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Abstract: Marine concrete structures are subject to the action of multiple environments during their
service time. This leads to increased deterioration in the durability of marine concretes under the
combined action of bending load and dry–wet cycles, salt freeze–thaw cycles, and salt spray erosion.
The main reason for the damage of concrete under the action of the above three environments is Cl-

attack. The free Cl- content (Cl-f) and the free Cl- diffusion coefficient (Df) of concrete can explain the
diffusion of Cl- in concrete. This paper considers the actual environment of marine concrete structures
and develops the Cl- diffusion modified model for nano-marine concretes under the action of dry–wet
cycles, salt freeze–thaw cycles, and bending load and salt spray erosion. The nano-SiO2, nano-Fe2O3,
and nano-Fe3O4 were firstly incorporated into ordinary marine concrete, then the Cl- content of each
group of marine concrete was measured at different depths, and the Cl- diffusion coefficients were
calculated; finally, the Cl- diffusion modified model was established under different environmental
factors. The test results show that the total and free Cl- diffusion coefficients of nano-marine concretes
were lower than those of ordinary marine concrete, and the nano-SiO2, nano-Fe2O3, and nano-Fe3O4

of the optimum dosage were 2%, 1%, and 2%, respectively. The fitting results of Cl- content have a
good correlation, and the correlation coefficient (R) is basically above 0.98.

Keywords: marine concretes; multiple environmental factors; modified model; nanoparticles;
Cl- diffusion

1. Introduction

Cl- diffusion can cause reinforcement corrosion for marine concrete structures in
long-term marine environments such as cross-sea bridges and harbors, which is the main
reason for the shortened service life of marine concrete structures [1–3]. Marine concretes
in different positions are exposed in the atmosphere zone (salt spray zone), tidal zone,
splash zone, and submerge zone, respectively. In addition to the Cl- erosion, the structures
are also influenced by the damage of salt freeze–thaw cycles in cold regions [4–7]. The
studies reported that the structural damage in the submerge zone is more serious under
the combined effects of environments and Cl- erosion [8].

When Cl- diffuses into concrete, part of the Cl- produces a series of chemical reactions
with cement hydration products called binding Cl-. The unreacted Cl- will exist with a
freedom that is called free Cl-. Several studies have reported [9,10] that free Cl- is one of
the main reasons for reinforcement erosion. Therefore, investigating the distribution of
free Cl- in concrete can effectively evaluate the durability performance of marine concrete
structures. The Cl- diffusion coefficient is an important parameter for predicting the service
life of concrete structures [11].

The Cl- diffusion coefficient will change by time, temperature, water–cement ratio,
and other factors. The basic Fick’s second law is too idealistic to consider Cl- diffusion.

J. Mar. Sci. Eng. 2022, 10, 1852. https://doi.org/10.3390/jmse10121852 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10121852
https://doi.org/10.3390/jmse10121852
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-1064-9711
https://doi.org/10.3390/jmse10121852
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10121852?type=check_update&version=1


J. Mar. Sci. Eng. 2022, 10, 1852 2 of 27

In recent years, many scholars have reworked the basic model of Fick’s second law and
considered the Cl- diffusion under the action of various environmental factors [12–15] to
study the Cl- distribution in different environments.

The dry–wet cycles are usually considered to have an unfavorable impact on marine
concrete structures under the action of multiple environments [16–18]. The structural
positions in the atmosphere zone, splash zone, and tidal zones are subject to the influence of
dry–wet cycles. The atmosphere zone is mainly through salt spray erosion [19–23]; the tidal
and splash zones are mainly through seawater at high tide, low tide, and splash, which
causes structural positions to be under the action of dry–wet cycles for a long time. Ou
et al. and Zanden et al. [24,25] considered the effect of water molecules on the distribution
of Cl- concentration under the action of dry–wet cycles and established a correlation
model. Among them, Ou [24] considered the effect of water pressure, investigated the
distribution characteristics of Cl- concentration in concrete over time under the effect of
a reverse hydraulic gradient, and introduced impermeability coefficients to describe the
influence of reverse transfusion. Cracks are usually covered on the surface of marine
concrete structures; the presence of cracks accelerates the diffusion of Cl- under the action
of dry–wet cycles [16,26,27]. The Cl- diffusion performance of marine concrete structures is
also different under the different forms of loading and dry–wet cycles [28–32].

Marine concrete structures are also subjected to salt freeze–thaw cycles except for
Cl- erosion. Wang et al., Kesseler et al., Sun et al., and Zhang et al. [4,33–35] investigated
Cl- diffusion in concrete under the action of salt freeze–thaw cycles and proposed a nu-
merical model. Wang et al. [36] reviewed the coupled effects of salt freeze–thaw cycles
and other environmental factors, which mainly included salt solution and loading, on the
influence of concrete durability performance, and summarized the development method
of concrete durability performance, such as adding fiber polymers, including steel fibers
(SF) or synthetic fibers, and so on. Niu et al. [37] conducted freeze–thaw cycle tests on steel
fiber reinforced concrete (SFRC) with different dosages. They believed that, compared with
PC, all types of SFRCs have better resistance to salt freeze–thaw cycles. This is because
that with the SF added, the pore structure of concrete has significantly decreased. This is
consistent with the conclusions reached by Yang et al. [38]. Meng et al. [39] prepared high
performance synthetic fibers reinforced concrete (HPSFRC) and PC, respectively, and stud-
ied their flexural strength, anti-crack performance, and salt freeze–thaw cycles resistance.
They found that compared with PC, the above-mentioned performance of HPSFRC can be
improved to varying degrees. So, choosing the reasonable fiber dosage and its type can
effectively improve the salt freeze–thaw cycles resistance of marine concrete structures. Li
et al. and Chen et al. [40,41] also developed a model for Cl- diffusion in concrete at the
microscopic level under the action of salt freeze–thaw cycles, based on the previous work.

