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Abstract: This paper presents the results from a numerical simulation study to investigate wave
trapping by a series of trapezoidal porous submerged breakwaters near a vertical breakwater, as
well as the seabed response around the vertical breakwater. An integrated model, based on the
volume-averaged Reynolds-averaged Navier–Stokes (VARANS) equations is developed to simulate
the flow field, while the dynamic Biot’s equations are used for simulating the wave-induced seabed
response. The reflection of the wave energy over the submerged breakwaters, caused by the vertical
breakwater, can be reserved, indicating that the existence of the submerged breakwaters in the front
of the vertical breakwater can either provide shelter or worsen the hazards to the vertical breakwater.
Numerical examples show two different modes under the Fabry–Pérot (F–P) resonance condition
of the wave transformation, namely the wave reflection (Mode 1) and the wave trapping (Mode 2).
The distance between the submerged breakwaters and the vertical breakwater, is a key parameter
dominating the local hydrodynamic process and the resultant dynamic stresses around the vertical
breakwater. The numerical results indicated that more submerged breakwaters and a higher porosity
of submerged breakwaters will obviously dissipate more wave energy, and hence induce a smaller
wave force on the rear vertical breakwater and liquefaction area around the vertical breakwater.

Keywords: wave trapping; Bragg reflection; Fabry–Pérot resonance; porous submerged breakwaters;
wave force; seabed response

1. Introduction

Breakwaters are commonly used to shelter the coastlines or harbors, by dissipating and
reflecting the incoming waves. Meanwhile, the existence of breakwaters may significantly
affect the wave motion and its associated seabed response around the structures. Nowadays,
permeable or impermeable submerged breakwaters are usually constructed in front of a
seawall or caisson breakwater, to reduce the wave forces acting on the vertical wall [1].
Because of the lower crown, the submerged breakwaters have the advantages of low
construction costs, early wave breaking, and the effective reduction of the wave height on
the lee side, and they do not obstruct the sea-view.

Water waves propagating from offshore to near-shore zones may experience various
transformations, such as diffraction, refraction, reflection, and shoaling, induced by the
variation of the bottom topography or the interaction with structures [2]. The reflection by
the multiple bars can be amplified when the surface wavelength is two times larger than
that of the sand bar wavelength, which is called the Bragg resonance [3–5]. From the point of
view of engineering practices [6], the wave reflection by the sand bars has been considered
as a good measure to protect the shoreline and coastal structures. Extensive studies have
been conducted to extend this concept to multiple submerged breakwaters [7–13]. A
common subject discussed in those studies, is on the scattering of waves by multi-arrayed
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submerged breakwaters in an open channel, and the outgoing wave energy is assumed to
be dissipated, completely.

In the field, there is always some reflection from rear structures, owing to the in-
complete dissipation by the breaking or frictional effect. With the reflected wave from
the rear side re-entering the submerged breakwaters’ field, the wave transformation be-
comes more complicated. A numerical simulation [14] and analytical analysis [15,16] were
conducted to examine the effect of the partial reflection, from the rear side on the Bragg
resonance. In these studies, the wave field was assumed to be the inviscid and irrotational
fluid, transforming across the impermeable periodic structure. The frontal submerged
breakwaters and the rear reflector work as two reflective mirrors in the Fabry–Pérot (F–P)
cavities, which are widely used in optics, quantum physics, and astronomy. Waves entering
the cavity undergo multiple reflections between the submerged breakwaters. Unlike the
traditional F–P cavities used in optics without considering the dissipation, the incoming
water wave energy is decomposed into three parts, while the partial energy is reflected back
and the rest is dissipated or trapped between structures. Based on the long wave theory
and energy dissipation of the permeable structures, Terrett et al. [17] and Chwang [18]
investigated the wave trapping by a porous wall with a solid backwall. They concluded
that the reflection coefficient reached its lowest value when the distance S, between the
porous plate and a vertical wall, was equal to an integer multiple of the quarter of the
wave length L, namely, S/L = n/4; n = 1, 3, 5, . . ., and the porous structure lost its wave
damping efficiency for n = 2, 4, 6, . . . Recently, Behera and Khan [6] used a multi-domain
boundary element method to investigate the wave energy attenuation caused by the double
trapezoidal porous structures near a porous wall. Their results indicated that the double
trapezoidal structures in the presence of the porous seawall were the effective configuration,
in terms of reducing the wave force acting on the vertical wall. However, their investigation
was under the assumption of the linear wave theory, and completely ignored the nonlinear
wave-wave interaction. Unlike the study on the existence of the trapped mode, discussed
in the aforementioned studies, the emphasis of this study is to analyze the effect of the F–P
resonance on the wave transformation and trapping, and to evaluate the stability of the
rear structure and seabed around the coastal structures.

There have been extensive experimental and numerical studies on the wave-induced
seabed response around marine structures [19–23]. By applying a boundary element
method (BEM) and a finite element method (FEM) model, Mizutani and Mostafa [24]
investigated the nonlinear wave-induced seabed instability around coastal structures.
Hur et al. [25] studied the flow characteristics in the permeable structure and the sandy
seabed. They found that the flow within the seabed was dominated by the laminar flow
effect. Based on the assumption of the negligible effect of the poro-elastic deformations on
the wave transformation, Zhang et al. [26] developed a one-way coupling model, combining
the volume-averaged Reynolds-averaged Navier–Stokes (VARANS) equations for the wave
field and Biot’s consolidation equations for the seabed. Their results indicated that the
seabed response around the permeable submerged breakwaters was highly dependent
on the process of the wave propagation and soil characteristics. The one-way coupling
model is further enhanced to include the inertial forces associated with the soil skeleton by
the “us − ps” (us is soil displacement; ps is pore pressure) approximation [13], to describe
the wave motion and its induced seabed response. It turned out that the wave amplitude
largely decreased at the back side of the structures, owing to the Bragg reflection. However,
all of these previous studies have only focused on the multiple permeable structures in an
open channel. A study on the seabed response beneath multiple permeable submerged
breakwaters in a closed-end channel, is still not available.

Recently, a series of submerged breakwaters have been used to shelter the rear structure
on the Hainan coast, in China. To ensure the sufficient water area, the rear structure adopted
the vertical form, which was expected to effectively reflect the wave back to the frontal
submerged breakwaters. For such kinds of breakwater arrangements, however, it is not
clear how the F–P resonance affects the wave transformation and trapping, and thus the
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stability of the rear vertical structure. This motivates this study. The plan of this paper is as
follows. The effectiveness of this one-way coupling method will be discussed in Section 2.
The mathematical formulations and the POROus model for the wave-seabed-structure
interaction version II (PORO-WSSI II), are also briefly presented in Section 2, in which
the VARANS equations are used for the wave sub-model, and the dynamic Biot theory
is then used for the porous seabed sub-model. The PORO-WSSI II model proposed by
Zhang et al. [13] is further developed to include a wide range of porous flow from the
laminar, transitional, and fully turbulent flows. The model validation is presented in
Section 3 by using the laboratory experiments of Cho et al. [11] and Tsai and Lee [27]. The
details of the wave trapping under the F–P resonance condition are given in Section 4,
in which two modes about the wave transformation are defined. Meanwhile, the effects
of the wave periods, and structure properties (number and porosity of the submerged
breakwaters, the phase of the rear breakwater reflection, relative to that of the submerged
breakwaters) on the wave transformation, and the stability of the rigid breakwater, are
discussed. Finally, the conclusions are summarized in Section 5.

