n

∑
i=1

Sm
i

Neq

) 1
m

(4)
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Figure 19. Low-frequency platform motions response of FOWT 2 under particular wake inflow
conditions: (a) 10_0.06_0.13, 5D streamwise spacing; (b) 10_0.06_0.17, 5D streamwise spacing;
(c) 10_0.08_0.13, 5D streamwise spacing; (d) 10_0.08_0.17, 5D streamwise spacing; (e) 10_0.10_0.13,
5D streamwise spacing; (f) 10_0.10_0.17, 5D streamwise spacing.

The Wöhler exponents were defined as m = 10 for composite materials (blades) and m
= 4 in case of steel (tower). The DEL was not corrected for mean load effects [43].

In this subsection, normalized DEL was defined as follows:

DEL_Normalized =
DEL_j

DEL_standard
(5)

where DEL_j were the DELs calculated by Equation (4), and DEL_standard were the DELs
of FOWT 2 at Yi = −200 m with different wind conditions and streamwise spacing, the
details were shown in Figures 21–23.



J. Mar. Sci. Eng. 2022, 10, 1962 17 of 24

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 16 of 24 
 

 

 
 

(a) (b)  

  
(c) (d)  

  
(e) (f)  

Figure 19. Low-frequency platform motions response of FOWT 2 under particular wake inflow 

conditions: (a) 10_0.06_0.13, 5D streamwise spacing; (b) 10_0.06_0.17, 5D streamwise spacing; (c) 

10_0.08_0.13, 5D streamwise spacing; (d) 10_0.08_0.17, 5D streamwise spacing; (e) 10_0.10_0.13, 5D 

streamwise spacing; (f) 10_0.10_0.17, 5D streamwise spacing. 

 
 

(a) (b)  

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 17 of 24 
 

 

  
(c) (d)  

  
(e) (f)  

Figure 20. Low-frequency platform motions response of FOWT 2 under particular wake inflow 

conditions: (a) 12_0.06_0.13, 5D streamwise spacing; (b) 12_0.06_0.17, 5D streamwise spacing; (c) 

12_0.08_0.13, 5D streamwise spacing; (d) 12_0.08_0.17, 5D streamwise spacing; (e) 12_0.10_0.13, 5D 

streamwise spacing; (f) 12_0.10_0.17, 5D streamwise spacing. 

3.4. Structural Loading 

This study focused on the analysis of how the structural loading behaved for a 

waked FOWT (FOWT 2) under different wake inflow conditions. Fatigue including out-

of-plane moment at the blade root, and tower base fore-aft moment, was examined. 

3.4.1. Damage Equivalent Loads Analysis 

Damage equivalent loads under simulation cases mentioned above were calculated 

to compare the effects of wake interference on load and dynamic performance of FOWT. 

Damage equivalent loads (DEL) were calculated according to Equation (4): 

𝐷𝐸𝐿 = (∑
𝑆𝑖

𝑚

𝑁𝑒𝑞

𝑛

𝑖=1

)

1
𝑚

 (4) 

The Wöhler exponents were defined as m = 10 for composite materials (blades) and 

m = 4 in case of steel (tower). The DEL was not corrected for mean load effects [43]. 

In this subsection, normalized DEL was defined as follows:  

𝐷𝐸𝐿_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐷𝐸𝐿_𝑗

𝐷𝐸𝐿_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
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where 𝐷𝐸𝐿_𝑗 were the DELs calculated by Equation (4), and 𝐷𝐸𝐿_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  were the 

DELs of FOWT 2 at Yi = −200 m with different wind conditions and streamwise spacing, 

the details were shown in Figures 21–23.  

Figure 21a showed that the DELs at the blade root have a great increase from right-

half wake to no wake (from Yi = −60 m to Yi = −130 m). The same trend can be found in 

Figures 22a and 23a. Figures 21c and 22c clearly demonstrated that the DELs at tower 

base display an incomplete symmetry, taking the full wake (Yi = 0 m) as the center. Fur-

Figure 20. Low-frequency platform motions response of FOWT 2 under particular wake inflow
conditions: (a) 12_0.06_0.13, 5D streamwise spacing; (b) 12_0.06_0.17, 5D streamwise spacing;
(c) 12_0.08_0.13, 5D streamwise spacing; (d) 12_0.08_0.17, 5D streamwise spacing; (e) 12_0.10_0.13,
5D streamwise spacing; (f) 12_0.10_0.17, 5D streamwise spacing.