Due to the small size of nanoparticles, they have many properties that conventional
materials do not possess, such as surface effect and filling effect. Adding nanoparticles to
PC has positive effects on the hydration of cement and the microstructure of concrete, such
as promoting cement hydration and enhancing C-S-H gels properties [42–46]. Considering
the actual service environment of marine concrete structures, the nano-SiO2, nano-Fe2O3,
and nano-Fe3O4 of appropriate amounts were substituted to replace cement in equal
amounts, and three groups of marine concrete underwent the durability test under the
action of dry–wet cycles, freeze–thaw cycles, and bending load and salt spray erosion in
this paper. Cl- sampling was determined after arriving at the corresponding test age. Based
on Fick’s second law and considering the effects of age attenuation coefficient m, load
influence coefficient f (σ), environmental influence coefficient fh, convection zone depth (Xc),
Cl- binding coefficient K, nanoparticles (A), freeze–thaw damage degree (F), and spalling
layer (∆B), the Cl- diffusion model for nano-marine concretes under the action of different
environmental factors are modified, and the modified model can provide a reference for
the durability design of marine concrete structures.
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2. Materials and Methods
2.1. Test Materials

(1) Cement: P.O42.5 ordinary Portland cement produced by Harbin Cement Factory.
(2) Fine aggregate: medium sand with a fineness modulus of 2.42.
(3) Coarse aggregate: selected continuous gravel gradation with particle size 5–31.5 mm.
(4) Defoamer agent: Tributyl phosphate was selected as the defoamer agent.
(5) Water reducing agent: FDN-type naphthalene high-efficiency water reducing agent

was used, its dosage according to the method specified in the Concrete Admixture
(GB8076-2008).

(6) Nanoparticles: Nano-SiO2 has a strong pozzolanic effect, which can react with cement
secondary hydration, and can effectively improve the microstructure of concrete.
Although nano-Fe2O3 and nano-Fe3O4 do not have a pozzolanic effect, their surface
has high activity and strong adsorption, respectively, and can also react with cement
hydration products. So, nano-SiO2 and nano-Fe3O4 were used for the dry–wet cycles
and salt freeze–thaw cycles tests under no load condition, and nano-SiO2 and nano-
Fe2O3 were used for the bending load and salt spray erosion test. This selection
method can effectively reflect the difference between nano-Fe2O3 and nano-Fe3O4
in the improvement of concrete durability. According to their different properties,
the chloride content of concrete in three different environments is studied. And the
results of the modified model are also different. The nano-SiO2, nano-Fe2O3, and
nano-Fe3O4 was produced by Anhui Kerun Nanotechnology Co. The properties of
nanoparticles are shown in Table 1.

Table 1. The properties of Nanoparticles.

Types Diameter
(nm) Appearance Purity

(%)
Specific Surface Area

(m2/g) Phase PH

SiO2 30 White powder 99.5 190–250 — 5–7
Fe2O3 50–100 Red powder 99.7 60 m —
Fe3O4 50–100 Black powder 99.5 130 β —

2.2. Marine Concrete Mix Proportioning

According to the Code for Durability Design of Concrete Structures (GB/T50476-
2019) [47] and the Code for Mix Proportions Design Procedure of Ordinary Concrete
(JGJ55-2011) [48], the environmental action grade is III-C under the marine chloride en-
vironment. With the slump requirements taken into consideration, the concrete design
strength level in this test is C45, the water-binder ratio is 0.44, the sand rate is 33%, the water
reducing agent level is 0.25% of the cement amount, and the dosage of defoamer is 4% of the
water reducing agent amount. Nano-marine concretes are based on the concrete ratio for
ordinary marine concrete structures, the water-cement ratio and unit water consumption
were maintained, and the cement was substituted by the equal quality of nanoparticles.
The dosage of nanoparticles was used 0.5%, 1.0%, 2.0%, and 3.0% in this paper. The marine
concretes ratios are shown in Table 2.

Table 2. Mix proportions of concrete (kg·m−3).

Types of Cement Number Water Cement Sand Coarse Aggregate FDN Defoa-Mer Nanopartic-Les

Ordinary concrete PC 205 486.0 638 1185 1.90 — —

Nano-SiO2
concrete

NS05 205 483.6 638 1185 1.90 0.08 2.4
NS10 205 481.1 638 1185 1.90 0.08 4.9
NS20 205 476.3 638 1185 1.90 0.08 9.7
NS30 205 471.4 638 1185 1.90 0.08 14.6
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Table 2. Cont.

Types of Cement Number Water Cement Sand Coarse Aggregate FDN Defoa-Mer Nanopartic-Les

Nano-Fe2O3
concrete

NF(I)05 205 483.6 638 1185 1.90 0.08 2.4
NF(I)10 205 481.1 638 1185 1.90 0.08 4.9
NF(I)20 205 476.3 638 1185 1.90 0.08 9.7
NF(I)30 205 471.4 638 1185 1.90 0.08 14.6

Nano-Fe3O4
concrete

NF(II)05 205 483.6 638 1185 1.90 0.08 2.4
NF(II)10 205 481.1 638 1185 1.90 0.08 4.9
NF(II)20 205 476.3 638 1185 1.90 0.08 9.7
NF(II)30 205 471.4 638 1185 1.90 0.08 14.6

2.3. Test Methods
2.3.1. The Combined Action of Dry–Wet Cycles and Cl- Erosion Test

The dry–wet cycle is a period every 24 h. The specific operation is as follows: After
curing for 28 days, the specimen is immersed in NaCl solution (concentration 5%) for
11 h. After taking it out for natural air drying for 1 h, it is put into the oven for 11 h (oven
temperature is set at 80 ◦C), and then taken out for cooling to room temperature (1 h).
The NaCl solution was changed every 30 days to keep the concentration constant. The
specimens were immersed in NaCl solution and replaced every 50 days under the action of
full immersion. A total of 108 specimens were used for the determination of Cl- content
under the two test conditions, and the size of the specimen was 100 × 100 × 100 mm.