2. Numerical Model

In this study, the model PORO-WSSI II [13] is enhanced to simulate the wave-seabed-
structure interaction. In this one-way coupling model, the small deformation and percola-
tion in the seabed are assumed not to affect the wave transformation. Due to the dissipation
of the wave energy, the Reynolds number (Re) of the flow inside the rear submerged break-
waters is much smaller than that in the frontal breakwater. In the study of Zhang et al. [13],
the inner and outer flows of the porous breakwater are described by the VARANS equations,
while the porous flow model only consider the resistance force in the laminar and fully
turbulent flow regimes. Therefore, the main feature of the proposed model is the inclusion
of a wider range of flow regimes. To account for the dynamic mechanical behaviors of the
structures and the seabed, the dynamic Biot model is adopted. The pressure calculated
from the VARANS model will be used as the seabed boundary condition in the dynamic
Biot model.

It is well known that the wave transformation is highly dependent on the soil dynamic
response to the wave loading. Unlike the viscous dissipation generated by the deformation
of the silty seabed, the primary mechanism of the wave energy dissipation in the sandy
seabed is the friction within the porous structure [28]. Therefore, it is reasonable to ignore
the influence of the seabed deformation on the wave transformation. The details of this one-
way integrating procedure can be found in Zhang et al. [26] and will not be repeated here.

2.1. Wave Sub-Model

For a turbulent flow, all of the flow variables represented by ϕ are decomposed into
time average term ϕ and the turbulent terms ϕ′ as well as into the ensemble-intrinsic
volume average 〈ϕ〉 f . Thus, the turbulent flow field is governed by the following VARANS
equations [29]:

∂〈ui〉
∂xi

= 0 (1)

1 + CA
n
〈∂ui〉

∂t
+
〈uj〉

n
∂

∂xj

〈ui〉
n

= − 1
ρ f

∂〈p〉 f

∂xi
+

1
nρ f

∂〈τij〉
∂xj

− 1
n2

∂〈u′iu′j〉
∂xj

− fDi (2)

where ui is the flow velocity (written as ui = (u, v) for simplicity); xi is the Cartesian
coordinate; t is the time, ρ f is the density of the fluid; p is the pressure; τij is the viscous
stress tensor of the mean flow; gi is the ith component of the gravitational acceleration;
n is the porosity of the porous material; cA = 0.34((1− n)/n) denotes the added mass
coefficient; 〈u′iu′j〉 is Darcy’s volume averaged Reynolds stress that can be obtained by
solving the modified κ − ε (κ is the kinetic energy and ε is the dissipation rate of the kinetic
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energy) equations and the nonlinear eddy viscosity model [30]; “〈 〉” and “〈 〉 f ” stand
for Darcy’s volume averaging operator and the intrinsic averaging operator.

In the VARANS model, the drag force fDi is resulted from the spatial perturbation of
the velocity and pressure, which can be simulated as following [31]:

fDi =
3
4

CD
1− n

n3
1

d50
uc〈ui〉 (3)

where CD is the drag force coefficient; d50 is the equivalent mean diameter of the porous
material, and the instantaneous horizontal wave orbital velocity uc can be estimated by
uc =

√
〈ui〉〈ui〉. It is obvious that in the free fluid region, i.e., n = 1 and

cA = fDi = 0, the VARANS equations return to the original RANS equations. In this
study, the empirical formula of the drag coefficient for a single smooth sphere CDs given by
Fair [32], is employed:

CDs =
24
Re

+
3√
Re

+ 0.34 (4)

where Re = |U|d50/υ with U being a typical velocity scale and υ being the fluid viscosity.
In Equation (4), the first term means the conventional linear friction force for the

flow with a small Re, the other terms are the correction terms of the friction force for the
transitional flow, and for the fully turbulent flow (large Re), the nonlinear drag coefficient
can be approximated as a constant CDs = 0.34. To account for other effects, i.e., the influence
of the pore shape, wetted surface, tortuosity factor, and path length [33], the final form of
CD is corrected as [32]:

CD = C1
24
Re

+

(
C2

3√
Re

+ 0.34C3

)(
1 +

7.5
KC

)
(5)

where KC = ucT/(nd50). To obtain the values of the empirical coefficients C1, C2, and C3,
we consider a one dimensional (1D) steady flow in sand, described as the following:

− 1
ρ f

∂p
∂x

= AU + B
√
|U|U + C|U|U (6)

where

A = 18C1
1− n

n3
υ

d2
50

; B = 2.25C2
1− n

n3
υ1/2

d3/2
50

; and C = 0.255C3
1− n

n3
1

d50
(7)

It is interesting to find that if the empirical coefficients C1 = 100
9 (1− n), C2 = 0, and

C3 = 4.3 are adopted, Equation (6) shows the same expression with the model, proposed
by Liu et al. [34]. Considering the transitional term, the modified values of C1 = 5 and
C3 = 2 are used in this study. The range of C2, suggested by Lin and Karunarathna [35], is
from 1.8 to 4.2. Therefore, C2 = 2 is adopted in this study.

2.2. Seabed Sub-Model

In this study, an unsaturated porous seabed is assumed to be hydraulically isotropic
(with the same permeability K in all directions), and the flow inside the seabed obeys
Darcy’s law. As such, the dynamic Biot equations (the so-called “us − ps” approximation,
us is the soil displacement in the horizontal direction; ps is the pore pressure) proposed
by Zienkiewicz et al. [36], are used to describe the dynamic seabed response around the
structures. The acceleration, due to the soil motion, is considered in the present seabed
sub-model, while the relative acceleration, due to the pore fluid, is ignored. The governing
equations are:

∇2 ps −
γwnsβs

K
∂ps

∂t
+ ρ f

∂2εs

∂t2 =
γw

K
∂εs

∂t
(8)
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∂σ′x
∂x

+
∂τxz

∂z
=

∂ps

∂x
+ ρ

∂2us

∂t2 (9)

∂τzx

∂x
+

∂σ′z
∂z

+ ρg =
∂ps

∂z
+ ρ

∂2ws

∂t2 (10)

where ws is the soil displacement in the vertical direction; ps is the pore pressure; γw
is the unit weight of the pore water; ns is the soil porosity; σ′x and σ′z are the effective
normal stresses in the horizontal and vertical directions, respectively; τxz is the shear stress;
ρ = ρ f ns + ρs(1− ns) is the average density of the porous seabed; ρs is the soil density; K
is Darcy’s permeability; εs is the volume strain; and βs is the compressibility of the pore
fluid; defined as:

εs =
∂us

∂x
+

∂ws

∂z
and βs =

1
Kw

+
1− Sr

Pw0
(11)

where Kw is the bulk modulus of the pore water (taken as 2× 109 N/m2); Sr indicates the
saturated degree of the seabed; Pw0 is the absolute water pressure.

