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Abstract: In this paper, a novel analytical approach for the buckling of ring-stiffened porous graphene
platelet-reinforced composite cylindrical shells under hydrostatic pressure is proposed under the
framework of symplectic mechanics. Three types of graphene platelet-reinforced patterns and
porosity distributions are considered, and the effective material properties of porous graphene
platelet-reinforced composite are determined with a modified Halpin–Tsai model. In the symplectic
approach, the governing equations in the conventional Lagrangian system are transformed into
a set of Hamiltonian canonical equations, and therefore, the buckling analysis is reduced into an
eigenproblem in a symplectic space. Consequently, the accurate critical pressures and corresponding
analytical buckling mode shapes are obtained simultaneously without any trial function. The
numerical results are compared with the existing results, and good agreements are observed. A
comprehensive parametric study of the geometrical parameters, boundary conditions, material
properties, and ring-stiffener parameters on the buckling behavior of such shells is also presented.

Keywords: symplectic method; critical load; cylindrical shell; buckling; hydrostatic pressure

1. Introduction

Ring-stiffened cylindrical shell structures are widely used in military submarines,
underwater pipelines, sightseeing submersibles, etc. [1]. The buckling instability is one of
the most important failure modes because these devices are usually subjected to hydrostatic
pressure. Therefore, it is of great importance to perform the buckling analysis of such
ring-stiffened cylindrical shells under hydrostatic pressure.

Plenty of theoretical, numerical, and experimental studies on the stability of ring-
stiffened cylindrical shells have been carried out in the past decades. Kendrick [2] and
Bryant [3] derived the empirical formulas for the critical pressure of simply-supported
ring-stiffened cylindrical shells under hydrostatic pressure. Galletly et al. [4] and Yamamoto
et al. [5] performed experiments on the general stability of ring-stiffened cylindrical shells
under hydrostatic pressure. Rathinam et al. [6] performed a finite element analysis of
the buckling of ring-stiffened cylindrical shells under external pressure using ANSYS.
Baruch and Singer [7] and Reddy and Starnes [8] proposed the analytical solution for
the general instability of simply supported stiffened cylindrical shells under hydrostatic
pressure using the Naiver solution. Shen [9,10] investigated the post-buckling of stiffened
cylindrical shells under combined external pressure and axial compression/thermal loading
using the singular perturbation technique. The buckling of ring-stiffened cylindrical shells
under external pressure has also been investigated using energy methods, such as the Ritz
method [11–13] and the Galerkin method [14–16].
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In view of the above literature, the existing research on ring-stiffened cylindrical
shells has mainly been concentrated on homogeneous metal material. In recent years,
much progress has been made in the rapid development of composites, and more and
more nanocomposites with excellent mechanical properties have been fabricated [17–22].
Graphene platelet-reinforced composite (GPLRC) is one of the very promising nano-
reinforced composites [23–25]. Graphene platelet is one of the derivatives of graphene and
is formed by several layers of graphene with a thickness of up to 100 nm. There is evidence
that the addition of a very small number of GPLs into a metal matrix can dramatically
improve its mechanical properties [26–28]. At the current stage, the buckling of GPLRC
cylindrical shells has been reported in the open literature. Liu et al. [29] investigated
the buckling of FG GPLRC cylindrical shells under initial axial stress by the state–space
formulation. Zhao et al. [30] and Sun et al. [31] investigated the axial buckling and torsional
buckling of FG GPLRC cylindrical shells using the symplectic method. Zhou et al. [32],
Dong et al. [33], and Sun et al. [34] investigated the buckling and post-buckling of FG
GPLRC cylindrical shells under axial compression using the Galerkin method. Blooriyan
et al. [35] and Shahgholian-Ghahfarokhi et al. [36–38] studied the buckling of FG GPLRC
cylindrical shells subject to axial compression and lateral pressure using the Ritz method
Wang et al. [39–41] investigated the buckling of GPLRC cylindrical shells with cutouts
under axial compression and torsion using the finite element method.

From the above literature summary, it was found that two major limitations exist:
(i) The existing research on the buckling of GPLRC cylindrical shells is mainly con-

centrated on axial compression, and external pressure is rarely mentioned. Moreover, the
buckling of ring-stiffened porous GPLRC cylindrical shells under hydrostatic pressure has
not been mentioned in the open literature;

(ii) The existing theoretical research is mainly based on the energy method, which
requires some pre-determined trial functions. However, it is difficult to obtain the proper
trial functions for different boundary conditions and load forms. Therefore, it is necessary
to propose a rational and rigorous analytical method for the buckling of ring-stiffened
porous GPLRC cylindrical shells.