2.3.2. The Combined Action of Freeze–Thaw Cycles and Cl- Erosion Test

The salt freeze–thaw cycles test was conducted for the fast-freezing method according
to the Concrete long-term Performance and Durability Test Method Standard (GB/T 50082-
2019) [49]; The circulating medium of salt freeze–thaw cycles was 5% NaCl solution. The
specimens were immersed in NaCl solution, and each freeze–thaw cycle was completed
within 2~4 h, and the melting time should not be less than 1/4 of the freeze–thaw cycles.
The minimum and maximum temperature at the center of the specimen were set at −18 ◦C
and 5 ◦C, respectively, and they were automatically controlled by the freeze–thaw testing
machine. A total of 72 specimens were used for the determination of the Cl- content, and
the size of the specimen was 100 × 100 × 100 mm.

2.3.3. The Combined Action of Bending Load and Salt Spray Erosion Test

(1) Test conditions: Referring to the neutral salt spray test (NSS test), a concrete durability
test chamber [50] under the action of salt spray erosion was independently developed
(application number ZL 202120853835.7). The test blocks of preloaded concrete,
together with the loading device, were put into the concrete durability test chamber
(see Figure 1) for the salt spray erosion test. In Figure 1, a, b, c, d, and e are the drilling
positions of installation objects, respectively. The test was carried out by continuous
spray, that is, continuous spray for 12 h and rest for 12 h every day. According to the
recommended test ages of the NSS test, the test ages were set as follows: 4 d, 7 d, 14 d,
21 d, and 30 d.

(2) Number and size of specimens: There are 9 groups of 100 × 100 × 400 mm prismatic
blocks, and each group has 63 blocks, among which 60 blocks are used for combining
tests for bending load and salt spray erosion, and the remaining 3 blocks are only
used for the salt spray erosion test.

(3) Test loading device: The loading device was designed by the reference [51], the test
in this paper self-assembled a set of bending loading devices [50] (see Figure 2). Its
advantages include small size and being easy to operate during the process of loading
and unloading, intuitive control of stress ratios, and can be directly placed in the salt
spray test chamber.
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Figure 1. The concrete durability test chamber for the salt spray erosion test [50]. Reprinted from
Ref. [50]. 2022, Maohua Zhang.

2.3.4. Cl- Sampling and Determination
Cl- Sampling

(1) The combined action of dry–wet cycles and Cl- erosion: After 25 dry–wet cycles
and sampling, Cl- determination was carried out. After the test blocks were dried,
two parts of powder (10 g each) were taken as a group at different depths, and the
drilling depths were 2, 5, 10, 15, 20, 25, and 30 mm, respectively.

(2) The combined action of salt freeze–thaw cycles and Cl- erosion: After 25 salt freeze–
thaw cycles, the test blocks were taken. They were used to drill the powder on the
four parts. The salt freeze–thaw cycles caused the surface layer of concrete to peel off,
so the drilling depths were 5, 10, 15, 20, 25, and 30 mm, respectively.

(3) The combined action of bending load and salt spray erosion: After the test blocks
arrived at the corresponding test age, each group of them was used to drill the powder
from the tensile zone and the compressive zone (100 mm), respectively (see Figure 2b).
After screening, they were put into the oven for 2 h (temperature 105 ± 5 ◦C) and
then cooled to nature temperature for the Cl- content test. The drilling depths were
3, 5, 10, 15, 20, 25, and 30 mm, respectively.

The process of Cl- sampling, sorting, and drying is shown in Figure 3.
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The Determination of Cl-

The free Cl- content of each group of samples was determined according to the
Cl- content test method in the Test Procedure for Hydraulic Concrete (SL 352-2020) [52].
Binding Cl- content (Cl-b) = total Cl- content (Cl-t) -free Cl- content (Cl-f).

The determination process of total Cl- content is shown in Figure 4. The free Cl- content
determination process is shown in Figure 5. After the test is finished, the total Cl- content
and free Cl- content formula are shown in Equations (1) and (2).

Cl-
t =

0.03545(CAgNO3 V − CKSCNV3)

MV2/V1
× 100% (1)

Cl-
f =

CAgNO3 V5 × 0.03545
GV4/V1

× 100% (2)
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The flow chart of the methodology in this paper is shown in Figure 6.
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3. Test Results and Discussion
3.1. The Difference of Cl- Diffusion Process under the Action of Dry–Wet Cycles and
Full Immersion

Figure 7 shows the variation curves of the total and free Cl- content of PC under the
action of dry–wet cycles and full immersion with depth (x) and age (G and Q), where G
and Q represent the number of dry–wet cycles and the time of full immersion, respectively
(one period of dry–wet cycle is equal to full immersion for 1 day). The variation trend of
total and free Cl- content in concrete with age and depth is basically the same under the
action of dry–wet cycles and full immersion, but the total Cl- content is higher than the free
Cl- content under the same condition. The content of Cl- at each age decreases gradually
with the increase of depth until it becomes stable under the action of full immersion. When
depth and age are constant, compared with the two test conditions, the Cl- content is higher
under the action of dry–wet cycles, and the difference of Cl- content becomes sharper with
the increase of G and Q.
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3.2. The Cl- Diffusion Performance of Marine Concretes under the Action of Dry–wet Cycles

