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Abstract: Investigating the trace elements contained in the coccoliths, i.e., the carbonate exoskeleton,
of unicellular marine phytoplankton called coccolithophores, is fundamental for calibrating environ-
mental climate proxies, which are key tools for studying past and future climate changes. To date,
lab-cultivated coccolithophores have been mainly used for measuring the elements retained within
the coccoliths, whereas geochemical studies in fossil records have been limited by the difficulty in iso-
lating monospecific samples from sediments containing highly diversified fossil assemblages. Since a
comparison of the geochemical data collected from both fossil and living species is fundamental for
calibrating the environmental proxies, an improvement of coccolith-picking methodology should
be envisaged. Here, we present a significant advancement in the isolation of fossil species-specific
coccolith achieved using a hydraulic micromanipulation system together with wet samples, never
applied before on coccoliths. Our technique allows the picking of around 100 monospecific coccoliths
per h, a number never achieved before with other isolation methodologies. This method opens up
new possibilities in applying monospecific geochemical analyses to the fossil record not attainable
before (e.g., the use of the mass spectrometer), leading to an increase in knowledge of environmental
proxy calibration and coccolithophore element incorporation strategies.

Keywords: coccolithophores; calcareous nannofossils; monospecific picking; wet sample; micromanipulator;
hydraulic control system; geochemistry

1. Introduction

Coccolithophores are a group of unicellular marine phytoplankton, very abundant
and widespread in both past [1] and modern oceans [2,3]. Their exoskeleton, composed
of many calcite plates called coccoliths, constitutes up to 50% of the calcium carbonate
(CaCO3) accumulated into oceanic sediments [4,5]. As coccolithophores are strongly af-
fected by climate changes e.g., [2,6], the study of their abundance and distribution is ideal
for paleoenvironmental and paleoclimate reconstructions e.g., [7–9]. To better interpret the
evidence extrapolated from fossil assemblages, it is essential to compare them with specific
environmental proxies achievable through geochemical analyses. The ratio between minor
elements and calcium (Ca) measured within the carbonate produced by certain marine
organisms, such as the foraminifera, has been widely used to reconstruct specific (pa-
leo)environmental conditions (e.g., paleoproductivity, sea surface temperature, pH, and sea
level variations) [10,11], as their shells are built in stoichiometric equilibrium with the sea-
water [12]. Coccolithophores, in contrast, produce their calcite plates intracellularly [13,14];
thus, the coccoliths are generated more frequently outside the isotopic equilibrium and with
a larger vital effect compared to foraminifera e.g., [15,16]. Recent studies have provided a
better constraint of the vital effect in some coccolithophore species [17–20], highlighting
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the high potential retained by coccolithophores for geochemical analyses and for deter-
mining specific environmental proxies [21–23]. So far, geochemical studies on coccoliths
have been mainly conducted on specific species of cultivated coccolithophores [24–28].
To date, the most well-established coccolith-derived proxy is the Sr/Ca ratio which has
been demonstrated to be indicative of primary productivity variations both in cultivated
species [24,26,27] and fossil remains [29–31], so-called calcareous nannofossils.

Coccoliths from monospecific cultivation have been used more than fossil coccoliths
for geochemical studies. This is related to important issues that have to be faced when
dealing with polyspecific fossil assemblages: (1) it is very hard and time-consuming to
obtain monospecific samples from marine core or bulk sediments; (2) the sediment fine
fraction is mainly composed of coccoliths (1–20 µm size range), and it comprises several
species making impossible to disentangle the species-specific contribution to the final
geochemical signal; (3) it is difficult to obtain a fraction exclusively constituting coccoliths.
In fact, the mechanical separation of the fine fraction may be easily affected by mesh size
errors, which increase with the lowering of the mesh size, and clogging, leading to a poor
size separation, and thus, to the presence of pieces belonging to other marine biota such as
foraminifera or diatoms [32,33].

To overcome these issues and to achieve a better selection of different coccolith size
fractions within the fossil assemblages, various separation techniques have been devel-
oped. These techniques include: specific settling velocities [32,34], filtration [33], flow
cytometry [35], and repeated centrifugation [36]. Despite the significant improvements in
precision and velocity gained by these methodologies, completely monospecific samples
cannot be achieved due to the variegated size ranges and morphologies of coccolithophores,
comprising nowadays more than 200 living species [37,38], with hundreds of others having
evolved since their first appearance at 225 Ma [1,38].