Motivated by these reasons, we proposed a novel analytical symplectic method to find
exact solutions for the buckling of ring-stiffened porous GPLRC cylindrical shells under
hydrostatic pressure. The symplectic methodology has been proven to be an effective way
to resolve some basic problems in solid mechanics which have long been challenges [42,43].
Compared to numerical methods, such as the finite element method and the differential
quadrature method [44–46], it does not need to perform discrete processing. The solution
has analytical expressions and higher computational efficiency. Compared to the Navier
solution [47,48], it does not need to assume an approximate displacement function and
can handle different boundary conditions. In the framework of symplectic mechanics, the
governing equations in the conventional solution system are transformed into Hamiltonian
form. Consequently, the accurate critical hydrostatic pressure and buckling mode are
obtained without any trial functions. Key influencing factors on the buckling behavior of
ring-stiffened porous GPLRC cylindrical shells are investigated and discussed. The main
innovation of this paper is to propose an analytical method for the buckling analysis of
ring-stiffened composite cylindrical shells under hydrostatic pressure and obtain accurate
critical loads and buckling modes. The proposed method and obtained results can provide a
theoretical basis and guidance for the stability design of ring-stiffened composite cylindrical
shells, which can be applied to submarines, underwater pipelines, sightseeing submersibles,
and other marine engineering structures.

This paper is organized as follows: the mathematical modeling of ring-stiffened porous
GPLRC cylindrical shells is present in Section 2. Section 3 presents the Hamilton system
and solving procedure. The effective material properties of porous GPLRC are given in
Section 4. Numerical examples are provided in Section 5. Finally, the contributions are
summarized in Section 6.
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2. Mathematical Modeling of Ring-Stiffened Porous GPLRC Cylindrical Shells

Consider a ring-stiffened porous GPLRC cylindrical shell under hydrostatic pressure
P, as shown in Figure 1. The shell and ring-stiffeners are made of metal matrix GPLRC
composite and pure metal, respectively. The geometry of the shell is the length L, thickness
h, and radius of the mid-plane R. The ring-stiffener spacing is LF. The height and width of
the ring-stiffener are hF and dF, respectively. The shell is referred to as a coordinate system
(x, θ, z), where x-, θ-, and z- represent the longitudinal, circumferential, and normal of the
shell, respectively. The displacements of the mid-plane along the x-, θ-, and z-axes are u, v,
and w, respectively.
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Figure 1. Schematic of ring-stiffened porous GPLRC cylindrical shell under hydrostatic pressure.

For the mechanical behaviors of the beam, plate, and shell structures, the high-order
shear deformation theory [49–53], considering the transverse shear deformation, is more
accurate. This paper mainly focuses on thin-walled shells whose h/R is less than 1/50. In
this case, the Kirchhoff–Love hypothesis can obtain a sufficiently accurate solution. In order
to simplify the theoretical model and solution process, the Kirchhoff–Love hypothesis is
used in this paper. The strain of arbitrary point on the shell can be expressed as [13]

εx = ε
(0)
x + zχx (1)

εθ = ε
(0)
θ + zχθ (2)

γxθ = γ
(0)
xθ + zχxθ (3)

where ε
(0)
x , ε

(0)
θ , and γ

(0)
xθ are the strain components on the mid-plane of the shell, and χx,

χθ , and χxθ are the curvature.
According to Donnell’s shell theory, the relations between the strain and the curvature

are expressed as [13]

ε
(0)
x =

∂u
∂x

(4)

ε
(0)
θ =

∂v
R∂θ

+
w
R

(5)

γ
(0)
xθ =

∂u
R∂θ

+
∂v
∂x

(6)

χx = −∂2w
∂x2 (7)
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χθ = − ∂2w
R2∂θ2 (8)

χxθ = −2
∂2w

R∂x∂θ
(9)

The constitutive equation of the porous GPLRC cylindrical shells can be written as [16]
σx
σθ

τxθ

 =

c11 c12 0
c12 c22 0
0 0 c66


εx
εθ

γxθ

 (10)

where σx, σθ , and τxθ are the stress components of an arbitrary point on the shell, and
c11 = c22 = Es/

(
1− ν2

s
)
, c12 = Esνs/

(
1− ν2

s
)
, c66 = Es/[2(1 + νs)], Es, and νs are the

Young’s modulus and Poisson’s ratio of the shell.
The inner force and moment of the ring-stiffened porous GPLRC cylindrical shells are

expressed as [16]