Figures 8–10 show the variation of Cl- content of marine concretes under the action of
dry–wet cycles and full immersion, respectively (Take x = 2 mm as an example, the other
depth has the same pattern). It can be seen that the content of total and free Cl- in NS, NF
(II), and PC increased gradually with the increase of Q. When Q ≤ 100, the increase of Cl-

content was higher than that of when Q > 100. The total and free Cl- content of NS and
NF(II) with different dosages are is lower than that of PC. This indicated that nano-SiO2
and nano-Fe3O4 particles can improve the Cl- erosion resistance of concrete. When the
dosage and ag-e are constant, the binding Cl- content and binding Cl- capacity of NS are
higher than that of NF(II) under the action of wet-dry cycles and full immersion, which
proves that nano-SiO2 has a better effect on improving Cl- erosion performance. When the
number of dry–wet cycles and the age of full immersion are the same, the total and free Cl-

content of NS is lower than that of NF(II). This indicated that nano-SiO2 has a better effect
on improving the Cl- erosion resistance of concrete than that of nano-Fe3O4. The total and
free Cl- contents of both NS and NF(II) initially decreased, then increased with additional
admixture, and the optimal dosage of nano-SiO2 and nano-Fe3O4 is about 2%. When the
dosage and age are constant, the binding Cl- content and binding Cl- capacity of NS are
higher than those of NF(II) under the action of dry–wet cycles and full immersion. The
binding Cl- content bottomed out at the optimal dosage.
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Figure 10. Binding Cl- content under the action of dry-wet cycles and full immersion.

3.3. The Cl- Diffusion Performance of Marine Concretes under the Action of Salt
Freeze–thaw Cycles

Figures 11 and 12 show the variation regulation of the total and binding Cl- contents
of NS and NF(II) with a dosage under the action of salt freeze–thaw cycles, respectively.
(Taking 5 mm depth as an example, the other depth has the same pattern). The variation
regulation of free Cl- content is similar to that of total Cl- content. It can be seen that the
total Cl- content of NS and NF(II) is lower than that of PC, while the binding Cl- content
is higher than that of PC. This indicated that nanoparticles can solidify the Cl- of pores in
concrete, reduce free Cl- content, and improve Cl- erosion resistance of concrete under the
action of freeze–thaw cycles. The total Cl- content of NS and NF(II) initially decreased, then
increased with the additional admixture, and the binding Cl- content initially increased and
then decreased with the additional admixture. When A = 2%, the total Cl- content of NS
and NF(II) was the lowest, and the binding Cl- content was the highest. This indicated that
the effect of improving the salt freeze–thaw resistance of concrete was the best at A = 2%.
When the dosage and age are constant, the total Cl- content of NS is lower than NF(II),
and the binding Cl- content of NS is higher than NF(II). This indicated that the effect of
improving the salt freeze–thaw resistance of nano-SiO2 is better than that of nano-Fe3O4.
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3.4. Free Cl- Diffusion Performance of Marine Concretes under the Combined Action of Bending
Load and Salt Spray Erosion

Figure 13 shows the relationship between free Cl-, the content of NS and NF(I), and
the nanoparticle admixture (x = 5 mm, 7 d and 30 d was used as an example, and the rest of
the depth range has the same trend with age). T and C in the Figure represent the tensile
and compressive zones, respectively; 0, 0.2, 0.3, 0.5 and 0.6 in the Figure represent the stress
ratio, respectively. It can be seen that the free Cl- content in the tensile and compressive
zones of nano-SiO2 and nano-Fe2O3 concrete with different dosages under different stress
conditions are lower than those of PC. This indicated that the amount of nano-SiO2 and
nano-Fe2O3 improved the durability performance of marine concretes. The free Cl- content
of both NS and NF(I) initially decreased, then increased with the increase of dosages, and
the free Cl- contents of nano-SiO2 and nano-Fe2O3 are the lowest at A = 2% and A = 1%
under different stress conditions. With increasing stress, the free Cl- content in the tensile
zone of concretes (PC, NS, NF(I)) gradually increased at the same dosage, and the free Cl-

in the compressive zone gradually decreased. Compared with the unloaded condition,
when the test age was at 30 d, the free Cl- levels in the marine concretes increased less when
the stress ratio was 0.2. When σ ≥ 0.3, free Cl- contents significantly increased, while free
Cl- in the compressive zone clearly decreased when the stress ratio was small.
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4. Cl- Diffusion Modified Model
4.1. Basic Model

The studies reported that [53] Fick’s second law can explain the diffusion path of Cl-

in concrete, and its expression is as follows:

∂C
∂T

= D
∂2C
∂x2 (3)

where C is the chloride content (%); T is the time of concrete exposed to Cl- environment
(s); x is depth (mm); D is Cl- diffusion coefficient of concrete(m2/s).

When the boundary conditions are: C(0,T) = Cs; When C(x,0) = 0, Equation (4) can
be written:

C(x, T) = C0 + (Cs − C0)

[
1− er f

(
x

2
√

DT

)]
(4)

where C0 is the initial chloride content (%) in concrete; Cs is the apparent chloride content
(%) in concrete; T is the test age of concrete(s); erf is the error function, er f u = 2√

π

∫ u
0 e−t2

dt.
However, the actual diffusion path of Cl- is complicated. Concrete is a kind of porous

and heterogeneous material, and the chloride diffusion coefficient is not constant. Moreover,
the diffusion path of Cl- in concrete is influenced by multiple environmental factors, such as
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temperature, loads, and other factors on the action of diffusion and binding of Cl-. Therefore,
Fick’s second law needs to be modified based on the above problems in this paper.

