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Abstract: With the widespread use of automatic identification systems (AISs), some ships use
deceptive information or intentionally close their AISs to conceal their illegal activities or evade the
supervision of maritime departments. Although radar measurements can be effectively utilized to
evaluate the credibility of received AIS data, the propagation of non-line-of-sight (NLOS) signal
conditions is an important factor that affects location accuracy. This study addresses the NLOS
problem in a special geometric dilution of precision (GDOP) scenario on a coast and several base
stations. We employed data augmentation and a deep residual shrinkage network in order to alleviate
the adverse effects of NLOS errors. The results of our simulations demonstrate that the proposed
method outperforms other range-based localization algorithms in a mixed LOS/NLOS environment.
For a special GDOP scenario with four radars, our algorithm’s root-mean-square error (RMSE) was
lower than 180 m.

Keywords: localization; automatic identification system; non-line-of-sight; deep residual
shrinkage network

1. Introduction

AISs have been widely adopted in the maritime field in order to monitor marine
traffic and avoid vessel collisions [1]. However, some ships do not maintain their AISs in
a normal working state, or they input fraudulent information into their equipment. As
a result, AIS signals cannot be effectively received by other vessels and land services, which
directly threatens the safety of water traffic. This leads to a myriad of problems in maritime
surveillance, including unauthorized maritime arrivals, illegal or unregulated fishing and
immigration, smuggling, pollution, piracy, and maritime terrorism.

Over the last decade, interest in identifying the credibility of received AIS data has
increased. As shown in [2], Katsilieris adopted radar measurement information to evaluate
the dependability of AIS data. Their study assumed that the radar system worked in an LOS
environment. However, due to the lack of an NLOS path, signals can only reach the receiver
via direct penetration, reflection, diffraction, and scattering [3–5]. The propagation of NLOS
conditions creates a positive bias in distance measurements, which significantly affects the
positioning accuracy. Direct and post-identification mitigation are two common methods
for handling NLOS errors. In the former, NLOS errors can be mitigated by processing the
measurement information [6–14]. In contrast, the method of post-identification reduces the
errors by identifying NLOS base stations (BSs) [15–20]. However, most previous studies
were based on cellular networks and assumed that the target was within a polygon of
sufficient BSs that had GDOP conditions. At present, there are few reports concerning
the location problem with insufficient BSs and more serious NLOS propagation in special
GDOP scenarios on a coast.

In this paper, we adopt an original method of comparing positions and AIS tracks
in order to identify ships with abnormal AIS signals, and this method is based on an effi-
cient NLOS error mitigation scheme that employs data augmentation and a deep residual
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shrinkage network (DRSN). The data enhancement method generates multiple positioning
features by grouping prepositioning features. First, the original distance data are grouped
according to the BSs. Subsequently, a traditional mathematical model is used for the pre-
liminary positioning of each group of distance data to generate the preliminary positioning
characteristics. As a feature-learning method for strong noise and highly redundant data,
the DRSN can effectively identify NLOS features after data enhancement. The NLOS error
mitigation scheme can be divided into four phases: elimination of antenna delay, grouping
locations, dataset construction, and DRSN positioning model training. The radar measure-
ment information is converted into image data after data enhancement by eliminating the
antenna delay, grouping position, and dataset construction. Finally, a classic DRSN model,
Densenet, is used to calculate the target’s location. The key contributions of this study are
as follows.

(1) We developed of an efficient NLOS error mitigation scheme based on a DRSN in
order to mitigate NLOS errors in special GDOP scenarios with fewer BSs.

(2) We developed a preliminary location grouping method that allows the DRSN
model to identify the features of NLOS BSs.

(3) Several simulations were performed in mixed LOS/NLOS environments. The
numerical results show that the proposed method’s performance is highly competitive with
that of previous methods.

This paper is organized as follows: The next section presents several prior studies in
this field. Section 3 demonstrates the model of the localization system and the effect of the
GDOP on location accuracy. Section 4 presents the design of the NLOS error mitigation
scheme based on the DRSN. In Section 5, we introduce the experimental process, compare
the performance, and analyze the positioning error. Section 6 concludes the paper.

2. Related Work

There are two approaches to the propagation of signal NLOS scenarios: direct and post-
identification mitigation. The former attenuates NLOS errors by processing measurement
information directly [6–14]. In contrast, the post-identification method identifies NLOS BSs
by using different propagation characteristics in LOS and NLOS environments. The error
of NOLS is then reduced by eliminating NLOS data or through other methods [15–20].