Nx =
∫ h/2

−h/2
σxdz (11)

Nθ =
∫ h/2

−h/2
σθdz + F11ε

(0)
θ + F12χθ (12)

Nxθ =
∫ h/2

−h/2
τxθdz (13)

Mx =
∫ h/2

−h/2
σxzdz (14)

Mθ =
∫ h/2

−h/2
σθzdz + F12ε

(0)
θ + F22χθ (15)

Mxθ =
∫ h/2

−h/2
τxθzdz (16)

where F11 = EF AF/LF, F12 = EF AFe/LF, F22 = EF
(

IF + AFe2)/LF, and IF = dFh3
F/12,

EF are the Young’s modulus values of the ring-stiffener, AF is the section area of the
ring-stiffener, and e is the eccentric distance of the ring-stiffener.

When substituting Equations (1)–(10) into Equations (11)–(16), the expression of the
resultant forces and moments can be written as [16]

Nx = A11ε
(0)
x + A12ε

(0)
θ + B11χx + B12χθ (17)

Nθ = A12ε
(0)
x + (A22 + F11)ε

(0)
θ + B12χx + (B22 + F12)χθ (18)

Nxθ = A66ε
(0)
xθ + B66χxθ (19)

Mx = B11ε
(0)
x + B12ε

(0)
θ + D11χx + D12χθ (20)

Mθ = B12ε
(0)
x + (B22 + F12)ε

(0)
θ + D12χx + (D22 + F22)χθ (21)

Mxθ = B66ε
(0)
xθ + D66χxθ (22)

where Aij =
∫ h/2
−h/2 cijdz, Bij =

∫ h/2
−h/2 cijzdz, Dij =

∫ h/2
−h/2 cijz2dz.



J. Mar. Sci. Eng. 2022, 10, 1834 5 of 19

The strain energy density of the ring-stiffened porous GPLRC cylindrical shells is

ΠE = 1
2

(
Nxε

(0)
x + Nθε

(0)
θ + Nxθγ

(0)
xθ + Mxχx + Mθχθ + Mxθχxθ

)

= 1
2



A11

(
∂u
∂x

)2
+ 2A12

(
∂u
∂x

)(
∂v

R∂θ +
w
R

)
+ (A22 + F11)

(
∂v

R∂θ +
w
R

)2

+A66

(
∂u

R∂θ +
∂v
∂x

)2
− 2B11

(
∂u
∂x

)(
∂2w
∂x2

)
− 2B12

(
∂v

R∂θ +
w
R

)(
∂2w
∂x2

)
−2B12

(
∂u
∂x

)(
∂2w

R2∂θ2

)
− 2(B22 + F12)

(
∂v

R∂θ +
w
R

)(
∂2w

R2∂θ2

)
−4B66

(
∂u

R∂θ +
∂v
∂x

)(
∂2w

R∂x∂θ

)
+ D11

(
∂2w
∂x2

)2
+ 2D12

(
∂2w
∂x2

)(
∂2w

R2∂θ2

)
+(D22 + F22)

(
∂2w

R2∂θ2

)2
+ 4D66

(
∂2w

R∂x∂θ

)2


(23)

The expression of the external force work density under hydrostatic pressure is

ΠW =
1
2

N0
x

(
∂w
∂x

)2
+

1
2

N0
θ

(
∂w
R∂θ

)2
(24)

where N0
x = −PR/2 and N0

θ = −PR.

3. Hamilton System and Solving Procedure

To establish the Hamilton system for the buckling of the ring-stiffened porous GPLRC
cylindrical shell, the circumferential coordinate θ is simulated as the time coordinate [54],
and, therefore, the Lagrangian function can be expressed as

L(u, v, w, Φ) = 1
2 N0

x

(
∂w
∂x

)2
+ 1

2 N0
θ Φ2

+ 1
2



A11

(
∂u
∂x

)2
+ 2A12

(
∂u
∂x

)( .
v
R + w

R

)
+ (A22 + F11)

( .
v
R + w

R

)2

+A66

( .
u
R + ∂v

∂x

)2
− 2B11

(
∂u
∂x

)(
∂2w
∂x2

)
− 2B12

( .
v
R + w

R

)(
∂2w
∂x2

)
−2B12

(
∂u
∂x

)( .
Φ
R

)
− 2(B22 + F12)