A precise selection of monospecific samples is attainable only through the use of high-
tech micromanipulators which allow the picking of each single specific coccolith [39,40].
More recently, Suchéras-Marx et al. [41] designed a hand-picking method which isolates
single coccoliths without using specialized micromanipulators. Those techniques, using the
principle of electrostatic forces to pick the coccoliths, allow isolating from 5 to 20 coccoliths
per h. For the aims of those studies, a high number of coccoliths was not required, since
they used high-resolution techniques, such as secondary ion mass spectrometry [39,42] or
synchrotron-based X-ray fluorescence [31,41,43], to analyze a specific limited number of
coccoliths. However, these kinds of high-tech instrumentations are not routinely used and
are often difficult to access compared to other methods employed for element analyses
that are more commonly used and well-established, such as the inductively-coupled mass
spectrometer (ICP-MS). A disadvantage of the ICP-MS is the amount of material required
for the measurements, which is only easily achievable using coccolithophore cultures. For
this reason, it is extremely difficult to apply the ICP-MS to fossil-derived monospecific
samples. In fact, so far geochemical investigations on nannofossils have been focused
mainly on the <20 µm fraction [21,44,45] or specific size ranges of nannofossils [22,24,29].

Here, we present a simple but very effective implementation of the micromanipulation
technique without the electrostatic forces used so far that allows isolation of a large number
of coccoliths compared to previous works. This novel approach, employing wet samples
instead of dried ones, is applicable to all size ranges of nannofossil species and, thanks
to its velocity and efficiency, it opens up new horizons in coccolithophore geochemical
analyses at monospecific level.

2. Materials and Methods

For testing our picking technique on nannofossils, we used an unconsolidated sedi-
ment sample from the Ocean Drilling Program (ODP) Site 1209B (32◦39′ N and 158◦30′ E;
NW Pacific Ocean; 2387 m water depth) [46]. The selected sample was collected at 1.4 m
below sea floor (mbsf), and dated 118,000 years ago [44]. The deep-sea sediments at this
site are mainly composed of nannofossil oozes with foraminifera, diatoms, radiolaria, and
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clay as minor components [46]. The nannofossil assemblage is well preserved, and the size
range of the species varies from 2.5 to 16 µm [44,47].

Here, we describe the step-by-step protocol—including all the required instrumenta-
tions, tools, and microscope settings necessary to isolate single coccoliths from sediments
in order to obtain monospecific samples. This technique requires: (1) borosilicate capillary
(10 cm length, outer diameter
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deposit the coccoliths, which may vary according to the type of the required analyses
(e.g., Mylar film, TEM grids, SEM cover slip, Eppendorf, Hamburg, Germany).

Firstly, it is necessary to carefully prepare a capillary with the desired diameter. A
capillary of borosilicate glass tube is placed in a micropipette puller which stretches the cap-
illary so as to make its diameter thinner and to divide it in two parts (Figure 1a). Then, one
piece of the capillary is placed inside a microforge (Figure 1b) that has been modified with a
tungsten filament and a glass microbead (Figure 1c). The filament overheats the borosilicate
capillary until it breaks at the desired diameter. We recommend selecting a capillary slightly
larger than the average size of the selected nannofossil species to make the picking easier.
For our purposes, we prepared two type of capillaries with a diameter of 10 and 20 µm
(Figure 1c,d), because the two targeted nannofossil species—Helicosphaera carteri and Gephy-
rocapsa oceanica—have a coccolith size of 8–11 µm and 3–5 µm, respectively [38]. With the
above-mentioned instruments, it is also possible to make thinner capillaries down to 2–3 µm
according to the size of the target species. After breaking the capillary at the selected di-
ameter, the microforge is used to slightly bend the capillary in order to make the picking
process more efficient.