4.2. Cl- Diffusion Coefficient

Cl- diffusion coefficient is an important parameter that describes the diffusion speed
of Cl- in concrete. The free Cl- content of each group of marine concretes at different depths
was substituted into the Equation (4), the total and free Cl- diffusion coefficient of them can
be deduced inversely. Figures 14–16 show the variation of the free Cl- diffusion coefficient
with A for NS, NF(I), and NF(II) under three environmental conditions, respectively. The
total Cl- diffusion coefficient has the same trend.
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Figure 15. Cl- diffusion coefficient under the action of salt freeze–thaw cycles.
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Figure 16. Cl- diffusion coefficient under the combined action of bending load and salt spray erosion.

4.3. Determination of Cl- Diffusion Correction Model Coefficient
4.3.1. Environmental Coefficient

The diffusion path of Cl- under different environmental conditions (submerge zone,
tidal zone, splash zone, and salt spray zone) is different. Referring to the research re-
sults [54], the environmental coefficient (fh) selected in this paper is shown in Table 3.

Table 3. Values of environmental coefficient [54]. Reprinted with permission from Ref. [54]. 2004,
Hongfa Yu”.

Submerge Zone Tidal Zone Splash Zone Atmospheric Zone

fh 1.32 0.92 0.27 0.68

4.3.2. Cl- Binding Coefficient

In the actual environment, the damage mechanism of salt spray erosion to marine
concrete structures is similar to that of dry–wet cycles. There are not only considerations of
salt spray erosion, but also the influence of bending load in this paper, and the diffusion
of free Cl- in concrete under the coupling effect of bending load and salt spray erosion is
discussed. Therefore, in this paper, the Cl- binding coefficient (K) is only introduced when
marine concretes are subjected to dry–wet cycles and salt freeze–thaw cycles.

The Fitting of Cl- Binding Coefficient

K can directly reflect the Cl- binding capacity of concrete, and the expression is as follows:

K = Cl-b/Cl-f (5)

where K is the binding coefficient; Cl-b is the binding Cl- content (%); Cl-f is the free
Cl- content (%).

The Cl- binding mechanism mainly includes three types: a linear binding mechanism,
a Fangmuir binding mechanism, and a Langmuir binding mechanism. The linear binding
mechanism is not only more concise and direct but also has a high correlation with the
test results. Hence, this paper employed the linear binding mechanism to fit K. The free
Cl- content and binding Cl- content at different ages and depths were substituted into
Equation (5) and obtained the K value of NS and NF(II) under the action of dry–wet cycles
and full immersion, as shown in Figures 17 and 18. (Taking A = 2% as an example, the
fitting results of each dosage are similar). It can be seen that the fitting results can all reach
above 0.99.
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The Fitting of Relationship of K Value and A Value

Figures 19 and 20 show that the fitting results of the relationship between the K value
and A value for NS and NF(II) under the action of the dry wet cycle (full immersion) and
salt freeze–thaw cycles, respectively, The fitting equation of K value and A value can be
seen in Equation (6).

K = e + fA − gA2 (6)

where e, f and g are the fitting coefficients, and the fitting results are shown in Tables 4 and 5.

Table 4. The fitting result of coefficient under the action of dry–wet cycles and full immersion.

Types of Concrete e f g R

QNS 0.09 0.05 0.01 0.9907
QNF(II) 0.09 0.03 0.01 0.9933

GNS 0.12 0.06 0.02 0.9938
GNF(II) 0.12 0.04 0.01 0.9956

Table 5. The fitting result of coefficient under the action of freeze–thaw cycles.

Types of Concrete e f g R

NS 0.08 0.06 0.01 0.9997
NF(II) 0.07 0.05 0.01 0.9841
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4.3.3. Depth of Convection

According to the test results in Figure 7, the diffusion of Cl- in concrete under the
action of dry–wet cycles and full immersion exists in the convection zone. Therefore, the
convective depth (xc) should be considered in the Cl- diffusion correction model under the
action of dry–wet cycles and full immersion.
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4.3.4. Load Coefficient

According to the free Cl- content in three groups of marine concretes in Figure 12, the
diffusion speed of Cl- accelerated in the tensile zone, and the diffusion coefficient will also
increase. The Cl- diffusion increases are more evident when the tensile stress increases.
However, the diffusion speed of Cl- in the compressive zone will be lower with increasing
stress. In order to reflect the relationship between bending load and Cl- diffusion, the load
coefficient f (σ) is introduced. According to the test results, each group of marine concretes
under different tensile and compressive stresses (set D/D0 = f (σ)) were fitted that can
obtain the relation curve in the tensile zone and compressive zone between the bending
load and Cl- diffusion coefficient, as shown in Equations (7) and (8).

f (σ) = h + iσ + gσ2 + kσ3 (7)

f (σ) = h + iσ + gσ2 (8)

where h, i, g and k are all fitting coefficients, and the fitting results are shown in Tables 6 and 7.

Table 6. The fitting results of Equation (7).

Types of Concrete h I g k R

PC 1.00 0.37 0.31 0 0.9224
NF(I)05 0.99 2.08 −9.43 11.94 0.9423
NF(I)10 1.00 3.64 −17.45 21.23 0.9975
NF(I)20 0.99 2.55 −12.42 15.65 0.9896
NF(I)30 0.99 2.72 −12.64 15.54 0.9844

NS05 0.99 2.38 −11.38 14.33 0.9861
NS10 0.99 3.42 −15.72 19.07 0.9980
NS20 1.00 3.42 −15.75 19.14 0.9969
NS30 1.00 3.54 −16.64 20.14 0.9991

Table 7. The fitting results of Equation (8).