The effective stress and strain of the solid matrix are determined by Hooke’s law:

σ′x = 2G
[

∂us

∂x
+

µs

1− 2µs
εs

]
(12)

σ′z = 2G
[

∂ws

∂z
+

µs

1− 2µs
εs

]
(13)

τxz = τzx = G
[

∂us

∂z
+

∂ws

∂x

]
(14)

where G is the shear modulus; and µs is Poisson’s ratio. The shear modulus G of the soil
generally varies with the static normal effective stress in the sandy seabed [37]:

G = Cg pa
(er − e)2

1 + e

(
σ0

pa

)ng

(15)

where, Cg and ng are nondimensional soil parameters and are respectively taken as 612
and 0.439 for the sand [38]; pa is the air pressure; er = 2.17 for the sand particles ranging
from round to angular in shape [37]; e is the void ratio of the sandy soil; and σ0 is the initial
mean normal effective stress, defined as:

σ0 =
σ1 + 2σ3

3
(16)

in which σ1 and σ3 are the maximum and the minimum principal effective stresses, respec-
tively. In this study, the seabed sub-model is solved by the finite-element method.

2.3. Boundary Conditions

Appropriate boundary conditions are required to solve the governing equations. In
the wave sub-model, the two-phase volume of fluid (VOF) method [39] is used to track
the water-air interface and the zero-stress condition is adopted on the mean free surface
by neglecting the effect of the air flow (τij = 0). On the seabed surface, a no-slip boundary
condition is imposed for the mean flow field (ui = 0). For the turbulence field, the log-law
distribution of the mean tangential velocity in the turbulent boundary layer is applied in
the grid point immediately above the sea floor. The zero-gradient boundary conditions are
also imposed for both the turbulent kinetic energy κ and its dissipation rate ε on the free
surface (i.e., ∂κ/∂

→
n = ∂ε/∂

→
n = 0). To run for a sufficiently long time until the waves reach

the quasi-steady state, a combination of the numerical sponge layers and the radiation
boundaries are used at the two lateral sides.

In the geotechnical module, on the seabed surface, it is assumed that the vertical
effective normal stress σ′z and the shear stress τxz are negligible, compared to the large
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amplitude wave pressure in this study, while the pore pressure ps is equal to the dynamic
wave pressure pd, calculated from the VARANS model:

ps = pd, and σ′z = τxz = 0 at z = 0 (17)

The bottom of the seabed is considered to be impermeable and rigid, while the soil
displacement and the normal gradient pore pressure are specified as zero:

∂ps

∂z
= 0, and us = ws = 0 at z = −Hs (18)

The structure can move freely, whereas the pressure imposed by the wave impact is
applied perpendicularly to the outer surface of the structure. At the soil-structure interface,
a no-slip condition for the soil displacement is imposed.

2.4. Numerical Scheme

In the numerical model, the same discretization of the uniform ∆x = 0.01 m and
∆z = 0.005 m, is used for both validations and the present simulations in the wave sub-
mode. In the soil model, the optimal triangular FEM meshes were generated by the
COMSOL software with a maximum element size scaling factor 0.02, to control the maxi-
mum allowed element size, in this study. Both the Courant-Friedrichs-Lewy condition, (19)
and the diffusive limit condition, (20) were adopted to obtain the automatically adjustable
time interval, to obtain the computational stability.

∆t ≤ α1 min
(

∆x
|u|max

,
∆z
|v|max

)
(19)

∆t ≤ α2
1

2(υ + υt)

[
1

1/(∆x)2 + 1/(∆z)2

]1/2

(20)

where |u|max and |v|max are the maximum flow velocities, and the empirical coefficients
are α1 = 3

10 and α2 = 2
3 , in this study.

3. Model Validation

To validate the proposed numerical model, two available laboratory experiments,
conducted by Cho et al. [11] and Tsai and Lee [27], are used. The configurations of the
laboratory experiments are shown in Figures 1–3, respectively.

3.1. Validation for the Wave Reflection

The results evaluated for the reflection coefficient (KR) in the present study, us-
ing the VOF numerical scheme, are compared with the experimental measurements
by Cho et al. [11]. In the laboratory experiments, the periods of incident waves were
1.14~3.73 s and the incident wave height was 0.04 m. The numerical boundary element
method (BEM) results with an assumption of the linear wave theory, by Behera and Khan [6],
who investigated the wave attenuation, due to the multi-arrayed trapezoidal submerged
breakwaters, are also used for comparison. In this example, the reflection coefficients
are determined by the measurements of the two wave gauges, installed in front of the
submerged breakwaters. The separation of the incident and the reflected waves are carried
out by the method of Goda and Suzuki [40]. Figure 2 shows the comparison of the simu-
lated and measured reflection coefficient KR for the different breakwater numbers. There
are some discrepancies between the experimental and the BEM of Behera and Khan [6],
especially when the period of the incident wave is short (e.g., kd > 1.5; where k is the
wave number and d is the still water depth). It is seen that, with the consideration of the
non-linear effect, the reflection coefficient predicted in this study generally agrees well with
the measurements.
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Figure 2 shows that the reflection coefficient is highly dependent on the wave period
and has an oscillation variation with kd. For m = 2 (m denotes the number of the submerged
breakwater), the reflection coefficient reaches a maximum KR = 0.32 at kd = 0.6 and a
second peak KR = 0.20, corresponding to the sub-resonance occurring at kd = 1.3. At
kd = 1.0, the submerged breakwaters have little effect on the reflection. The reflection
coefficient of the three arrays (m = 3) shows a similar resonance period but the magnitude
of the reflection coefficient is larger than those for two breakwaters (e.g.KR = 0.50 at
kd = 0.6). The small wave energy is reflected back at kd = 1.1 for m=3. When the period of
the incident wave is short (kd > 1.5), the non-linearity is more important than the Bragg
resonance [12].
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(a) two breakwaters m = 2, (b) three breakwaters m = 3.
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3.2. Validation for the Seabed Response

Tsai and Lee [27] conducted a series of experiments to investigate the sand bed re-
sponse, induced by the standing wave. The details of the experiments can be found in
Tsai and Lee [27]. A brief description is provided for the convenience and completeness
(see Figure 3). The experimental wave flume was 100 m long, 2 m wide, and 2 m high. The
water depth above the mudline was 45 cm, the wave period was 1.5 s and the wave height
of the incident wave was 5.1 cm. The sandy soil was filled to a depth of 0.5 m and 2 m in
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length, in front of the wall. Five pore-water pressure transducers were installed vertically
below the wall to measure the pore pressure and another five transducers were placed
horizontally below the mudline. Figure 4 shows a comparison of the wave-induced pore
pressure at ten pressure transducers, between the simulation and the measurement. It is
seen from Figure 4 that the predicted pore pressure agrees well with those measured in the
laboratory experiments.
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Figure 4. Time histories of the wave−induced oscillatory pore pressure at the various horizontal
positions at z = 40 cm. Symbols: red lines: numerical results, #: experimental data. (a) Pressure on
the line, parallel with the seabed surface. (b) Pressure on the right side of the sand bed.