Once ready, the capillary is mounted on a dedicated inox holder of a micromanipulator
controlled by a hydraulic circuit; the micromanipulator is connected with an inverted
microscope (Figure 2a). This kind of microscope–micromanipulator setting is usually
employed in cellular biology for cytoplasm, chromosomes, and DNA transfer e.g., [48,49].
To make the picking even faster and easier, we preliminarily treated the sample with
the settling technique described by Stoll and Ziveri [34] in order to divide two different
size fractions and to concentrate those species, such as H. carteri, that have a low relative
abundance, ca. 5% in the case of the studied sample [44]. Through differential settling
velocities, we first removed the >20 µm fraction to retain only the nannofossils; then, we
divided a larger (20–6 µm) and a smaller (<6 µm) fraction so as to obtain two samples
enriched in H. carteri and G. oceanica, respectively. Specifically, we applied the following
settling times: (1) after mixing the suspension of buffered Milli-Q water and sediment
(30 mL = 65 mm suspension column height) in a 50 mL Falcon tube with a Pasteur pipette,
we let it settle for 12 min, and then the >20 µm fraction was removed from the Falcon bottom;
(2) then, after adding buffered Milli-Q water up to 30 mL and mixing, the suspension was
settled for 130 min in order to let the particles >6 µm settle at the Falcon bottom; (3) finally,
we separated the supernatant, retaining the <6 µm fraction (i.e., enriched with G. oceanica)
from the fraction sedimented at the bottom with size range 6 < and > 20 µm (i.e., enriched
with H. carteri). The obtained suspension containing nannofossils and buffered Milli-Q
water is poured in the center of a Petri dish (Figure 2b) which is then placed under the
inverted microscope ready for the picking (Figure 2c). Before starting the picking, the
particles in the suspension need a few minutes’ settling to be deposited at the bottom of the
Petri dish. The dilution of the suspension has to be adjusted in order to operate in optimal
conditions, i.e., avoiding too dense concentrations that may clog the capillary or too diluted
suspensions which may slow down the capture process.
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Before sinking the capillary into the suspension drop, it is important to trap some air
in it in order to keep the suspension separated from the Milli-Q water necessary to make
the hydraulic system function. Then, the capillary is carefully inserted into the suspension
drop. Once the nannofossil of interest has been identified, the operator moves the capillary
as close as possible to it (Figure 3a,d). If necessary for a better isolation of the coccolith from
other surrounding particles, it is possible to use rapid fluid movements or slight vibrations
produced by the piezoresistive microforce sensor supporting the capillary. Though useful
to speed up the process, the use of the piezoresistive microforce is not strictly necessary for
coccolith isolation, allowing reduced cost of the instrumentation since the piezoresistive
sensor is one of the most expensive tools of the micromanipulation system. Once the
capillary is placed just above the isolated coccolith (Figure 3b,e), it captures it through
suction controlled by the hydraulic manipulation system (Figure 3c,f). This operation can
be repeated many times in order to collect a substantial number of coccoliths. All the
selected coccoliths remain inside the capillary (Figure 3c,f) until the moment of their release
onto the proper sample holder used later for geochemical analyses (e.g., TEM grids, Mylar
film, SEM slide, Eppendorf). We suggest placing a drop of buffered Milli-Q water on the
sample holder before depositing the coccoliths to avoid dispersion, especially if the holder
is large.
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picking: (a) Micromanipulator Narishige MF-9 maneuvered with a hydraulic circuit and inverted 

Figure 2. Micromanipulator and microscope settings together with sample placement before the
picking: (a) Micromanipulator Narishige MF-9 maneuvered with a hydraulic circuit and inverted
microscope Olympus IX71. The key parts of the instrumentation are specified; (b) Pouring of the
drop of suspension containing diluted sediment from ODP Site 1209B into the Petri dish; (c) Details
of the micromanipulator and microscope settings showing the allocation of the capillary and Petri
dish with the drop of sediment suspension.
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Figure 3. Images of the coccolith capture procedure of two nannofossil species with different size
ranges, Helicosphaera carteri and Gephyrocapsa oceanica: (a) Microscope view of the selected H. carteri
coccolith with a cross section of the capillary (yellow arrow) before the capture moment; (b) H. carteri
before being aspirated inside the capillary; (c) nannofossils of H. carteri retained inside the capillary;
(d–f) Images of the capture procedure and (f) of the nannofossils retained within the capillary for the
species G. oceanica. Scale bars are 20 µm.