( .
v
R + w

R

)( .
Φ
R

)
−4B66

( .
u
R + ∂v

∂x

)(
∂Φ
∂x

)
+ D11

(
∂2w
∂x2

)2
+ 2D12

(
∂2w
∂x2

)( .
Φ
R

)
+(D22 + F22)

( .
Φ
R

)2
+ 4D66

(
∂Φ
∂x

)2


(25)

where
.
f = ∂ f /∂θ, and Φ = −∂w/(R∂θ) = − .

w/R is the angle of rotation.
Define the original vector as

q = {u, v, w, Φ}T (26)

Its dual vector can be obtained by p = δL/δ
.
q = {P1, P2, P3, P4}T, where

P1 =
δL
δ

.
u
= A66

( .
u
R
+

∂v
∂x

)
+ 2B66

∂Φ

∂x
(27)

P2 =
δL
δ

.
v

= A12
∂u
∂x

+ (A22 + F11)

( .
v
R
+

w
R

)
− B12

∂2w
∂x2 + (B22 + F12)

.
Φ

R
(28)

P3 =
δL
δ

.
w

=
.
P4 (29)

P4 =
δL

δ
.

Φ
= (D22 + F22)

.
Φ

R
− D12

∂2w
∂x2 + B12

∂u
∂x

+ (B22 + F12)

( .
v
R
+

w
R

)
(30)
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By means of Equations (26) and (27), the governing equations for the buckling of the
ring-stiffened porous GPLRC cylindrical shells can be represented in the Hamiltonian form

.
u = −R

∂v
∂x
− 2RB66

A66

∂Φ

∂x
+

R
A66

P1 (31)

.
v =

R[B12(B22 + F12)− A12(D22 + F22)]

(A22 + F11)(D22 + F22)− (B22 + F12)
2

∂u
∂x

+
R[B12(D22 + F22)− D12(B22 + F12)]

(A22 + F11)(D22 + F22)− (B22 + F12)
2

∂2w
∂x2

−w +
R(D22 + F22)

(A22 + F11)(D22 + F22)− (B22 + F12)
2 P2 −

R(B22 + F12)

(A22 + F11)(D22 + F22)− (B22 + F12)
2 P4

(32)

.
w = −RΦ (33)

.
Φ =

R[A12(B22 + F12)− B12(A22 + F11)]

(A22 + F11)(D22 + F22)− (B22 + F12)
2

∂u
∂x

+
R[D12(A22 + F11)− B12(B22 + F12)]

(A22 + F11)(D22 + F22)− (B22 + F12)
2

∂2w
∂x2

− R(B22 + F12)

(A22 + F11)(D22 + F22)− (B22 + F12)
2 P2 +

R(A22 + F11)

(A22 + F11)(D22 + F22)− (B22 + F12)
2 P4

(34)

.
P1 = R

[
B2

12(A22+F11)−2A12B12(B22+F12)+A2
12(D22+F22)

(A22+F11)(D22+F22)−(B22+F12)
2 − A11

]
∂2u
∂x2

+R A12D12(B22+F12)−B12D12(A22+F11)−A12B12(D22+F22)+B2
12(B22+F12)

(A22+F11)(D22+F22)−(B22+F12)
2

∂3w
∂x3

+ R[A12(D22+F22)−B12(B22+F12)]

(A22+F11)(D22+F22)−(B22+F12)
2

∂P2
∂x + R[A12(B22+F12)−B12(A22+F11)]

(A22+F11)(D22+F22)−(B22+F12)
2

∂P4
∂x

(35)

.
P2 = −R

∂P1

∂x
(36)

.
P3 = R B12D12(A22+F11)−A12D12(B22+F12)+A12B12(D22+F22)−B2

12(B22+F12)

(A22+F11)(D22+F22)−(B22+F12)
2

∂3u
∂x3

−R
[

B2
12(D22+F22)−2B12D12(B22+F12)+D2

12(A22+F11)

(A22+F11)(D22+F22)−(B22+F12)
2 + D11

]
∂4w
∂x4 + RN0

x
∂2w
∂x2 − P2

+ R[D12(B22+F12)−B12(D22+F22)]

(A22+F11)(D22+F22)−(B22+F12)
2

∂2P2
∂x2 + R[B12(B22+F12)−D12(A22+F11)]

(A22+F11)(D22+F22)−(B22+F12)
2

∂2P4
∂x2

(37)

.
P4 = −4RD66

∂2Φ

∂x2 −
2RB66

A66

∂P1

∂x
+ RP3 − RN0

θ Φ (38)