4. Results

In this section, the validated PORO-WSSI II model is applied to investigate the effect
of the rear reflection on the F–P resonance and the seabed response, due to the wave
propagating over the multiple submerged breakwaters. The transmitted wave is confined
to the region between the submerged breakwaters and the vertical structure. A sketch of
the trapezoidal submerged breakwaters and the vertical structure is shown in Figure 5.
The computational domain covers −50 ≤ x ≤ 50 m and 0 ≤ z ≤ 1.0 m. The wave-
maker method, developed by Lin and Liu [41], is adopted to generate the desired wave at
x = −20 m. The sponge layers are set on both sides of the numerical flume to eliminate the
reflection wave. The water depth is d = 0.8 m and a trapezoidal shape is used with a fixed
dimension of hs = 0.4 m, Wb = 2d = 1.6 m, and Wt = 0.5d = 0.4 m. The interval between
the submerged breakwaters is Ls = 2.5d = 2 m. Two different cases are simulated, i.e., the
wave trapping by a rigid breakwater in the presence of (i) two submerged breakwaters,
(ii) three submerged breakwaters. The vertical breakwater is located at a resonator length
S/L = n/16, where L is the wave length, from the lee side of the latter submerged
breakwater. The width of the rigid breakwater is W = d = 0.8 m, and the height of the
vertical structure is hv = 1.25d = 1.0 m. More details of the wave conditions, soil properties,
and structure characteristics are listed in Table 1.
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Figure 5. Schematic diagram for the wave trapping by the double/triple trapezoidal porous structures
near a vertical wall (not to scale).

Table 1. Test conditions of the numerical simulations.

Mediums Parameters

Wave Wave height (m) H 0.04

Wave period (s) T 1.29~3.73

Seabed

Porosity ns 0.3

Thickness (m) h 10

Permeability (m/s) K 10−3

Degree of saturation Sr 1.0

Poisson’s ratio µs 1/3

Submerged breakwater

Porosity n 0.3~0.5

Mean grain size (m) d50 0.076

Shear modulus (N/m2) G 109

Poisson’s ratio µ 1/3

For the purpose of comparison, the parameters that are common in all simulation cases
are given fixed moderate values. Each of which is changed for the corresponding effect on
the wave interaction under discussion, while the other values are kept the same. In the case
of the three submerged breakwaters (m = 3) backed by a rigid breakwater, the wave period
is fixed as T = 3.16 s or kd = 0.6, and the distance between the submerged breakwaters
and the vertical structure keeps as S/L = 1.0. The porosity of the submerged breakwaters
is n = 0.5, unless otherwise stated. The model is subsequently run for each experimental
case (see Table 1) for a duration of 100 wave periods. To allow the full interaction of the
wave and the structure, only the simulation results of the last 50 wave periods are used for
analysis, as suggested by Couston et al. [16].

4.1. Wave Transformation

Figure 6 shows the numerical results for the temporal variation of the surface elevation
and the spatial evolution of the harmonic amplitude under the Bragg resonance period,
kd = 0.6, with a different number of the submerged breakwaters and intervals S. It is
seen that the partial standing waves are formed and the significant wave amplification or
suppression can be observed between the breakwaters under the F–P resonance condition.
With the increase of the interval between the breakwaters, it can be observed that two
modes of the wave transformation exist. For Mode 1: most wave energy is reflected back to
the open sea. Therefore, the displacement of the free surface decreases gradually from the
area above the submerged breakwaters, and reaches a minimum between the submerged
breakwater immediately after the submerged breakwaters, as shown in Figure 6a. It is
noted that the amplitude of the fundamental harmonic component decreases from 1.92,
1.90, and 1.84, in the front of the outer submerged breakwater, respectively, to 1.88, 1.48,
and 1.14, near the rigid breakwater. For Mode 2

(
at S/L = 8+8n

16 , or 9+8n
16 , n = 0, 1, 2, 3, . . .

)
:
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the majority of the incident wave energy is trapped by the submerged breakwaters near
a rigid breakwater. A F–P cavity is formed with the interference of the re-reflected water
wave, by the frontal submerged breakwaters and the rear vertical breakwater. As shown
in Figure 6b, the displacement of the free surface near the rigid breakwater is 1.2, 1.5, and
1.6 times higher than that in front of the outer submerged breakwater, where the amplitude
of the fundamental harmonic component increases from 1.90, 1.78, and 1.66, to 2.38, 2.76,
and 2.66, for m=1, 2, and 3, respectively. Comparing with the case with a breakwater
(m=1), the additional submerged breakwater amplifies the interaction between the wave
and the displacement of structures. More wave energy is reflected and trapped for the
case with three breakwaters (m = 3) in Mode 1 and 2, respectively. To understand the
basic mechanism of the wave evolution during the propagation, the spatial variation of
the amplitude of the first two harmonics is decomposed in Figure 6. The amplitude of the
fundamental harmonic component decays with the increase of the number of the submerged
breakwaters. However, the amplitude of the higher harmonic component increases in front
of the outer submerged breakwater, as well as near the rigid breakwater. This may be due
to the generation of the higher-order harmonics by the nonlinear interaction between the
incident wave and the structures, which means that the long period waves are distorted
by the change of the bottom topography, and the nonlinear interaction between the wave
and the structures is important. Taking S/L = 0.75 as an example, the amplitude of the
fundamental harmonic component decreases from 1.88 to 1.14 and the amplitude of the
higher harmonic component increases from 0.144 to 0.196, near the rigid breakwater. This
harmonic component’s increase is caused by the nonlinear interaction process with the
wave energy transfer from the fundamental harmonic to the second harmonic.
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To investigate more details about the wave energy transfer, the group velocity, one
of the most important concepts in waves, is discussed. Based on the kinematic view, the
group velocity can be defined as [42]

cg =
∂ω

∂k
=

1
2

[
1 +

2kd
sinh2kd

]√
(g/k)tanhkd (21)

The group velocity also has a dynamic meaning of the velocity of the energy transport,
which relies on the relation [42]

c f = P/E (22)

where P is the wave energy flux and E is the wave energy density. The wave energy flux
and wave energy density are defined as [42]:

P =
1
T

∫ t+T

t

∫ d+η

0
u
[

pd +
1
2

ρ
(

u2 + v2
)]

dzdt (23)

E =
1
T

∫ t+T

t

∫ d+η

0

[
ρg(z− d) +

1
2

ρ
(

u2 + v2
)]

dzdt (24)