3. Results
3.1. Efficiency of the Picking Process

Our study aims to identify the best settings and precautions to be taken in order to
isolate the highest number of coccoliths per h using a hydraulically controlled microma-
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nipulator. It was not necessary to substantially modify the original instrument settings
designed for biological purposes, but attention needed to be paid during the capillary
preparation since it is pivotal for the hydraulic system to work efficiently. It is worth dedi-
cating more time to the capillary shaping because it makes the picking process smoother
and faster. The only difference to biological micromanipulation is that mercury is em-
ployed to keep the biological material separated from the water of the hydraulic system,
whereas in our case we used the air trapped in the capillary. With optimal instrument
and tool settings, we observed that it is possible to collect from 20 up to 40 coccoliths
during one single capture–release phase that on average lasts for 12–13 min (Figure 4a,b
and Table 1). Since we aimed to analyze single coccoliths of nannofossils applying highly
resolved synchrotron-based techniques, we deposited the H. carteri coccoliths on a Mylar
film (Figure 4c) and on a TEM grid with a Formvar layer (Figure 4c,d) [50], but any kind of
sample holder can be easily used.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

Our study aims to identify the best settings and precautions to be taken in order to 
isolate the highest number of coccoliths per h using a hydraulically controlled 
micromanipulator. It was not necessary to substantially modify the original instrument 
settings designed for biological purposes, but attention needed to be paid during the 
capillary preparation since it is pivotal for the hydraulic system to work efficiently. It is 
worth dedicating more time to the capillary shaping because it makes the picking process 
smoother and faster. The only difference to biological micromanipulation is that mercury 
is employed to keep the biological material separated from the water of the hydraulic 
system, whereas in our case we used the air trapped in the capillary. With optimal 
instrument and tool settings, we observed that it is possible to collect from 20 up to 40 
coccoliths during one single capture–release phase that on average lasts for 12–13 min 
(Figure 4a,b and Table 1). Since we aimed to analyze single coccoliths of nannofossils 
applying highly resolved synchrotron-based techniques, we deposited the H. carteri 
coccoliths on a Mylar film (Figure 4c) and on a TEM grid with a Formvar layer (Figure 
4c,d) [50], but any kind of sample holder can be easily used. 

  

(a) (b) 

  
(c) (d) 

Figure 4. Nannofossils isolated in a single capture–release procedure and deposited on a Petri dish 
for the species H. carteri (a) and G. oceanica (b), scale bars 10 μm; H. carteri coccoliths isolated for 
synchrotron-based analyses and deposited on (c) Mylar film sealed with a Delrin interlocking ring, 
scale bars are 1 cm (yellow) and 20 μm (red), and on (d) an Au TEM grid with a Formvar layer scale 
bars are 1 mm (yellow) and 20 μm (red). 

In our experiments, the picking was made easier by a preparatory coccolith size 
separation via settling since the species H. carteri has a low relative abundance in the 

Figure 4. Nannofossils isolated in a single capture–release procedure and deposited on a Petri dish
for the species H. carteri (a) and G. oceanica (b), scale bars 10 µm; H. carteri coccoliths isolated for
synchrotron-based analyses and deposited on (c) Mylar film sealed with a Delrin interlocking ring,
scale bars are 1 cm (yellow) and 20 µm (red), and on (d) an Au TEM grid with a Formvar layer scale
bars are 1 mm (yellow) and 20 µm (red).
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Table 1. Data collected to evaluate the efficiency of the hydraulic micromanipulation system in
picking monospecific nannofossils of H. carteri (H.c.) and G. oceanica (G.o.). Reported in the table are:
the number of attempts of a complete capture–release procedure; the number of picked coccoliths
during the capture phase; the ones lost in the process of moving the capillary out from the suspension
before deposition; the ones deposited on the selected sample holder; the time necessary for the entire
procedure (min); the efficiency of the methodology expressed as number of coccoliths deposited
versus time (h). Hashtag (#) means “numbers”.