The direct mitigation method achieves higher performance in the case of small NLOS
errors. These errors were mitigated by using the maximum likelihood (ML) algorithm
in [6]. In [7,8], the NLOS error problem was converted into a quadratic programming prob-
lem, and the influence of the NLOS error was mitigated by the extremum of the objective
function. In [9], a residual weighting algorithm (RWGH) was proposed to locate the source
accurately without requiring the NLOS status in advance. This algorithm first calculated
one positioning result for each combination of three or more distance measurements. Then,
distance data were obtained by submitting the coordinates to the positioning equation. The
final positioning coordinates were then obtained by weighting all combinations of results.
The authors of [10] improved the residual weighting algorithm by combining the TOA and
AOA to locate a target based on two BSs. The authors of [11] used the iterative minimum
residual (IMR) to obtain a suboptimal solution. In [12], Wang described the TDOA-based
source positioning problem as a robust least squares (RLS) problem, and they sought robust
position estimation for NLOS errors. In addition, positioning technology based on semidef-
inite programming (SDP) was proposed in [13]. Su proposed a method for converting
a TDOA model into a TOA model. After mathematical modeling was applied in order to
express the localization problem as a semidefinite programming problem, a semidefinite
programming solver was used to solve it. The authors of [14] proposed a combination of the
square range (SR) and weighted least squares (WLS) methods in order to convert the initial
non-convex problem into a generalized trust-region subproblem (GTRS) without prior
knowledge of the bias. The solution could then be obtained with a bisection procedure.
However, the direct mitigation algorithm exhibited poor performance when handling large
NLOS errors or insufficient LOS BSs.



J. Mar. Sci. Eng. 2022, 10, 1952 3 of 14

When the NLOS error is evident, we can identify whether specific measurement data
contain NLOS errors. Accordingly, various methods can be used to reduce NLOS errors and
improve positioning accuracy. In [15–17], based on the peak detection and channel model
technology, these methods exhibited significantly higher accuracy than that of existing
algorithms in the detection of NLOS paths. In [18], a fast algorithm was designed with
the subspace method to identify NLOS errors by using the eigenvector (FINE) algorithm.
However, in practical applications, the algorithm must be executed repeatedly to locate
all NLOS paths, as only one NLOS path can be found in each run. The authors of [19,20]
proposed a TOA-based localization scheme that locates a source by using a combination
of three selected BSs in wireless sensor networks. Subsequently, the residual vector is
computed from the initial positioning result of the selected BSs and the original observed
values. This residual vector can be used to determine LOS and NLOS paths. However, the
localization performance of these algorithms is limited because the observed NLOS values
are discarded in the location estimation.

From the aforementioned studies, it is clear that NLOS mitigation in special scenarios
has not been sufficiently researched. However, the scenario presented in this study exhibits
a strong application background and practical value in engineering. Therefore, we adopted
deep learning in order to improve the location performance under GDOP conditions with
fewer BSs.

3. Preliminary

In this section, we introduce the model of the localization system and the effect of
GDOP on the location accuracy.

3.1. Localization System Model

NLOS errors are caused by the lack of an LOS path between a BS and the target.
Because propagation time in NLOS conditions is longer than that in LOS conditions, these
errors always add a positive value to the true range. As shown in Figure 1, there are two BS
signals—BS1 and BS7—that cannot be transmitted over the LOS path due to the presence of
obstacles. BS1 receives signals through penetration, whereas BS7 receives signals through
reflection. If the measured values of BS1 and BS7 were to be used in the positioning process,
a significant positioning error would occur. However, in the cellular network scenario
shown in Figure 1, although the signal propagation of BS1 and BS7 is classified as NLOS
propagation, there are still five BSs that have LOS propagation paths. Therefore, we can
still locate the target by using other LOS BSs or the residual method in order to minimize
the influence of NLOS errors. However, these errors are difficult to eliminate in cases with
fewer BSs.

As shown in Figure 2, coastal scenarios generally include fewer BSs, and the target is
outside the BS polygon. When the number of LOS BSs is relatively small, it is difficult to
compensate for NLOS errors, which adversely affects the positioning accuracy. Therefore,
this study largely focuses on minimizing the effects of NLOS errors.