Define ψ =
{

qT, pT}T
= {u, v, w, Φ, P1, P2, P3, P4}T as a total unknown vector; there-

fore, Equations (31)–(38) can be rewritten in a matrix form as

.
ψ = Hψ (39)

In this manner, Equation (39) can be solved by the method of the separation of variables.
Let ψ = µ(x)einθ , where n is the circumferential wave number, and µ(x) is the symplectic
eigenfunctions. The eigenvalue equation of Equation (39) can be obtained as

Hµ(x) = niµ(x) (40)

The characteristic equation of Equation (40) is

ξ8 + β1ξ6 + β2ξ4 + β3ξ2 + β4 = 0 (41)

Obviously, there are eight roots ξi(i = 1, 2, . . . , 8) for Equation (41) and, therefore, the
symplectic eigenfunctions can be expressed as

µ(x) =
8

∑
i=1

cieξix (42)
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where ci =
{

c1
i , c2

i , . . . , c8
i
}T are the undetermined coefficient vectors. Here, it should be

mentioned that there is only one independent undetermined coefficient vector. The other
coefficient vectors can be represented by the coefficient of w, i.e., c3.

Two types of boundary conditions at x = 0, L are considered, i.e.,

Clamped (C) : u = v = w =
∂w
∂x

= 0 (43)

Simply supported (S) :
∂u
∂x

= v = w =
∂2w
∂x2 = 0 (44)

By substituting the symplectic eigenfunctions (42) into the boundary conditions (43)
or (44), we have

[∆]8×8

(
c3
)T

= 0 (45)

To obtain the non-trivial solutions of Equation (45), the determinant of the coefficient
matrix should be vanished, i.e.,

|∆| = 0 (46)

After solving Equation (46), the buckling loads are finally obtained, and the minimum
buckling load is the critical hydrostatic pressure.

4. Effective Material Properties of Porous GPLRC

The effective material proprieties (Young’s modulus E, Poisson’s ratio ν, and mass
density ρ) of the porous GPLRC are [55]

E(z) = E0[1− e0q(z)] (47)

ν(z) = 0.221p̃ + ν0

(
0.342p̃2 − 1.21p̃ + 1

)
(48)

ρ(z) = ρ0[1− emq(z)] (49)

where E0, ν0, and ρ0 are the Young’s modulus, Poisson’s ratio, and mass density of GPLRC
without pores, respectively. e0 is the porosity coefficient. p̃ = 1.121

[
1− 2.3

√
1− e0q(z)

]
and

em = p̃/q(z). The function q(z) represents the porosity distributions. For the three porosity
distributions as shown in Figure 2, q(z) can be expressed as [55].
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(ii) Uniform porosity distribution (PD-U):

q(z) = q (51)

(iii) Asymmetric porosity distribution (PD-A):

q(z) = cos
[

π

4

(
1 +

2z
h

)]
(52)

where q =

{
1−

[(
M̃/h + 0.121

)
/1.121

]2.3
}

/e0, and M̃ =
∫ h/2
−h/2(1− p̃)dz.

For the three GPL distribution patterns as shown in Figure 3, the volume fraction of
GPLs is expressed as [55].
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(i) Symmetric porosity distribution (GPL-S):

VGPL = V0
GPL

[
1− cos

(πz
h

)]
(53)

(ii) Uniform porosity distribution (GPL -U):

VGPL = V0
GPL (54)

(iii) Asymmetric porosity distribution (GPL -A):

VGPL = V0
GPL

{
1− cos

[
π

4

(
1 +

2z
h

)]}
(55)

The weight fraction WGPL and the volume fraction VGPL have the following rela-
tion [55]:

WGPL
WGPL + (1−WGPL)ρGPL/ρM

∫ h/2

−h/2
[1− emq(z)]dz =

∫ h/2

−h/2
VGPL[1− emq(z)]dz (56)

where WGPL is the weight fraction of the GPLs, ρGPL and ρM are the mass densities of
the GPLs and the metal matrix, respectively. By introducing Equations (53)–(55) into
Equation (56), the average volume fraction V0

GPL for different GPL distribution patterns
can be calculated, and the corresponding volume fraction VGPL along the thickness can be
calculated according to Equations (53)–(55).