Types of Concrete h i g R

PC 0.98 −1.89 2.37 0.8788
NF(I)05 0.99 −2.58 3.55 0.9755
NF(I)10 0.99 −2.44 3.12 0.9386
NF(I)20 0.99 −2.58 3.43 0.9752
NF(I)30 0.99 −2.61 3.59 0.9763

NS05 0.99 −2.58 3.48 0.9792
NS10 0.99 −2.38 3.05 0.9294
NS20 0.98 −2.32 2.95 0.9228
NS30 0.99 −2.45 3.21 0.9491

4.3.5. The Age Attenuation Coefficient

Mangat et al. [55] reported that the Cl- diffusion coefficient was dependent on time
to a certain extent. They proposed to use m to represent the age attenuation coefficient,
and established a modified model of the relationship between the Cl- diffusion coefficient
and time:

D(T) = D0

[
T0

T

]m
(9)

Costa et al. [56–58] provided m values in different types of concrete under different
marine environments, as shown in Table 8. Due to the nano-particles used in this paper, the
m value in Table 8 is not consistent with materials in this test. So, it is necessary to re-fit the
m value of three groups of marine concrete under the action of three environmental factors.
The m value is fitted under three conditions according to Equation (9).
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Table 8. Values of the age attenuation coefficient [56–58]. Reprinted with permission from Refs. [56–58].
1999, 2010 and 1999. A. Costa, Yuanzhan Wang and M.D.A. Thomas.

Marine Environment
Types of Concrete

Portland Cement Fly Ash Slag Silica

Submerge zone 0.30 0.69 0.71 0.62
Tidal and splash zone 0.37 0.93 0.60 0.39

Atmosphere zone 0.65 0.66 0.85 0.79

The Combined Action of Dry–Wet Cycles and Cl-

Figure 21 shows that the fitting results of relationship between m and A of NS and
NF(II) under the action of dry–wet cycles and full immersion. The fitting formula of m and
A is shown in Equation (10).

m = a + b exp

[
− (A− c)2

d

]
(10)

where a, b, c and d are fitting coefficients, and the fitting results are shown in Table 9.
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Table 9. The fitting results under the combined action of dry–wet cycles and Cl-.

a b c d R

QNS 0.28 0.46 2.08 2.60 0.9814
QNF(II) 0.33 0.37 2.09 1.93 0.9537

GNS 0.21 0.71 2.37 6.08 0.9877
GNF(II) −0.03 0.80 2.18 11.29 0.9444

The Combined Action of Salt Freeze–Thaw Cycles and Cl-

Figure 22 shows the fitting results of the relationship between m and A of NS and
NF(II) under the action of salt freeze–thaw cycles. The fitting formula of m and A is shown
in Equation (10). The fitting results are shown in Table 10.
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Figure 22. The fitting results of the relationship between m and A of NS and NF(II) under the
combined action of salt freeze–thaw cycles and Cl-.

Table 10. The fitting results under the combined action of salt freeze–thaw cycles and Cl-.

Types of Concrete a b c d R

NS 0.24 0.48 2.09 2.73 0.9889
NF(II) 0.28 0.39 2.08 2.15 0.9766

The Combined Action of Bending Load and Salt Spray Erosion

Figure 23 shows the fitting results of the relationship between m and A of NS and NF(I)
under combined the action of bending load and salt spray erosion. The fitting formula of m
and A is shown in Equation (11). The fitting results are shown in Table 11.

m= l + rA + jA2+zA3 (11)

Table 11. The fitting results under the combined action of bending load and salt spray erosion.

Types of Concrete l r j z R

NS 0.46 0.41 −0.23 0.04 0.9957
NF(I) 0.47 0.43 −0.24 0.04 0.9762
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4.4. Determination of Cl- Diffusion Correction Model
4.4.1. The Action of Dry–Wet Cycles and Full Immersion

Considering fh, m and xc to modify Fick’s second law, Equations (6), (8) and (9) are
substituted into Equation (4), respectively, to obtain the Cl- diffusion correction model of
nano-marine concretes under the action of dry–wet cycles and full immersion:

C(x, T) = C0 + (Cs − C0)


1− er f


x− xc

2

√√√√√ fhD0t0
a+b exp [− (A−c)2

d ]

(e+ f A−gA2)

{
1−a−b exp

[
− (A−c)2

d

]}T{1−a−b exp [− (A−c)2
d ]}




(12)

where C is Cl- content (%); C0 is the initial Cl- content (%); Cs is the apparent Cl- content
(%); erf is error function; D0 is the Cl- diffusion coefficient (m2/s) at the initial time; t0 is the
initial time (s); fh is the environmental coefficient; Xc is the depth of convective zone (mm);
X is the depth from the concrete surface (mm); T is the age (s); A is nanoparticles dosage
(%); a, b, c, d, e, f, and g are the fitting coefficients.