Measurement and NLOS errors are the main factors affecting ranging accuracy. Gener-
ally, NLOS errors are significantly larger than measurement errors. Assuming that there
are n BSs in a system, the measured range in the ith BS can be expressed by Equation (1):

d̃i = di + ei + ni, i = 1, 2, 3 · · · , n (1)

where d̃i is the actual measurement distance, and di represents the true distance between
the ith BS and the target. ei represents the measurement error, which follows Gaussian
random variables with a mean at 0 and a variance of σ2. ni denotes the NLOS error, which
is assumed to be an independent and identically distributed uniform distribution between
0.05di and 0.9di [21].
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Figure 1. The location model in cellular networks.

Figure 2. The location model for coastal scenarios.

3.2. Influence of the GDOP on Location Accuracy

The GDOP, which refers to the relationship between the geometric positions of a BS
and the target, is an important factor that affects location accuracy. In [22], for four BSs
arranged in a circle, the positioning accuracy was least affected when the target was at the
circle’s center. When the target was outside the circle, the GDOP rapidly increased. The
authors of [23] conducted comparative experiments under different GDOP scenarios. In the
case of two NLOS BSs in the same direction, the range of position estimation results was
large, as shown in Figure 3a. For NLOS BSs in the opposite direction, as shown in Figure 3b,
the mean square error was significantly smaller than that shown in Figure 3a. Therefore,
the relationship between the geometric positions of a BS and the target has a significant
influence on location accuracy. Figure 2 illustrates the geometric relationship between BSs
and the target for coastal scenarios. In the figure, we can see that the target outside the BS
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perimeter is in the same direction as the BS. This distribution also has a significant effect on
location accuracy.

Figure 3. The influence of GDOP on location. (a) Two NLOS BSs in the same direction. (b) Two NLOS
BSs in the opposite direction.

4. Proposed Location Method

We considered an indoor environment covering D1 × D2 m2, where M BSs were fixed,
and only one mobile station (MS) location needed to be estimated via TOA-based ranging
measurements in mixed LOS/NLOS environments. The BSs used in the offline stage
collected distance measurements at known MS positions, which were denoted as ‘labeled
data’, for the training of the DRSN. Then, the BSs required periodic online localization.
The localization process and data preprocessing were executed by a software platform, as
described in Algorithm 1.

Algorithm 1: Algorithm for the NLOS error mitigation scheme based on a DRSN.
Input: Range measurement data.
Output: estimation of the location of the MS.

1 Elimination of the antenna delay error.
Input: Range measurement data and labeled data.
Output: Range measurement data after error elimination and labeling.

2 Grouping of locations.
Input: Range measurement data after error elimination and labeling.
Output: Location estimates for each combination.

3 Dataset construction.
Input: Location estimates for each combination of data.
Output: Dataset of feature images and labeled data.

4 Training of a DRSN model with the dataset.
Input: Dataset of feature images and labeled data.
Output: Trained regression model.

5 Location estimation.
Input: Range measurement data.
Output: Estimation of the location of the MS.

4.1. Elimination of Antenna Delay

The delay between the measured and actual time of the wireless signal from the
transmitting antenna to the receiving antenna is a linear error value. Because this delay is
mainly caused by the internal chips, external components, and printed circuit boards, its
value constantly depends on the condition of a specific chip. Therefore, the antenna delay
error can be adjusted via bias correction. The time is measured with a timestamp according
to Equation (2).

Tmeasure = TAD + TOF (2)
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where Tmeasure is the measurement time, TAD is the antenna delay, and TOF is the signal’s
actual flight time. The least-squares method was used to eliminate the linear error caused
by the antenna delay, as shown in Equation (3):

min
b,k

∥∥∥∥∥∥∥
1 x1

...
...

1 xn

(b
k

)
−

y1
...

y1


∥∥∥∥∥∥∥ = min

b,k
‖AB−Y‖2 (3)

where k is the slope, b is the intercept, xi is the actual ranging value, yi is the measured
ranging value, and n is the number of ranges. In an actual ranging scenario, the linear
errors of the ranging value are corrected by using the slope k and intercept b.

4.2. Grouping of Locations

For this study, we assumed that the number of BSs was greater than the minimum
that was required, which gave us the freedom to perform various combinations of range
measurements. In a 2D localization scenario, at least three BSs are required to estimate the
position of the MS. Let the minimum number of BSs be K, and we obtain all combinations
that contain i out of all N range measurements, where i ∈ {N, N − 1 · · ·K}. Obviously,