The commonly used methods to calculate the effective properties of a nanoparticle-
reinforced matrix are the rule of mixture, the modified rule of mixture, the Mori–Tanaka
model, the modified Halpin–Tsai model (Rafiee), and the modified Halpin–Tsai model
(Yang) [56]. The Halpin–Tsai model modified by Yang et al. gives much more accurate
results compared to the experimental data [56]. Therefore, Yang’s modified Halpin–Tsai
model is used here, and the elastic modulus of GPLRC can be written as [55,56]
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E0 =
3
8

(
1 + ξGPL

L ηGPL
L VGPL

1− ηGPL
L VGPL

)
EM +

5
8

(
1 + ξGPL

W ηGPL
W VGPL

1− ηGPL
W VGPL

)
EM (57)

where EM is the Young’s modulus of the metal matrix and

ξGPL
L =

2lGPL
tGPL

, ξGPL
W =

2wGPL
tGPL

, ηGPL
L =

(EGPL/EM)− 1
(EGPL/EM) + ξGPL

L
, ηGPL

W =
(EGPL/EM)− 1

(EGPL/EM) + ξGPL
W

(58)

in which lGPL, wGPL, and tGPL are the average length, width, and thickness of the GPLs,
respectively; EGPL is the Young’s modulus of the GPLs.

Using the rule of mixture, the Poisson’s ratio ν0 and mass density ρ0 of the GPLRC are
obtained as [55]

ν1 = νGPLVGPL + νM(1−VGPL) (59)

ρ1 = ρGPLVGPL + ρM(1−VGPL) (60)

where νGPL and νM are Poisson’s ratios of the GPLs and the metal matrix, respectively;
ρGPL and ρM are the densities of the GPLs and the metal matrix, respectively.

5. Numerical Results and Discussion

In this section, the critical buckling pressures and buckling mode shapes of ring-stiffened
porous GPLRC cylindrical shells under hydrostatic pressure are presented in tabular and
graphical forms. Firstly, a comparison study is presented to verify the accuracy of the pro-
posed method. Secondly, the influences of geometric parameters, boundary conditions, ring-
stiffeners, and material properties on the buckling behaviors of ring-stiffened porous GPLRC
cylindrical shells are discussed. The material properties are taken as: EGPL = 1010 GPa,
νGPL = 0.186, ρGPL = 1062.5 kg/m3, lGPL = 2.5 × 10−6 m, wGPL = 1.5× 10−6 m,
tGPL = 1.5× 10−9 m, EM = 130 GPa, νM = 0.34, and ρM = 8960 kg/m3.

5.1. Comparison Study

Since no available results for the buckling of ring-stiffened porous GPLRC cylindrical
shells have been reported in the open literature, a homogeneous isotropic ring-stiffened
cylindrical shell was considered first. The computation parameters were L = 372.9745 in,
h = 1 in, R = 82.1693 in, LF = 1 in, hF = 2.306 in, dF = 0.0638 in, E = 30×106 Psi, and ν = 0.3.
The comparison of the critical pressures of unstiffened shells and ring-stiffened shells
(outside and inside) is presented in Table 1. It was observed that the present results are
in good agreement with those of Baruch and Singer [6] and Shen [9], and the maximum
error is 1.1023%. There is some error between the present results and the results of Reddy
and Starnes [7], which may be due to the difference in theories. Donnell’s thin-walled
shell theory was used in this study, while Reddy’s layerwise theory is used in reference [7].
Subsequently, the variation in the dimensionless critical load parameter λ = PR(1–ν2)/(Eh)
of a homogeneous isotropic ring-stiffened cylindrical shell versus the length-to-radius ratio
is plotted in Figure 4, with h/R = 0.01, AF/h2 = 4.9152, e/h = 6.2633, IF/Lh3 = 0.303457,
and ν = 0.3. Good agreements with the existing results [11] are observed again. Finally, an
unstiffened nonporous GPLRC cylindrical shell with h = 5 mm, R = 200 mm, WGPL = 0.2,
and GPL-U distribution is considered. The variation in the critical pressures versus the
length-to-radius ratio is plotted in Figure 5. Clearly, the present results compare well with
Shahgholian-Ghahfarokhi’s theory and the FEM results [36]. From the above comparisons,
it is concluded that the proposed method can accurately predict the critical pressures of
ring-stiffened porous GPLRC cylindrical shells under hydrostatic pressure.
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Table 1. Critical pressure (Psi) of homogeneous isotropic ring-stiffened cylindrical shells.