Noted that in the limit of the non-dissipative progressive waves, the magnitude of
c f is identifiable with cg. Figure 7 shows the time history of the variation in the group
velocity c f /cg at the entrance of the three submerged breakwaters (x/d = 0), with a wave
period of T = 3.16 s. It is clearly seen that wave approaches to the entrance with the
group velocity c f = cg at t/T = 3. As shown in Figure 7b, the steady state is reached after
about 50 wave periods, which is quantitatively consistent with those observations made in
previous studies [16], and the group velocity is stable at c f /cg = 0.55.
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Figure 8 shows the variation of the non-dimensional velocity of the energy transport
c f /cg with the resonator length under the Bragg resonance period kd = 0.6. It is obvious
that a strong positive transport velocity occurs in front of the first submerged breakwater.
Therefore, most of the wave energy flows into the system, which consists of the submerged
breakwaters and the rear vertical breakwater. With the wave energy transformation over
the submerged breakwater, the velocity of the energy transport c f /cg steps down to zero.
Therefore, almost no energy transformation exists and a standing wave is formed between
the submerged breakwaters and the vertical breakwater, which is also shown in Figure 6.
As shown in Figure 8, the peak values of the transport velocity are 0.22, 0.36, and 0.47 at
S/L = 0.75 for m=1, 2, and 3, respectively. Compared to the case under Mode 1, the energy
flux transports faster under Mode 2 and the peak values of the transport velocity are 0.30,
0.52, and 0.55 for m = 1, 2, and 3, respectively. The faster the wave energy flows in, the
more energy is trapped and dissipated. Therefore, there are violent fluctuations near the
vertical breakwater at S/L = 1.0 (this is also seen in Figure 6b). The dissipation coefficient
will be further discussed in the following sections.
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The distribution of root-mean-square velocity magnitude (unit: m/s) around the
breakwaters with a wave period of T = 3.16 s, is plotted in Figure 9. Figure 9 shows that a
significant velocity gradient occurs in the vicinity of the submerged breakwaters, especially
near the front of the submerged breakwater. Both Mode 1 and Mode 2 are considered
here. It is found that the distance between the submerged breakwaters and the vertical
breakwater contributes a significant difference in the velocity field around the breakwaters.
It is seen from Figure 9, that the flow velocity above the submerged breakwaters is higher
than that of the adjacent area for Mode 1. This is because the existence of the submerged
breakwaters partly reflects and dissipates the wave energy. Whereas in the case of the wave
transforming under Mode 2, the breakwaters tend to trap the wave, thus enhancing the
velocity near the vertical breakwater.

J. Mar. Sci. Eng. 2022, 10, 1797 13 of 27 
 

 

The distribution of root-mean-square velocity magnitude (unit: m/s) around the 

breakwaters with a wave period of 𝑇 = 3.16 s, is plotted in Figure 9. Figure 9 shows that 

a significant velocity gradient occurs in the vicinity of the submerged breakwaters, espe-

cially near the front of the submerged breakwater. Both Mode 1 and Mode 2 are consid-

ered here. It is found that the distance between the submerged breakwaters and the verti-

cal breakwater contributes a significant difference in the velocity field around the break-

waters. It is seen from Figure 9, that the flow velocity above the submerged breakwaters 

is higher than that of the adjacent area for Mode 1. This is because the existence of the 

submerged breakwaters partly reflects and dissipates the wave energy. Whereas in the 

case of the wave transforming under Mode 2, the breakwaters tend to trap the wave, thus 

enhancing the velocity near the vertical breakwater. 

  

(a) (b) 

Figure 9. Distribution of the root−mean−square velocity magnitude (unit: m/s) around the breakwa-

ters with a wave period of 𝑇 = 3.16 . (a) 𝑆 𝐿⁄ = 0.75. (b) 𝑆 𝐿⁄ = 1.0. 

4.2. Wave Reflection and Dissipation Coefficients 

Conventionally, the effectiveness of the coastal structures is estimated in terms of the 

wave reflection, transmission, and dissipation coefficients. The reflection 𝐾𝑅 =
𝐻𝑅

𝐻𝐼
, is also 

obtained by the method of Goda and Suzuki [40], where 𝐻𝑅  is reflected by the wave 

height and 𝐻𝐼 is incident wave height. 

Figure 10 shows the reflection coefficient 𝐾𝑅, versus the resonator length 𝑆 𝐿⁄ , for the 

different values of the wave period 𝑇. It is seen from Figure 10, that the variation of 𝐾𝑅 is 

periodic. For the frontal weak reflection condition (e.g., 𝑘𝑑 = 1.0;𝑚 = 2 or 𝑘𝑑 = 1.1;𝑚 =

3), the reflection coefficient shows a slight oscillation with the resonator length 𝑆 𝐿⁄ . How-

ever, the Bragg resonance coefficient plays a very significant role in trapping the waves by 

the submerged breakwaters. The reflection coefficient is more sensitive for the resonator 

length with the larger frontal Bragg reflection coefficient. Taking 𝑚 = 2 as an example, the 

amplitude of the fluctuation increases to 0.42 (at 𝑘𝑑 = 0.6). Figure 10 also indicates that the 

locations of the minima have an obvious leftward shift with the increase of 𝑘𝑑. This may be 

due to the change in the phase angle of the porous-effect in the submerged breakwaters. 

  

(a) (b) 

Figure 10. Variation of the reflection coefficient 𝐾𝑅 with 𝑆 𝐿⁄  for the different wave periods 𝑘𝑑. 

(a) 𝑚 = 2. (b) 𝑚 = 3. 

𝑆 𝐿⁄ = 0.75 𝑆 𝐿⁄ = 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2

kd=0.5 kd=0.6

kd=0.7 kd=1.0

 
 

  ⁄

𝑚 = 2
0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2

kd=0.5 kd=0.6
kd=0.7 kd=1.1

 
 

  ⁄

𝑚 = 3

Figure 9. Distribution of the root−mean−square velocity magnitude (unit: m/s) around the break-
waters with a wave period of T = 3.16s. (a) S/L = 0.75. (b) S/L = 1.0.

4.2. Wave Reflection and Dissipation Coefficients

Conventionally, the effectiveness of the coastal structures is estimated in terms of the
wave reflection, transmission, and dissipation coefficients. The reflection KR = HR

HI
, is also

obtained by the method of Goda and Suzuki [40], where HR is reflected by the wave height
and HI is incident wave height.

Figure 10 shows the reflection coefficient KR, versus the resonator length S/L, for the
different values of the wave period T. It is seen from Figure 10, that the variation of KR is
periodic. For the frontal weak reflection condition (e.g., kd = 1.0; m = 2 or kd = 1.1; m = 3),
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the reflection coefficient shows a slight oscillation with the resonator length S/L. However,
the Bragg resonance coefficient plays a very significant role in trapping the waves by
the submerged breakwaters. The reflection coefficient is more sensitive for the resonator
length with the larger frontal Bragg reflection coefficient. Taking m = 2 as an example, the
amplitude of the fluctuation increases to 0.42 (at kd = 0.6). Figure 10 also indicates that the
locations of the minima have an obvious leftward shift with the increase of kd. This may be
due to the change in the phase angle of the porous-effect in the submerged breakwaters.
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Figure 10. Variation of the reflection coefficient KR with S/L for the different wave periods kd.
(a) m = 2. (b) m = 3.

Based on the principle of the energy conservation, the dissipation coefficient KD is
related to the reflection coefficient and can be calculated as:

KD =
√

1− K2
R (25)

Figure 11 shows the variation of the reflection coefficient KR and the dissipation
coefficient KD with the resonator length under the Bragg resonance condition, i.e., kd = 0.6.
The gray shadow is the phase where the wave transforms in Mode 2. It is seen that
the reflection and dissipation coefficients vary periodically with the resonator length
S/L and each curve repeats itself in every half-wavelength. Figure 11 shows that the
maxima KR takes place at S/L = 7+8n

16 (n = 0, 1, 2, 3, . . .), which means that the wave
transforms in Mode 1, and most of wave energy is reflected by the submerged breakwaters.
The number of the submerged breakwaters m has a great impact on the reflection and
dissipation coefficients. Comparing these two lines, it is obvious that the large frontal
Bragg reflection coefficient (KR = 0.50; m = 3 in Figure 2) results in a higher reflection
extinction and a higher dissipation of the wave energy. Due to the wave energy dissipated
by the additional submerged breakwater, the dissipation coefficient KD for m = 3, shows
that it is larger than that for m = 2, especially when the wave transforms in Mode 2.