we can obtain
N
∑
K

CK
N for different combinations. Each combination is expressed as Si and

contains BS indices for the ith group. Taking N = 4 and K = 3 as an example, there are six
available range measurement combinations: S4 is (1, 2, 3, 4), and S3 is (2, 3, 4), (2, 3, 5),
(1, 2, 4), and (1, 2, 3). In mixed indoor LOS/NLOS environments, some combinations will
contain few or no NLOS measurements. If we can extract these groups’ features and rely
on their estimation, the impact of NLOS errors will be reduced. For each combination,
the estimated MS location was calculated by using the trilateration method. This method,
which is based on PSO, is a common wireless location algorithm that is founded upon this
range. We assumed that there were three non-collinear BSs with known coordinates in
space, and the measured distances between the MS and the BSs were r1, r2, and r3. Three
circles could then be constructed from the BS coordinates and the estimated distances, and
their intersection represented the positioning coordinates of the MS. However, the circles
corresponding to most realistic scenarios do not intersect at a specific point due to various
errors. We considered a situation in which a laser radar network had an unknown MS
and prior BSs, with (x,y) denoting the coordinates of the MS and (uk, vk), k ∈ 1, 2, · · · , K)
denoting the coordinates of the BSs. The measured distances between the MS and each BS
are provided by Equation (4)

d1 =
√
(x− u1)

2 + (y− v1)
2 + e1

d2 =
√
(x− u2)

2 + (y− v2)
2 + e2

. . .

dk =
√
(x− uk)

2 + (y− vk)
2 + ek

(4)

where ei denotes the ranging error. Therefore, we used particle swarm optimization (PSO)
to obtain more accurate location estimates. We assume that there are N particles, where the
position and velocity of the nth particle are expressed as Xn = (xn, yn) and Vn = (vn,x, vn,y),
respectively. The fitness of each particle swarm is then given by Equation (5)

f (xn, yn) =
1
K

K

∑
k=1

√
(xn − uk)

2 + (yn − vk)
2−dk (5)

The nth particle maintains the optimal position in the previous jumping process,
and this is denoted as (pn,x, pn,y, pn,z). The best particle in the swarm is denoted as
(pg,x,pg,y,pg,z). The velocity and position update rules for each step are given by Equation (6):
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vn,x(t + 1) = vn,x(t) + c1r1(pn,x(t)− xn(t))
+c2r2

(
pg,x(t)− xn(t)

)
vn,y(t + 1) = vn,y(t) + c1r1

(
pn,y(t)− yn(t)

)
+c2r2

(
pg,y(t)− yn(t)

)
xn(t + 1) = xn(t) + vn,x(t + 1)
yn(t + 1) = yn(t) + vn,y(t + 1)

(6)

where t is the iteration number, and c1 and c2 are learning factors that indicate the global
and local optimal step sizes of the particles, respectively. r1 and r2 are random numbers
that are evenly distributed in the interval [0, 1].

4.3. Dataset Construction

In this section, we convert the preliminarily estimated location into a featured image
to generate datasets for training the DRSN model. First, we obtain a set of preliminary
positioning coordinates, which can be expressed by Equation (7):

M =


(xbsi, ybsi)

. . .
(xesi, yesi)

. . .
(x ms, yms)

 (7)

where (xbsi, ybsi) denotes the coordinates of the ith BS, (xesi and yesi) denote the location
coordinates of the ith group of BSs, and (xms, yms) represents the target’s location.

Consider a scenario in which the location system has four BSs. Upon preliminary
positioning, we obtain a 9 × 2 matrix containing four BS coordinates, four estimated
coordinates, and a target location. The matrix is drawn into a coordinate image in a 2D
coordinate system, where each coordinate point features the same size and color. Different
node types and combinations are distinguished by the colors of the coordinate points.
For example, the BS coordinates are black (RGB = (255, 255, 255)), whereas the actual MS
coordinates are red (RGB = (255, 0, 0)). Finally, the coordinate matrix is transformed into
a 64 × 64 pixel matrix, as shown in Figure 4.

Figure 4. Spatial coordinate relationship model with one MS and four BSs. Different node types and
combinations have the same size and different colors.

4.4. Location Model of DenseNet

The main advantage of the DRSN is its ability to effectively process data that contain
noise. DenseNet is a classic DRSN model that avoids the gradient vanishing problem
caused by excessively deep network layers. This model accepts a 64 × 64 pixel matrix as an
input and outputs the final estimated position of the target. In the online phase, a large
amount of simulation data from different situations were used to train the models.
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DenseNet was implemented to establish skip connections between the front and
back layers in order to ensure that the layers of the whole neural network were deep
enough to extract sufficient features. Because skip connections facilitate the reuse of
information, denseness can achieve higher performance with fewer parameters and higher
computational power. The neural network structure of DenseNet was designed as shown
in Figure 5. DenseNet consists of two principal parts: a dense block and a transition.