Unstiffened Ring-Stiffened
(Outside)

Ring-Stiffened
(Inside)

Present 101.81 325.94 369.99
Baruch and Singer [6] 102 326 370

Deviation with [6] −0.1863% −0.0184% −0.0027%
Reddy and Starnes [7] 93.5 313.7 357.5

Deviation with [7] 8.8877% 3.9018% 3.4937%
Shen [9] 100.7 325.7 368.3

Deviation with [9] 1.1023% 0.0737% 0.4589%
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5.2. Effects of Geometrical Parameters and Boundary Conditions

In this section, the effects of geometrical parameters and boundary conditions on the
critical pressures and buckling mode shapes of ring-stiffened porous GPLRC cylindrical
shells are investigated. The computation parameters were R = 1 m, WGPL = 1%, e0 = 0.3,
LF = 0.2 m, hF = 0.02 m, and dF = 0.01 m. The porous GPLRC was GPL-S and PD-S. The
critical pressure and corresponding circumferential wave number for different boundary
conditions, h/R and L/R, are presented in Table 2. It can be observed that the critical
pressure increased with the increase in h/R, while it decreased with the increase in L/R.
The clamped boundary always led to a greater critical pressure than the simply supported
boundary. This is because the constraint degree of the clamped boundary was greater than
that of the simply supported boundary. With the increase in L/R, the circumferential wave
number decreased gradually. However, h/R had little effect on the circumferential wave
number. In addition, the circumferential wave number for the simply supported boundary
was usually less than that of the clamped one.

Table 2. Critical pressure of ring-stiffened porous GPLRC cylindrical shells for different boundary
conditions, thickness–radius ratios and length–radius ratios.

h/R L/R

2 5 10

C-C

0.005 1.1606 (6) 0.5262 (4) 0.2795 (3)
0.01 2.5239 (6) 1.1037 (4) 0.5816 (3)
0.02 9.1057 (5) 4.1208 (4) 2.2086 (3)

S-S

0.005 0.8966 (5) 0.4069 (3) 0.2351 (2)
0.01 1.9070 (5) 0.8291 (3) 0.4698 (2)
0.02 7.1119 (5) 2.7382 (3) 1.3998 (2)

The variations in the critical pressure with h/R and L/R are shown in Figures 6 and 7,
respectively. It can be observed that the variation in the critical pressure for the clamped
boundary condition versus h/R or L/R is more pronounced than the simply supported
one, and the difference between the two boundary conditions becomes significant for
shorter or thicker cylindrical shells. Furthermore, the difference between the unstiffened
cylindrical shells and the ring-stiffened cylindrical shells also increased with the increasing
h/R and decreasing L/R, which indicates that the reinforcement effect is more obvious for
the shorter or thicker cylindrical shell with the same ring-stiffener parameters. Finally, the
buckling mode shapes of the ring-stiffened porous GPLRC cylindrical shells for different
h/R and L/R values are presented in Figure 8. The above-mentioned influences of the
geometrical parameters on the buckling mode shapes can be observed clearly.

5.3. Effects of Material Properties and Ring-Stiffeners

In this section, the effects of the material properties and ring-stiffeners on the buckling
behaviors of ring-stiffened porous GPLRC cylindrical shells are revealed. The geometrical
parameters were R = 1 m, L/R = 5, h/R = 0.01. The critical pressures for the different GPLs
and porosity distributions are tabulated in Tables 3 and 4, respectively. The variations in
the critical pressures with various weight fractions and porosity coefficients are plotted in
Figures 9 and 10, respectively.
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It is observed in Table 3 and Figure 9 that the critical pressure increased significantly
with the increasing weight fraction of the GPLs, which indicates that adding a small number
of GPLs to the metal matrix can significantly improve the anti-buckling performance of the
shell. This is because the effective Young’s modulus of the composite can be significantly
increased by adding GPLs. The GPL-S distribution has the highest critical pressure, and the
critical pressure of the GPL-S distribution increased more rapidly with the weight fraction
than the GPL-U and GPL-A distributions. This can be explained as the GPL-S distribution
has the largest stiffness coefficient.

It can be seen in Table 4 and Figure 10 that the critical pressure decreases with the
increasing porosity coefficient. This is because the existence of porosity will reduce the
effective Young’s modulus of the composite, thus reducing the stability. The PD-S dis-
tribution has the highest critical pressure. From the above phenomena, it is concluded
that the weight fraction, porosity coefficients, GPLs, and porosity distributions are the key
influencing factors on the carrying capacity of ring-stiffened porous GPLRC cylindrical
shells, and an optimal design can be achieved by adjusting these parameters.
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Table 3. Critical pressure of ring-stiffened porous GPLRC cylindrical shells for different weight
fractions and GPL distributions.