Unlike the traditional formula of the dissipation coefficient KD =
√

1− K2
R − K2

T [35],
the dissipation coefficient defined in Equation (25) also shows the trapped wave energy
re-dissipated by the frontal submerged breakwaters. The additional submerged breakwater
enhances the process of re-dissipation. Therefore, the dissipation coefficient KD jumps
obviously from 0.85 to 0.95 when the number of the submerged breakwaters increases at
S/L = 9+8n

16 (n = 0, 1, 2, 3, . . .).
It has been well-known that the wave energy dissipation is highly dependent on

the breakwater porosity. The breakwater porosity is taken as n = 0.3, 0.4 and 0.5 in
this study, respectively, and its impact on the reflection and dissipation coefficients is
shown in Figure 12. It can be seen that the obvious decline of the reflection coefficients
(KR = 0.54, 0.48 and 0.32) with the increase of the porosity (n = 0.3, 0.4 and 0.5), occurs
at S/L = 9+8n

16 , (n = 0, 1, 2, 3, . . .). This indicates that the submerged breakwaters with
a larger porosity (n = 0.5) provide more space for the flow development inside the sub-
merged breakwaters, which leads to a higher energy dissipation. It implies that the wave
period (T or kd), the parameters of the submerged breakwaters (m and n), and the re-
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flectivity of the vertical structure, have a significant influence on the wave motion. The
key to the qualitative change of the wave response in a trapping system is the phase of
the rear reflection, relative to that of the arrays of the submerged breakwaters. Since the
seabed response is mainly dominated by the wave motion [26], these four parameters
may also affect the wave force exerting on the rigid breakwater and on the wave-induced
seabed response.
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Figure 11. Comparison of the reflection and the dissipation coefficients for the different structure
configurations with kd = 0.6. (a) m = 2. (b) m = 3.
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Figure 12. Variation of KR and KD for the different porosities of the submerged breakwaters (m = 3)
with kd = 0.6, (a) reflection coefficient KR. (b) dissipation coefficient KD.

Based on the above discussions, it can be concluded that the distance between the
submerged breakwaters and the vertical breakwater has a significant influence on the wave
transformation. This may further affect the shelter of the submerged breakwaters, which is
part of the focus of this study and will be discussed in the following sections.

4.3. Enhancement Coefficient

Based on the above discussion, we can find the analogy between the water wave
trapping mechanism and the F–P resonance in the optics. Without the consideration of the
dissipation in the optics, the resonator length of the F–P resonance can be easily determined
by the coefficient of the reflection or the transmission. For a given resonator length, the
partial wave is reflected back, the trapped wave by the breakwaters constructively interferes
and the F–P resonance condition is satisfied. In this study, the enhancement coefficient is
defined by the amplitude of the water wave within the resonator in [16]:

E =
HT
HI

(26)

where HT is the trapped wave height.
Figure 13 shows the variation of the enhancement coefficient E with the res-

onator length S/L, for the different values of the wave period T. Figure 13 shows
that the highest E occurs on the F–P resonance condition with the resonator length
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ST/L = 8+8n
16 + θ, (n = 0, 1, 2, 3, . . .), where θ is the phase shift. A leftward shift is ob-

served and the phase θ changes significantly for the different wave periods. This is mainly
due to the greater detuning frequency and the nonlinear interaction between the wave and
porous structures. Comparing the two solid lines, it is clear that the large frontal Bragg
reflection coefficient (KR = 0.32, m = 2; KR = 0.50, m = 3 in Figure 2) results in a higher
field enhancement between the breakwaters. The larger the trapped wave energy, the
stronger the wave force acting on the vertical breakwater. This will be discussed in the
following section.
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Figure 13. Variation of the enhancement coefficient E with S/L for the different wave periods kd.
(a) m = 2. (b) m = 3.

4.4. Pressure Drag

Determining the drag force acting on the vertical structure, is very important for the
coastal structure design. Since the friction force is much smaller than the pressure force,
only the horizontal hydrodynamic force (F) is considered here. It is computed by the
pressure force acting on the vertical structure. In Figures 14–17, the drag F is normalized by
the hydrostatic pressure force

(
= 0.5ρgh2) acting on the vertical breakwater. Figure 14 is the

variation of the pressure force with the resonator length S/L for the different wave periods.
The periodic oscillation of the wave force is in phase with the enhancement coefficient.
A left shift is clearly observed in the pressure force acting on the vertical structure. The
phase of the maximum wave force shifts from ST/L = 8+8n

16 to 6+8n
16 (n = 0, 1, 2, 3, . . .) with

the greater detuning frequency. In addition, the maximum magnitude of the oscillation
occurs at the Bragg resonance period (kd = 0.6). It is seen that with a relative increase in
the detuning frequency relative to the Bragg resonance frequency, the fluctuation of the
pressure force is weakened. For the case with two submerged breakwaters (m = 2), the
fluctuation amplitude at kd = 0.7 is only 85% of that at kd = 0.6. Especially for the weak
reflection condition, e.g., kd = 1.0; m = 2 or kd = 1.1; m = 3, the normalized wave force is
almost close to a constant 0.064 or 0.053.
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Figure 14. Variation of the pressure drag acting on the rigid breakwater with S/L for the different
wave periods kd. (a) m = 2. (b) m = 3.
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Figure 15. Variation of the pressure drag versus S/L for the different structure configurations with
kd = 0.6. The dotted line is the wave force acting on the vertical breakwater directly.
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Figure 16. Variation of the wave force for the different porosities of the submerged breakwaters with
kd = 0.6. (a) m = 2. (b) m = 3.

J. Mar. Sci. Eng. 2022, 10, 1797 18 of 27 
 

 

 

Figure 17. Variation of the ratio of the wave force 𝐾𝐹 versus 𝑘𝑑 for the different structure config-

urations. 

4.5. Dynamic Response of the Seabed 

Wave propagating over the seabed will induce an excess pore pressure and a conse-

quent decrease of the effective stress around structures. Figures 18 and 19 display snap-

shots of the dynamic pore pressures, the effective normal stresses, and the shear stress at 

two typical times around the breakwaters with 𝑘𝑑 = 0.6 under two different Modes. The 

wave pressure is transmitted into the seabed foundation through the soil skeleton and the 

pore fluid. As shown in these figures, the wave-induced pore pressure, the effective nor-

mal stresses, and the shear stress are negligible in the region below 𝑧 𝐻𝑠⁄ < −0.5. The soil 

around the vertical breakwater is dilated or contracted under the cyclic wave loading. It 

is noted that the pore pressure (𝑝𝑠) is positive, the dynamic 𝜎′𝑥  is tensile, and 𝜎′𝑧  is 

compressive near the vertical breakwater under the wave crest (𝑡 𝑇⁄ = 0.25). A reverse 

trend can be found under the wave trough (𝑡 𝑇⁄ = 0.75). Another interesting observation 

from these figures is that the magnitude of the wave-induced pore pressure and the dy-

namic stresses are larger under Mode 2, especially around the vertical breakwater. The 

strong pore pressure is more likely to cause the liquefaction when there is a wave trough 

under Mode 2. 