Figure 5. The structure of DenseNet with three dense blocks and two transitions.

In a dense block, all neural network layers have the same output size, and the input of
each layer comes from the output of all previous layers. The dense block reuses information
to ensure the completeness of the extracted data. The activation function of the dense
block, which is represented by H, includes batch normalization, ReLU, and convolutional
layers with a filter size of 3 × 3, which makes the extracted data more complete through
information reuse. The output of layer i, Xi, is computed with Equation (8):

Xi = H([X0, X1, X2, . . . Xi−1]) (8)

The transition layer of DenseNet can compress the model size by connecting two
adjacent dense blocks. This layer contains a convolutional layer with a filter size of 1 × 1
and an AvgPooling layer with a filter size of 2 × 2. Assuming that its number of input
channels is m, the transition layer can output λm channels, where the compression rate
is λ ∈ [0− 1]. When λ = 1, the transition layer does not change the number of feature
channels. When λ is less than 1, this structure is called DenseNet-C, and it contains a dense
block structure in the bottleneck layer and a transition with a compression coefficient that
is less than 1.

5. Simulation Results

In this section, we evaluate the localization performance of the proposed NLOS
error mitigation scheme. The effectiveness of the proposed location strategy was tested
for different case studies within an operational scenario by using simulated data.The
experimental environment included a software configuration and hardware configuration,
as shown in Table 1. The simulation was performed in MATLAB R2019b, and the process
of radar ranging was conducted as follows. First, we generated an ideal parabolic pulse
according to the set parameters and a Gaussian random noise signal according to the
pulse width, pulse shape, and noise source. Next, we produced a noisy echo signal by
superimposing an ideal echo signal with a random noise signal. We then obtained a smooth
curve near the peak value by fitting the peak value of the filtered echo signal to a three-
point parabola. Finally, the target distance value was calculated by using half of the
corresponding peak time.
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Table 1. Configuration information of the experimental environment.

Parameter Value

CPU Intel(R) Core(TM) i7-9750H
CPU Clock Speed 2.11 GHz

RAM 16 G
GPU GeForce GTX 1660ti

Programming Language Python 3.7
Software Pycharm

Deep learning framework PyTorch 1.7.0
CUDA Version v10.2.89

CUDNN Version v8.0.4

The simulation environment was equipped with four laser radars as BSs with coordi-
nates at (500, 300), (2000, 10), (3000, 300), and (4000, 10). The target’s position was fixed
at (2500, 2000). The NLOS error was drawn from a uniform distribution on the interval
[0.0di, 0.9di], where di expresses the measurement distance of the ith BS. The distributions
of the BSs and targets are shown in Figure 6. Assuming that the number of BSs with
a non-line-of-sight error is n (0 ≤ n ≤ 4), we independently executed 1000 simulations
under different standard deviations σ of Gaussian noise. For the proposed method, we
generated 10,000 data as a training set and 2000 data as a test set. To assess the generality
and eliminate the effect of the BS locations on the performance, we randomly selected BSs
with NLOS propagation. The RMSE of the localization was used as a performance metric,
and it was calculated using Equation (9):

RMSE =

√√√√ 1
N

N

∑
i=1

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

(9)

where N is the number of test samples, and (x̂i, ŷi, ẑi) and (xi, yi, zi) are the estimated and
true coordinates, respectively, of the MS location of the ith test sample in meters.

Figure 6. The layout of the BSs and the target.

This experiment compared the performances of two classic DRSN models: DenseNet
and ResNet. The solver was the algorithm that was used to train the deep learning model.
Throughout the rigorous numerical verifications, it was observed that the DRSN models
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achieved better performance with the adaptive moment estimation (ADAM) optimizer. In
Figure 7, it can be verified that the RMSE values for DenseNet and ResNet with the ADAM
optimizer were lower than those with the stochastic gradient descent (SGD) optimizer. The
training settings for the DenseNet model are presented in Table 2. In Figure 8, the number
of NLOS links is shown, and the STD σ is equal to 35 m. As shown in Figure 8, DenseNet
yielded a lower loss and exhibited faster convergence in comparison with those of ResNet.
This difference in performance can be attributed to the fact that DenseNet realized feature
reuse through skip connections to avoid the problem of transmission of gradients between
deep networks.

Figure 7. RMSEs of the DenseNet and ResNet models with the SGD and ADAM optimizers.

Figure 8. RMSE performance with the training data for DenseNet and ResNet.