WGPL = 0 0.5% 1% 1.5% 2%

PD-S

GPL-S 0.8394 0.9786 1.1037 1.2180 1.3232
GPL-U 0.8394 0.9404 1.0312 1.1143 1.1908
GPL-A 0.8394 0.9102 0.9747 1.0344 1.0899

PD-U

GPL-S 0.8200 0.9491 1.0652 1.1714 1.2692
GPL-U 0.8200 0.9161 1.0023 1.0811 1.1537
GPL-A 0.8200 0.8884 0.9512 1.0094 1.0638

PD-A

GPL-S 0.8022 0.9288 1.0437 1.1494 1.2471
GPL-U 0.8022 0.8982 0.9845 1.0635 1.1364
GPL-A 0.8022 0.8715 0.9354 0.9949 1.0504

Table 4. Critical pressure of ring-stiffened porous GPLRC cylindrical shells for different porosity
coefficients and porosity distributions.

e0 = 0.1 0.2 0.3 0.4 0.5

GPL-S

PD-S 1.1742 1.1392 1.1037 1.0678 1.0311
PD-U 1.1617 1.1138 1.0652 1.0158 0.9650
PD-A 1.1558 1.1008 1.0437 0.9840 0.9209

GPL-U

PD-S 1.0976 1.0645 1.0312 0.9977 0.9639
PD-U 1.0883 1.0456 1.0023 0.9581 0.9127
PD-A 1.0832 1.0347 0.9845 0.9323 0.8774

GPL-A

PD-S 1.0439 1.0095 0.9747 0.9395 0.9038
PD-U 1.0363 0.9940 0.9512 0.9076 0.8629
PD-A 1.0316 0.9841 0.9354 0.8851 0.8328
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Figure 11 shows the variation in the critical pressure with the length-to-thickness ratio
lGPL/tGPL of the GPLs under different length-to-width ratios lGPL/wGPL of the GPLs. It can
be observed that the critical pressure first increased with the increase in the lGPL/tGPL, and
then tended to remain unchanged. The critical pressure of ring-stiffened porous GPLRC
cylindrical shells was higher for the lower length-to-width ratios lGPL/wGPL.
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The variations in the critical pressures with various ring-stiffener heights (dF/hF = 0.5)
and ring-stiffener spacings are presented in Figures 12 and 13, respectively. It can be
observed in Figure 12 that with the increase in the ring-stiffener size, the critical pressure
increased and the slope of the curves also increased. It is seen in Figure 13 that the critical
pressure and the slope of the curves decreased with the increasing ring-stiffener spacing.
This is because increasing the ring-stiffener size or reducing the ring-stiffener spacing will
increase the equivalent stiffness coefficient.
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6. Conclusions

An analytical buckling analysis of ring-stiffened porous GPLRC cylindrical shells
subjected to hydrostatic pressure was performed by a novel symplectic approach. The
governing equation in the Hamiltonian form was obtained by introducing a new total
unknown vector, and therefore, it could be solved by the method of the separation of
variables. In this manner, accurate critical pressures and analytical buckling mode shapes
were obtained simultaneously. Numerical examples verify the accuracy of the proposed
method, and the effects of the key influencing parameters on the buckling behavior are
discussed in detail. The main conclusions are as follows:

(i) The geometrical parameters are major influencing factors on the critical pressures and
buckling mode shapes. The critical pressure increases with an increasing h/R and
decreases with an increasing L/R. The circumferential wave number decreases with
an increasing L/R and remains basically unchanged with a change in h/R;

(ii) The stability of ring-stiffened cylindrical shells can be significantly improved by
adding a small number of GPLs to the metal matrix. The critical pressure increases
with an increasing weight fraction and decreases with an increasing porosity coeffi-
cient. The GPL-S and PD-S distributions have the highest critical pressure.

(iii) The ring-stiffeners can also significantly improve the stability, and the stability perfor-
mance is stronger when the ring-stiffener size is larger and the ring-stiffener spacing
is smaller. Under the specific ring-stiffener parameters, the reinforcement is more
significant for shorter or thicker porous GPLRC cylindrical shells.

The theoretical model, solution method, and new observations can provide a theoreti-
cal basis for the stability analysis of stiffened composite cylindrical shells. The obtained
analytical solutions can also be used as the design specifications of underwater pressure
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structures, and they are helpful for the design of military submarines, underwater pipelines,
and other marine equipment.
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