Figure 21a showed that the DELs at the blade root have a great increase from right-half
wake to no wake (from Yi = −60 m to Yi = −130 m). The same trend can be found in Figures
22a and 23a. Figures 21c and 22c clearly demonstrated that the DELs at tower base display
an incomplete symmetry, taking the full wake (Yi = 0 m) as the center. Further, the DELs
on the right side of symmetry center were larger than DELs on the right side of symmetry
center.

The increase in TI led to a significant amplification in the DELs at the blade root as
well as the DELs at tower base. Amplification of the DELs at tower base due to increase in
wind shear were not as obvious as amplification of the DELs at the blade root.

Maximum amplification of the DELs at the blade root with 5D streamwise spacing
ranged from 0.35 to 0.2, while it changed from 0.33 to 0.17 with 10D streamwise spacing,
presented in Figures 21a,b, 22a,b and 23a,b. Maximum amplification of the DELs at tower
base with 5D streamwise spacing ranged from 0.31 to 0.20, while it changed from 0.22 to
0.16 with 10D streamwise spacing, demonstrated in Figures 21c,d, 22c,d and 23c,d.
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Figure 21. Normalized damage equivalent loads of FOWT 2 under different wake inflow conditions:
(a) out-of-plane moment at the blade root, 8 m/s, 5D streamwise spacing; (b) out-of-plane moment at
the blade root, 8 m/s, 10D streamwise spacing; (c) tower base fore-aft moment, 8 m/s, 5D streamwise
spacing; (d) tower base fore-aft moment, 8 m/s, 10D streamwise spacing.
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3.4.2. Power Spectrum Analysis 

Since the FOWT 2s were subject to identical wave excitations in the turbulent wind, 

the amplitude of structural loads could be purely attributed to the wind force. In the in-

terest of conciseness, the following figures had presented only the result of mean wind 

speed at 8 m/s in this subsection. 

Figure 24 illustrated the response character of out-of-plane moment at the blade 

root. The majority of the response energy were located within the low-frequency range, 

mainly induced by the TI. Besides, the response was also observed around 0.28 Hz, 

namely the rotor frequency (2P). Although previous work has found that wake increases 

load responses at higher frequencies, such as the rotor frequency (1P) and blade-passing 

frequency (3P) [41], the phenomenon was focused on for the first time. The 2P frequency 

Figure 22. Normalized damage equivalent loads of FOWT 2 under different wake inflow conditions:
(a) out-of-plane moment at the blade root, 10 m/s, 5D streamwise spacing; (b) out-of-plane moment
at the blade root, 10 m/s, 10D streamwise spacing; (c) tower base fore-aft moment, 10 m/s, 5D
streamwise spacing; (d) tower base fore-aft moment, 10 m/s, 10D streamwise spacing.
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Figure 23. Normalized damage equivalent loads of FOWT 2 under different wake inflow conditions:
(a) out-of-plane moment at the blade root, 12 m/s, 5D streamwise spacing; (b) out-of-plane moment
at the blade root, 12 m/s, 10D streamwise spacing; (c) tower base fore-aft moment, 10 m/s, 5D
streamwise spacing; (d) tower base fore-aft moment, 12 m/s, 10D streamwise spacing.

3.4.2. Power Spectrum Analysis

Since the FOWT 2s were subject to identical wave excitations in the turbulent wind, the
amplitude of structural loads could be purely attributed to the wind force. In the interest
of conciseness, the following figures had presented only the result of mean wind speed at
8 m/s in this subsection.

Figure 24 illustrated the response character of out-of-plane moment at the blade
root. The majority of the response energy were located within the low-frequency range,
mainly induced by the TI. Besides, the response was also observed around 0.28 Hz,
namely the rotor frequency (2P). Although previous work has found that wake increases
load responses at higher frequencies, such as the rotor frequency (1P) and blade-passing
frequency (3P) [41], the phenomenon was focused on for the first time. The 2P frequency
response was induced by the spatial inhomogeneity of the wind field, as a result of
asymmetrical wake inflow, wind shear and the phase lag between two points in the
rotor plane.

Figure 25 demonstrated the significant response of tower base fore-aft moment. Al-
though the 1P frequency response (around 0.28 Hz) was not sensitive to wake, the 3P
frequency response (around 0.42 Hz) was amplified by wake, especially for asymmetrical
wake (Yi = −60 m and Yi = 60 m). Moreover, in some situations, half wake led to more than
twice the resonant response as full wake.
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Figure 24. PSD of out-of-plane moment at the blade root of FOWT 2 under particular wake in-
flow conditions: (a) 8_0.06_0.13, 5D streamwise spacing; (b) 8_0.06_0.17, 5D streamwise spacing;
(c) 8_0.08_0.13, 5D streamwise spacing; (d) 8_0.08_0.17, 5D streamwise spacing; (e) 8_0.10_0.13, 5D
streamwise spacing; (f) 8_0.10_0.17, 5D streamwise spacing.