Table 2. Training options for the DenseNet model.

Options Value

Solver Adam
Batch size 32

Epochs 250
Init. learning rate 0.0001

This experiment compared the RMSEs of the proposed model, RWGH [9], IMR [11],
SR-ROBUST [12], and the model used by [13] (labeled as SDP-SU) across different values of
σ. The Cramer–Rao lower bound (CRLB) was used as a reference to evaluate the algorithms’
performance. The simulation results of the RMSE versus σ without NLOS BSs are shown in
Figure 9. Here, as σ increased from 5 to 40 m, the RMSE gradually increased for all methods.
However, the proposed Pre-DenseNet algorithm exhibited the optimal performance. Our
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proposed algorithm came the closest to CRLB, and the RMSE was only 52.1 m for a standard
noise deviation of 40 m.

Figure 9. RMSE performance (Y-axis) across different standard deviations of the measurement error
(X-axis: σ) without NLOS BSs.

The simulation results of the measurement of the RMSE against σ with one NLOS
BS are shown in Figure 10. Here, it can be seen that the RMSEs of the other algorithms
significantly increased with the LOS environment. However, with a σ measurement error
of 40, the RMSE of the proposed algorithm was only 156.23 m. In contrast, the minimum
RMSE of the other two algorithms was 348.12 m, and the maximum RMSE was more than
1200 m.

Figure 10. RMSE performance (Y-axis) across different standard deviations of the measurement error
(X-axis: σ) with one NLOS BS.

This experiment compared the corresponding cumulative distribution functions
(CDFs) of the different algorithms when σ was equal to 20 m. The results in Figure 11
illustrate the CDFs with and without an NLOS BS, which further verified the performance
of the proposed algorithm in mixed NLOS and LOS environments. Here, the proposed
DenseNet algorithm achieved optimal performance for the following reasons: (1) The
data enhancement could fully excavate data features. The preliminary location grouping
method allowed the DRSN model to identify the features of NLOS BSs. (2) The DRSN
is a feature-learning method for strong noise and highly redundant data. DenseNet was
adopted to establish skip connections between the front and back layers so that the layers
of the whole neural network were deep enough to extract sufficient features.
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For an analysis of the complexity of the different algorithms, the average computa-
tional time of each algorithm for N = 800 is shown in Table 3. The proposed algorithm
had the highest computational complexity because it needed data augmentation, which is
a time-consuming process, especially for large environments. Since the proposed algorithm
had a higher accuracy than that of the existing algorithms, it is the most attractive for
practical applications.

Figure 11. CDFs of the RMSE with σ = 20 m. (a) The CDF with one NLOS BS. (b) The CDF without
NLOS BSs.

Table 3. Training options for the DenseNet model.

Algorithm Average Time

RWGH 1.16 s
IMR 0.62 s

SDP-SU 1.57 s
SDP-Robust 1.61 s

Proposed algorithm 2.19 s

6. Conclusions

In this paper, we proposed an effective method for identifying ships with abnormal AIS
signals by comparing the positions and AIS tracks. The key problems with this technique
are the influence of NLOS errors and the improvement of the positioning accuracy in
special GDOP scenarios with fewer BSs. To address these issues, this paper proposes an
efficient NLOS error mitigation scheme based on data enhancement and a DRSN. The
input and output of the model are the radar-ranging information and the coordinates of
the ship’s position, respectively. The simulation results demonstrated that the proposed
method outperformed other range-based localization algorithms in a mixed LOS/NLOS
environment. In the future, we intend to apply the proposed method to multi-device-fusion
ranging scenarios, such as in the fusion radar ranging and visual ranging, because binocular
stereo-vision ranging technology is easy to arrange and is more competitive than radar.
There are also various interesting research topics, such as the time synchronization of radar
ranging and visual ranging and the optimization of the anti-interference characteristics of
visual ranging.
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Abbreviations
The following abbreviations are used in this manuscript:

AIS Automatic identification system
NLOS Non-line-of-sight
GDOP Geometric dilution of precision
BS Base station
MS Mobile station
DRSN Deep residual shrinkage network
TOA Time of arrival
LOS Line-of-sight
RMSE Root-mean-square error
ML Maximum likelihood
RWGH Residual weighting
AOA Angle of arrival
TDOA Time difference of arrival
RLS Robust least squares
SDP Semidefinite programming
SR Square range
WLS Weighted least squares
GTRS Generalized trust-region subproblem
FINE Eigenvector algorithm
PSO Particle swarm optimization
CDF Cumulative distribution function
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