According to the actual service environment of marine concretes, the f h value is chosen
as 1.32 and 0.92 in the modified model under the action of full immersion and dry–wet
cycles, respectively. Taking different ages and depths as an example, the test results of
NS at Q = 25 d, x = 10 m, G = 75, x = 10 mm, and NF(II) at Q = 100 d, x = 2 mm, G = 150,
x = 20 mm were fitted to the modified model. Figures 24 and 25 show the fitting results of
the relationship between the Cl- diffusion correction formula and the content (A) (the rest
of the ages and depths have the same law). The fitting curve of the modified model under
the action of dry–wet cycles has a high correlation with the test results, and R can reach
above 0.99.
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Figure 24. The fitting results of the Cl- diffusion modified model for nano-marine concretes under
the action of full immersion.
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where F(N) denotes the damage degree of concrete after a number of N (%); ED0 denotes 
the dynamic modulus of elasticity of concrete before salt freeze–thaw cycles (MPa); EDN 
denotes the dynamic modulus of elasticity of concrete after the number of N (%) (MPa). 
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PC 0 3.09 7.61 15.91 28.66 40.45 53.16 - - 
NS05 0 2.05  5.49 11.97 21.40 30.95 42.14 52.17 - 
NS10 0 1.49  5.11 10.88 19.28 28.18 39.16 48.62 - 

Figure 25. The fitting results of Cl- diffusion modified model for nano-marine concretes under the
action of dry–wet cycles.

4.4.2. The Action of Salt Freeze–Thaw Cycles Modified Model

The influence of salt freeze–thaw cycles on the durability of marine concretes are
shown as follows: firstly, cracks on the surface of increase until they become cracking, and
then the surface of concrete begins to peel off. Therefore, not only considering the effects
of fh, K, and m, but also the effects of salt freeze–thaw cycle damage and the thickness of
the exfoliation layer should be considered in the Cl- diffusion correction model under the
action of salt freeze–thaw cycles.

Influence of Salt Freeze–Thaw Cycles

(1) Salt freeze–thaw cycles damage degree of concrete: According to the concept of
damage mechanics [57], the damage degree of concrete structures subjected to salt freeze–
thaw cycles is usually shown as salt freeze–thaw damage degree (F). The deterioration of
concrete structure durability is more serious with the gradual increase of the F value. The
expression of the F value is as follows:

F(N) = (1− EDN
ED0

)× 100% (13)

where F(N) denotes the damage degree of concrete after a number of N (%); ED0 denotes
the dynamic modulus of elasticity of concrete before salt freeze–thaw cycles (MPa); EDN
denotes the dynamic modulus of elasticity of concrete after the number of N (%) (MPa).
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The salt freeze–thaw cycles damage degree of marine concretes can be calculated as shown
in Table 12.

Table 12. The damage degree of salt freeze–thaw cycles for marine concretes (%).

The Number of Salt
Freeze–Thaw Cycles 0 25 50 75 100 125 150 175 200

PC 0 3.09 7.61 15.91 28.66 40.45 53.16 - -
NS05 0 2.05 5.49 11.97 21.40 30.95 42.14 52.17 -
NS10 0 1.49 5.11 10.88 19.28 28.18 39.16 48.62 -
NS20 0 1.00 3.12 8.48 15.65 23.47 30.96 39.61 49.74
NS30 0 1.16 4.34 9.01 16.43 25.95 36.44 46.87 -
NF05 0 2.24 6.38 13.47 22.72 33.78 42.86 53.05 -

NF(II)10 0 2.12 4.88 11.47 21.45 31.30 39.58 51.13 -
NF(II)20 0 1.29 3.99 9.85 17.73 26.85 33.57 42.43 48.95
NF(II)30 0 2.12 5.53 11.69 19.24 28.98 37.71 48.56 -

Fitting the relationship between the F value and N value: the fitting formula for the
relationship between the F value and N value for NS and NF(II) under the action of salt
freeze–thaw cycles is as follows:

F = u + vN + wN2 (14)

where u, v, w are the fitting coefficients, and the fitting results are shown in Table 13.

Table 13. The fitting results of relationship between values of F and N.

Types of Concrete u v w R

NS −1.92 0.14 8.19 × 10−4 0.9912
NF(II) −2.14 0.17 7.00 × 10−4 0.9803

The relationship between F and Cl- diffusion coefficient: Salt freeze–thaw cycles will
cause concrete structures to deteriorate and generate cracks, thus accelerating the migration
rate of Cl- in the concrete. Studies have reported [55] that the F and Cl- diffusion coefficient
approximately obey the exponential function relationship, the equation is as follows:

DF/D0 = eωF (15)

where D0 is the Cl- diffusion coefficient (m2/s) of sound concrete; DF is the Cl-diffusion
coefficient (m2/s) after the action of salt freeze–thaw cycles; F is the damage degree of salt
freeze–thaw cycles (%); ω is the effect coefficient of salt freeze–thaw cycles. The fitting
results are shown in Table 14.

Table 14. The fitting results of the salt freeze–thaw damage influence coefficient.

PC NS05 NS10 NS20 NS30 NF(II)05 NF(II)10 NF(II)20 NF(II)30

w 0.0925 0.0899 0.0933 0.0912 0.0988 0.0912 0.0901 0.0921 0.0899
R 0.9909 0.9917 0.9932 0.9903 0.9919 0.9899 0.9943 0.9919 0.9878

Influence of Peeling Layer Thickness

Studies have shown [59] that the peeling layer thickness of concrete is proportional to
the mass loss rate, the expression is as follows:

∆B = λRm (16)

where ∆B is the peeling layer thickness of concrete after the action of salt freeze–thaw
cycles (mm); λ is the coefficient of test conditions (e.g., specimen shape, peeling uniformity,
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material properties, and the effect of salt freeze–thaw cycles, etc.; Rm is the mass loss rate
of concrete after the action of salt freeze–thaw cycles (%).

In the literature [60], the relationship between Rm and N of concrete under the action
of salt freeze–thaw cycles was investigated and the following relationship was obtained.

Rm = p·lg(q·N + 1) (17)

where Rm is the mass loss rate of specimens under the action of salt freeze–thaw cycles; N
is the number of salt freeze–thaw cycles; p and q are material characteristic parameters.