#Attempt #Picked
Coccoliths

#Lost
Coccoliths

#Deposited
Coccoliths Min Efficiency

(#Coccoliths/h)

1 H.c. 30 5 25 10 150
2 H.c. 16 2 14 7 120
3 H.c. 20 5 15 11 81
4 H.c. 36 6 30 15 120
5 H.c. 23 4 19 18 66
6 H.c. 33 3 30 16 114
7 H.c. 18 1 17 10 102

1 G.o. 37 8 29 11 156
2 G.o. 40 6 34 17 120
3 G.o. 31 5 26 13 120
4 G.o. 27 4 23 9 150
5 G.o. 23 2 21 8 156
6 G.o. 32 5 27 14 114

In our experiments, the picking was made easier by a preparatory coccolith size
separation via settling since the species H. carteri has a low relative abundance in the
studied sample (ca. 5%) [44]. Nevertheless, even if the sample is not preliminary size-
sorted, a significant number of isolated coccoliths can be achieved. We performed some
tests to detect the efficiency of our picking technique from the two size-sorted samples.
The selection of H. carteri coccoliths shows an average efficiency (i.e., number of coccoliths
selected per h) of 107 coccoliths/h, whereas the picking of G. oceanica seems to be more
efficient, reaching up to 136 coccoliths/h (Table 1). The highest efficiency returned by the
G. oceanica-picking compared to H. carteri is ascribable to the highest (10%) abundance of
G. oceanica in the selected sample [44], which speeds up the capture phase. From our data
we can infer that it is possible to isolate about 800–1000 monospecific coccoliths during one
working day. We suggest incrementing the capture–release procedures with a low number
of picked coccoliths (10–15) to avoid the coccoliths getting stuck inside the capillary or they
may be lost in the capture–release process.

3.2. Possible Dissolution Issues

During our experiments with the species H. carteri, we also noticed that it is crucial
to pay attention to dissolution processes that may occur after the deposition on the sam-
ple holder. We documented that when buffered Milli-Q water with a pH between 8 and
10 [51,52] is used for preparing the initial suspension, the high concentration of coccolith
contained is enough to maintain the alkalinity stability and not affect the nannofossil
preservation (Figure 3). On the contrary, after the coccolith release onto the sample holder,
if the pH is not kept very high (>12) the alkalinity of the suspension does not compensate
for the lower carbonate concentration compared to the suspension with the sediment, and
thus, dissolution effects start to affect the coccoliths. Our tests show that after depositing
a well-preserved population of H. carteri coccoliths onto a holder with Milli-Q water at
pH = 9 (Figure 5a), some etching starts to appear in less than 1 h (Figure 5b). Specifically,
observing the appearance of etching, the first element that begins to dissolve is the flange.
As the flange becomes thinner and transparent, dissolution starts to also affect the coccolith
edges with higher intensity, decreasing the coccolith size. After 74 min, the dissolution also
becomes evident around the central openings, leaving only a small structure with a big
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central aperture (Figure 5c). Then, after 90 min, all the picked coccoliths are completely
dissolved (Figure 5d). It should be noted that during the entire dissolution process, the coc-
coliths move within the solution because of thickness reduction and weight loss (Figure 5).
As reference, we used one coccolith of the well-resistant species Coccolithus pelagicus, which
was dissolved after 4 h. To prevent the etching and dissolution of calcite coccoliths, we
recommend adding a drop of buffered Milli-Q water with high pH (>12) on the sample
holder before releasing the picked coccoliths. In this way the original preservation state of
the nannofossils is maintained (Figure 4).
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Figure 5. Etching and dissolution of picked coccoliths of H. carteri deposited in a solution with pH = 9.
For reference, one coccolith of the species Coccolithus braarudii highly resistant to dissolution has
been placed in the field of view (red circle). (a) Freshly picked coccoliths in well-preserved state;
(b) Coccolith etching after 55 min; (c) Coccolith dissolution after 74 min; (d) Coccoliths completely
dissolved after 90 min. Scale bars are 20 µm.