  

(a) (b) 

Figure 18. Distribution of the wave-induced dynamics of the seabed around the breakwaters 
(𝑚 = 3) with a period of 𝑇 = 3.16 s under Mode 1 (at 𝑆 𝐿⁄ = 0.75) (a) 𝑡 𝑇⁄ = 0.25; (b) 𝑡 𝑇⁄ = 0.75. 

-60

-30

0

30

60

0.5 1 1.5 2

m=2 m=3

   .     ⁄

 ′  .     ⁄

 ′  .     ⁄

    .     ⁄

   .     ⁄

 ′  .     ⁄

 ′  .     ⁄

    .     ⁄

Figure 17. Variation of the ratio of the wave force KF versus kd for the different structure configurations.

Figures 15 and 16 show the wave force acting on the vertical breakwater with different
structure configurations under the Bragg resonance period (kd = 0.6). In Figures 15 and 16,
the wave force acting on the vertical breakwater without other structures (dotted line) is
also plotted to better analyze the shelter behind the submerged breakwaters. As shown
in Figure 15, the presence of the submerged breakwaters may worsen the hazards under
Mode 2 and the non-dimensional wave force rises to 0.13 at a strong F–P resonance trap-
ping condition

(
ST/L = 8+8n

16 , n = 0, 1, 2, 3, . . .
)
, as most of the wave energy is trapped

between the breakwaters (see Figure 6). In addition, there is a significant reduction of
wave force, due to the additional submerged breakwater, under the condition of Mode 1.
The minimum non-dimensional wave force, in the case m = 2 with the optimal distance
So/L = 4+8n

16 (n = 0, 1, 2, 3, . . .), is 0.058, while it is 0.042, in the case with m = 3. Unlike
the reduction of the wave force by the additional submerged breakwater, the submerged
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breakwaters with a larger porosity can effectively shelter the rear breakwater (see Figure 16).
This implies the benefit of using the submerged breakwater with a larger porosity. Taking
m = 3 as an example, the maximum non-dimensional wave force decreases from 0.16 to 0.13
under the strong F–P resonance trapping condition. However, the vertical breakwater still
suffers from the stronger wave impact than that without frontal submerged breakwaters
under the F–P resonance condition.

Based on the above discussion, the presence of the frontal submerged breakwaters
may worsen the hazards under the F–P resonance condition. To estimate the shelter under
this extreme condition, the coefficient of the wave force is obtained using the formula
KF = FT−Fisolate

Fisolate
× 100%, where FT and Fisolate are, respectively, the wave force acting on the

vertical breakwater with the frontal two or three submerged breakwaters, and without the
submerged breakwaters under the F–P resonance condition.

Figure 17 depicts the variation of KF with the non-dimensional wave number kd for
the different structure configurations. Usually, the coefficient of the wave force is negative,
due to the reflection and dissipation of the frontal submerged breakwaters. However, under
the condition near the first Bragg resonance kd = 0.6, the protection from the submerged
breakwaters can be absolutely broken down and the maxima of the wave force on the
vertical breakwater is 37% or 33% greater than that on the only vertical breakwater for
m = 2 or 3, respectively. It should be noticed that KF almost approaches to zero near the
second Bragg resonance kd = 1.3. The great Bragg reflection of the submerged breakwaters
generates a stronger wave force. When the period of the incident wave is short (kd > 1.5),
the primary mechanism of the wave-submerged breakwaters interaction transfers from
wave scattering to reflection and dissipation, and the ratio of the wave force KF is close
to a constant −11.6% and −18.6% for m = 2 or 3, respectively. Thus, the arrays of the
submerged breakwaters can either provide shelter or worsen the hazards for the rear
structure, depending on the number of the submerged breakwaters, wave periods, and the
condition of the rear reflection.

4.5. Dynamic Response of the Seabed

Wave propagating over the seabed will induce an excess pore pressure and a conse-
quent decrease of the effective stress around structures. Figures 18 and 19 display snapshots
of the dynamic pore pressures, the effective normal stresses, and the shear stress at two
typical times around the breakwaters with kd = 0.6 under two different Modes. The wave
pressure is transmitted into the seabed foundation through the soil skeleton and the pore
fluid. As shown in these figures, the wave-induced pore pressure, the effective normal
stresses, and the shear stress are negligible in the region below z/Hs < −0.5. The soil
around the vertical breakwater is dilated or contracted under the cyclic wave loading. It
is noted that the pore pressure (ps) is positive, the dynamic σ′x is tensile, and σ′z is com-
pressive near the vertical breakwater under the wave crest (t/T = 0.25). A reverse trend
can be found under the wave trough (t/T = 0.75). Another interesting observation from
these figures is that the magnitude of the wave-induced pore pressure and the dynamic
stresses are larger under Mode 2, especially around the vertical breakwater. The strong pore
pressure is more likely to cause the liquefaction when there is a wave trough under Mode 2.

Figure 20 is the vertical distribution of the wave-induced pore pressure pmax/(0.5γw H)
and the dynamic stresses for the various resonator lengths below the toe of the vertical
breakwater (the leading edge of the vertical breakwater) for m = 3. The vertical distribution
of the pore pressure and the effective stresses below the toe of the vertical breakwater also
oscillate with an interval ∆S/L = 8/16 cycle. Taking kd = 0.6 as an example, the pore
pressure and the dynamic stresses decrease until S/L = 12/16 and then increase with the
increase of the distance S/L. Finally, the vertical distribution at S/L = 16/16 shows the
same trend as that at S/L = 8/16, which is in phase with the enhancement coefficient.
This indicates that the resonator length S/L is a key parameter for the protection of the
rear structure or the seabed foundation. A left shift in Figure 20 is also shown. The
maxima wave-induced pressure occurs at the resonator length S/L = 16/16, 15/16, and
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14/16, under different wave periods (kd = 0.6 , 0.7, and 0.8). With the greater detuning
frequency, the re-reflection caused by the submerged breakwaters is too weak to affect the
wave transformation. Consequently, the magnitude of the pore pressure and the dynamic
stresses only show a slight oscillation (see kd = 0.8).
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Figure 18. Distribution of the wave-induced dynamics of the seabed around the breakwaters (m = 3)
with a period of T = 3.16 s under Mode 1 (at S/L = 0.75) (a) t/T = 0.25; (b) t/T = 0.75.
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Figure 19. Distribution of the wave−induced dynamics of the seabed around the breakwaters (m = 3)
with kd = 0.6 under Mode 2 (at S/L = 1.0) (a) t/T = 0.25; (b) t/T = 0.75.
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Figure 20. Vertical distributions of the wave−induced maximum pore pressure, the effective normal
stress and shear stress at the toe of the vertical breakwater, in the case with m = 3.