After summarizing and analyzing the above factors, Fick’s second law is modified.
Considering the influence of f h, m, K, F, and ∆B, the Cl- diffusion correction model of
nano-marine concretes is obtained as follows:

C(x, T) = C0 + (Cs − C0)

1− er f

 x− ∆B

2
√

fhDT exp(ωF)
(1+K)


 (18)

where C is the Cl- content (%) in concrete; C0 is the initial Cl- content (%) in concrete; Cs
is the surface Cl- content of concrete (%); erf is error function; T is the time of concrete
structure exposed to Cl- environment (s); x is the depth from the concrete surface (mm); D
is Cl- diffusion coefficient (m2/s); f h is the environmental coefficient; K is the Cl- binding
coefficient; ∆B is the thickness of the exfoliated layer (mm); ω is the influence coefficient of
salt freeze–thaw cycles damage; F is the damage degree of salt freeze–thaw cycles (%).

Considering the influence of the actual environment and referring to the existing
research results, fh is 1.32; λ, p and q are 0.03, 2.5 and 0.2, respectively; C0 are 0.03% and
0.5%; D0 is 0.5 × 10−12 m2/s; T is 3.456 × 105 s (4 d). Taking different ages and depths as
examples, the test results of NS at N = 25 and x = 5 mm, NF (II) at N = 125 and x = 15 mm
were fitted, respectively. Figure 26 shows the fitting results of relationship between the
Cl- diffusion correction formula and A of nano-marine concretes under the action of salt
freeze–thaw cycles (other ages and depths have the same trend). The fitting curve of the
modified model under the action of salt freeze–thaw cycles has a high correlation with the
test results, and R can reach above 0.99.
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4.4.3. Combined Action of Bending Load and Salt Spray Erosion

The load coefficient f (σ), environmental influence coefficient fh, and age attenuation co-
efficient m were taken into account to modify Fick’s second law. Equations (7), (8), and (10)
were substituted into Equation (4), and the Cl- diffusion correction model of nano-marine
concretes was obtained as follows:
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C(x, T) = C0 + (Cs − C0)

1− er f

 x

2

√
(h+iσ+gσ2+kσ3)D0T0

l+rA+jA2+zA3 fh
1−(l+rA+jA2+zA3)

T1−(l+rA+jA2+zA3)


 (19)

where C is Cl- content (%) in concrete; C0 is the initial Cl- content (%) in concrete; Cs is the
surface Cl- content of concrete (%); erf is error function; T is the time of concrete structure
exposed to Cl- environment (s); x is the depth from the concrete surface (mm); D is Cl-

diffusion coefficient (m2/s); f h is the environmental coefficient which is 0.68; σ is the stress
ratio; A is the content of nano-particles (%); h, I, g, k, l, r, j, and z are the fitting coefficients.

According to the salt spray environment of marine concretes and Equation (18), the
depth x is 5 mm, the stress ratio σ is 0.6, and f h value is 0.68. Taking stress ratio, nano-
particle dosages, and ages as examples, the Cl- content test results and correction model of
PC, NS, and NF(I) in the tensile zone and compressive zone were fitted. Figure 27 shows
the fitting results (the rest of the stress ratio and ages of the fitting results have the same trend)
of between the Cl- diffusion correction formula and the nano-particles dosage. It can be seen
that the fitting curves of the tensile zone and compressive zone of marine concretes under the
same stress ratio have a good correlation with the test results, and R is basically above 0.98.
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Figure 27. The fitting results of modified Cl- iffusion model for nano-marine concretes under the
combined action of bending load and salt spray erosion.

5. Conclusions

Four types of marine concretes were prepared in this paper, including OPC, NS, NF(I),
and NF(II). According to their service characteristics under the action of the above three
environmental factors, the Cl- content was tested. And based on Fick’s second law, the
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Cl- diffusion modified model for nano-marine concretes was also proposed. The main
conclusions are as follows:

(1) Under the action of dry–wet cycles, the convection zone appears due to the action
of capillary adsorption, which is different from the erosion mechanism of the other
two environmental actions. So, the erosion speed of Cl- was significantly accelerated
under the action of dry–wet cycles.

(2) With the increase in the number of salt freeze–thaw cycles, the icing expansion pres-
sure, osmotic pressure and salt crystallization pressure in concrete were increased,
which lead to the deterioration of concrete durability.

(3) Under the action of three different environments, the nano-SiO2, nano-Fe2O3, and
nano-Fe3O4 of the optimum dosage were 2%, 1%, and 2%, respectively. Compared
with the other two nanoparticles, nano-SiO2 had the best effect on improving concrete.

(4) Considering the characteristics of Cl- diffusion under the action of three environmental
factors and its relative parameters, Fick’s second law is modified, and the Cl- diffusion
modified model of nano-marine concretes is obtained. It can be used to calculate
the Cl- content in different dosages and depths of nanoparticles. The correlation
coefficient R value of the fitting curve and the test results is basically above 0.99,
which can provide a reference for the life prediction of actual marine concretes.

(5) Under the coupling effect of bending load and salt spray erosion, the fitting results
correlation coefficient R of the load influence coefficient f (σ) for marine concretes
is basically above 0.95, which has a high correlation. Compared with the unloaded
condition, the load influence coefficient values in the tensile zone of marine concretes
are increased to different degrees, while their values in the compressive zone are
decreased. It is proved that the Cl- content is closely related to bending load.

6. Patents

The patent number used in this article (ZL202120853835.7), and the patent name is “A
concrete durability test chamber under salt spray erosion”.
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