4. Discussion and Conclusions

In this work, we present for the first time a significant improvement in the isolation
of monospecific nannofossils from deep-sea sediment using wet samples together with a
hydraulically controlled micromanipulation system. The novel use of applying the suction
of coccolith from a suspension (i.e., sediment fraction suspended in buffered Milli-Q water)
allows the entire picking process to be sped up compared to previous methods (Table 2).
In particular, we documented that up to 100 monospecific coccoliths can be isolated in
1 h with a hydraulic micromanipulator system (Table 2), paying attention to preliminarily
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size-sorting the sample, especially in the case of low-abundance species or samples with
highly variable size of the fossil content, e.g., if diatoms (20–200 µm), foraminifera (100 µm
on average), or radiolaria (30 µm–2 mm) are also present.

Applying the suction and expulsion principle to isolate the coccolith instead of the
electrostatic forces used by previous works (Table 2) also makes the picking of small and
fragile species such as G. oceanica or Emiliania huxleyi easier. Stoll et al. [39], who worked
with dry samples and a micromanipulated tungsten needle as their picking tool, stated
that during the picking of E. huxleyi, the contact with the needle often breaks the coccoliths,
and thus, the time required for the picking increases. Later, Suchéras-Marx et al. [41] also
documented that the isolation of small-sized species using manual picking with a silica
spine from dry samples is difficult. All these issues can be overcome using a drop of
suspension and a hydraulic micromanipulation system that not only allows the process
to be sped up, but also the safe picking of very small and fragile species with no breaking
risks and high efficiency still (Table 1).

Our methodology also solves the difficulties related to the initial sample preparation.
In fact, when the electrostatic force principle is applied, it is fundamental to prepare a smear
slide with a specific concentration of coccoliths to facilitate the picking process, i.e., spaces
between each coccolith have to be at least twice the size of the coccolith itself [39]. This
kind of preparation is not so easily achieved, especially using the smearing method, and in
the case of rare species it may slow down the coccolith selection process. On the contrary,
although a preliminary size-sorting can make the procedure easier, by using wet samples
and the hydraulic micromanipulator it is also possible to perform precise monospecific
picking in highly concentrated sediment samples. This is evident if we compare the data
of the picking time in the two samples analyzed here (H. carteri and G. oceanica, Table 1).
Despite the sample in Figure 3a,b being denser and more variegated in the coccolith size
range than the sample shown in Figure 3d,e, the picking times are easily comparable,
showing the high efficiency of the method even when investigating very different samples
(Table 1).

Table 2. Main characteristics of the picking techniques available in the literature compared to this
work. N.A.: not available. Hashtag (#) means “numbers”.

Picking
Method

Picking Tool
Material

Picking Tool Ø
(µm)

#Picked
Coccoliths

Type of
Sediment
Sample

Picking
Principle References

Micromanipulator Borosilicate
glass 3–20 (inner Ø) 80–100/h Wet

Controlled
suction and

release
This work

Manual Silica 15–20 (outer Ø) 5/h Dry Electrostatic
forces [41]

Micromanipulator Tungsten N.A. 15/30–60 min Dry Electrostatic
forces [39]

Micromanipulator Tungsten N.A. 20/45–90 min Dry Electrostatic
forces [40]

The methodology presented here has the downside that it requires expensive equip-
ment (micromanipulator and hydraulic control system), despite being commonly used in
biology labs, and a specialized technician to achieve its maximum efficiency. Nevertheless,
this system allows the isolation of a number of monospecific nannofossils never attained
before: up to 1000 coccoliths per day in optimal conditions. This achievement opens up new
perspectives in the investigation of fossil coccoliths at species-specific level. For example, it
increases the number of single coccoliths that can be analyzed using synchrotron-based
instrumentations, strengthening the statistical meaning of the outcomes [50]. Moreover,
it may also allow us to apply the ICP-MS to monospecific nannofossil species, previously
applied only for culture samples of <20 µm fraction e.g., [21,22,26,27,29]. Improving the
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technology and the speed of single coccolith-picking from sediments is important for future
research on coccolithophore geochemical analyses, allowing the refining of direct studies
of trace elements in monoclonal cultures with the information derived from the geologi-
cal records. In this way, better calibration of the environmental proxies can be achieved
together with a deeper understanding of the role of coccolithophore vital effects during the
element incorporation at species-specific level.
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