The comparison in the Figures 24 and 25 further illustrated the correctness of the
hypothesis. Specifically, the frequency response of the FOWT increased most obviously
when the right half rotor was disturbed by the wake.
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Figure 25. PSD of tower base fore-aft moment of FOWT 2 under particular wake inflow conditions:
(a) 8_0.06_0.13, 5D streamwise spacing; (b) 8_0.06_0.17, 5D streamwise spacing; (c) 8_0.08_0.13, 5D
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4. Discussion and Conclusions

The present investigation concentrates on two tandem semisubmersible FOWTs under
different wake inflow conditions, in the consideration of streamwise spacing, TI and wind
shear. By controlling for variables, the effect of each factor on FOWT is clearly observed.

4.1. Discussion

The power loss of FOWT under the full wake can be 60%, 55% and 30% when the
mean wind speed was 8 m/s, 10 m/s and 12 m/s, respectively, even though 5D was away
from the former FOWT. The power increased with almost the same trend from full wake to
no wake at both ends. FOWTs under right-half wake did not perform as well as FOWTs
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whose rotor was under left wake. Moreover, increasing the distance effectively improves
the power recovery, especially when it was close to the rated wind speed. In addition, the
effect of wind shear on wake recovery was less than that of TI. The wake not only caused
the power loss of FOWT 2, but also increased the power fluctuation significantly which
cannot be ignored for connecting wind farm to grid, especially when rotor of FOWT 2
under right-half wake.

A crucial part of the investigation on platform motion is to evaluate the effects of
wake interactions. Different wake inflow conditions caused evident inequable fluctu-
ations on platform surge and pitch motion, which means that the stability of FOWT is
threatened. Through the comparative analysis of different factors, it is found that the
semi-wake under high TI is a great threat to the platform surge and pitch motion, and this
is related to the low frequency response caused by high turbulence intensity incoming
wind, as shown in Figure 17a.

DEL analysis and power spectrum analysis further investigated the response of FOWT
in the wake condition. In contrast, half wake led to obvious elevation on the resonant
response in some situations, and this phenomenon was in line with [44]. These results
were within the hypothesis and illustrate the problem in more detail. Many previous
studies have found that the wake effects lead to increased fatigue loading for onshore or
bottom-fixed offshore WTs. In the present work, we find that for FWTs, the influence of
wake flow on structural loading is more obvious in the case of high TI and high wind shear
for the below rated wind speed scenarios.

4.2. Conclusions

In this paper, FAST.Farm was used for testing FOWTs under different wake inflow
conditions, exploiting the characteristics of the semi-submersible FOWT influenced by
wake turbine interference effects.

The conclusions can be summarized as follows:

(1) For the analysis of power performance, we focus on factors affecting wake recovery
and power fluctuation. Moreover, the increase in power fluctuations due to different
wake inflow conditions will not only increase the difficulty of wind power forecasting,
but also increase the cost of wind farm operation, such as adding battery energy
storage systems.

(2) Platform motions of FOWT 2 became increasingly violent under different wake inflow
conditions, especially surge and pitch in half wake, which was clearly indicated
through both time and frequency domain analysis.

(3) Structural loading of a waked FOWT were affected seriously by different wake inflow
conditions and TI. In contrast, structural loading was not sensitive to the wind shear.
Moreover, a great increase in DELs and a significant resonant response indicated that
the impact of half wake on the FOWT was more serious than that of full wake.

(4) FOWTs whose rotor under right-half wake inflow condition suffered the most severe
wake, taking the above factors into consideration.

4.3. Limitations of the Study

In this paper, the offset of wake center was not taken into account when defining the
wake inflow condition. Moreover, the simulation results need to be compared and verified
with the measured data of the actual wind farm.

4.4. Future Perspective on the Research

According to the simulation research in this paper, the health status and maintenance
cost of FOWT, as well as reducing the time when the FOWT operates under half wake
condition, should be comprehensively considered during the design of offshore wind farm.
In addition, by trying to prevent half wake condition, more comprehensive active wake
control strategies can be scrutinized, finding a balance between increasing power and
reducing structural loading.
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