To further investigate the shelter of the submerged breakwaters, we examine the
vertical distributions of the pore pressure, the effective normal stress and the shear stress
below the toe of the vertical breakwater where the seabed instability is most likely to
take place. Two conditions, namely So/L = 12/16 and ST/L = 16/16, are considered
in Figures 21 and 22. As illustrated in Figures 21 and 22, the small magnitudes of the
pore pressures and the effective stresses appear at the optimal distance So/L = 12/16,
while the large magnitudes occur at ST/L = 16/16, in comparison with that without
the submerged breakwaters, especially at the upper part of the seabed. Figure 21 indi-
cates that an additional breakwater (m = 3) has an impact on the seabed response. As
shown in the figure, the value of pmax/(0.5γwH) at the seabed, in the case with (m = 2)
and (m = 3), is smaller than those in the case with the rigid breakwater, only, under the
condition of So/L = 12/16. Unlike the condition of Mode 1 (So/L = 12/16), the values
of pmax/(0.5γwH), σ′z/(0.5γw H), and τxz/(0.5γw H), for m=3 are the same as those for
m = 2 under the condition of Mode 2 (ST/L = 16/16). Figure 22 also shows that the value
of the wave-induced pore pressure and the effective stresses under both Modes increases
with the decrease of the porosity of the submerged breakwater, leading to the likelihood of
the seabed liquefaction, which is discussed below.
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Figure 21. Vertical distributions of the maximum wave−induced pore pressure, the effective normal
stress, and the shear stress below the toe of vertical breakwater for the different configurations with
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4.6. Liquefaction

The liquefaction is an extreme form of the seabed instability. When the pore pressure in
the non-cohesive soil keeps increasing, until the effective stress becomes zero, the soil loses
its structure strength and the liquefaction occurs. Therefore, the criteria for liquefaction is
that the effective stress becomes zero [43]. However, this criterion is only applicable to the
cases without structures. For the case with the breakwater, the criterion can be modified
as [13]:

σ′z +
∣∣σ′z0

∣∣ ≤ 0 (27)

where the σ′z0 is the vertical effective stress at the initial consolidation state.
This section is on a larger case scale, with a domain 25 times larger in dimension, than

that of the previous laboratory case (see Figures 23 and 24). Based on the above discussion,
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the vertical breakwater may experience the seabed instability at S/L = 16/16 under a
strong F–P resonance trapping condition. Therefore, the simulated conditions are: wave
height H = 1.0 m, wave period T = 15.5 s, and still water depth d = 20.0 m, which will
satisfy kd = 0.6. The seabed parameters are: soil permeability K = 10−3 m/s and the
degree of saturation Sr = 0.95. As discussed above, for both the Mode 1 and Mode 2,
the wave will transform as a standing wave. Therefore, we focus on two typical times
t/T = 0.25 and 0.75. Based on the criterion given by Equation (27), Figures 23 and 24 show
the wave-induced liquefaction potential around the breakwaters at two typical times. As
shown in the figures, the liquefaction area appears in the zone near the seabed surface
and its distribution is closely related to the dynamic loading. The results presented in
Figures 23 and 24 confirm that the momentary liquefaction can only occur under the wave
troughs, due to the wave-induced negative vertical normal stress σ′z. It is well known
that the wave period has a significant impact on the distribution of the wave trough in
a standing wave system. Therefore, the wave period is one of the important factors that
play an important role in the location of the wave-induced liquefaction. Furthermore,
the liquefaction does not occur in the seabed under the structures, due to the large initial
stress induced by the consolidation process. It is worth noting that the distance between
the submerged breakwaters and the vertical structure, has a significant impact on the
distribution of the wave-induced maximum liquefaction area. As shown in Figure 23b,
under Mode 1, most of wave is reflected back to the sea, and the maximum liquefaction
depth normally occurs in front of the first submerged breakwater (x = 0 m). However,
the maximum liquefaction area under Mode 2 significantly differs from that under Mode
1. The soil around the vertical breakwater (x = 425 m) liquefies with a potential depth
ld = 0.93 m under Mode 2 in Figure 24b. This implies that the seabed around the vertical
breakwater is highly vulnerable to the momentary liquefaction under Mode 2.
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of kd = 0.6 under Mode 1 (at S/L = 0.75). (a) t/T = 0.25; (b) t/T = 0.75.
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of kd = 0.6 under Mode 2 (at S/L = 1.0). (a) t/T = 0.25; (b) t/T = 0.75.

At the typical time t/T = 0.75, the liquefaction zone is very close to the foundation
of the vertical breakwater, which may cause the instability of the foundation. Therefore,
we will further investigate the development of liquefaction near the vertical breakwater.
Figure 25 shows the wave-induced maximum liquefaction areas for the different breakwater
numbers. Under Mode 1, the liquefaction depth ld decreases from 0.41 m to 0.32 m, with the
additional submerged breakwater. However, a higher liquefaction potential (ld = 0.93 m)
near the vertical breakwater occurs in the case m = 3 when the wave transforms under
Mode 2, indicating that the construction of the third submerged breakwater may enhance
the seabed instability around the vertical breakwater under the F–P resonance condition.

Figure 26 shows the maximum liquefaction depth in the vicinity of the vertical break-
water for the various conditions. Based on the above discussion, the wave-induced seabed
response is in phase with the wave force. In other words, the maximum liquefaction
depth and wave force occur under the same configuration (ST/L). Therefore, the res-
onator lengths So/L and ST/L are chosen to be representative of Modes 1 and 2. It is
seen from Figure 26 that the trapped wave under Mode 2 tends to enhance the potential
of the maximum liquefaction depth, whereas the wave transformed under Mode 1 can
effectively suppress this to some extent, thus comparing the case with the one with the
vertical breakwater condition, only. This implies that the resonator length significantly
affects the liquefaction depth around the vertical breakwater, especially close to the reso-
nance period. Comparing the case with the rigid breakwater condition, only, the frontal
three submerged breakwaters can reduce 46% or strengthen 54% the liquefaction depth
under the Bragg resonance period kd = 0.6. However, when the period of the incident
wave is short (e.g. kd ≥ 1.5), the reflection and dissipation of the submerged breakwaters
are more important than the Bragg resonance, and the liquefaction depth shows almost the
same value.
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Figure 25. Distribution of the wave−induced liquefaction zone around the breakwaters with a period
of kd = 0.6 at t/T = 0.75. (a) m = 2 and S/L = 0.75; (b) m = 2 and S/L = 1.0; (c) m = 3 and
S/L = 0.75; (d) m = 3 and S/L = 1.0.
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Figure 26. Effect of the wave characteristics on the liquefaction depth around the vertical breakwater.
The dotted line is the liquefaction depth under the rigid breakwater condition, only. (a) wave period
kd; (b) wave height H.
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5. Conclusions

In this study, based on the VARANS equations and Biot’s “us − ps” approximation
theory, an integrated model has been developed to quantitatively investigate the wave
trapping under the F–P resonance condition. The performance of the double and triple
submerged breakwaters is evaluated by examining the reflection, dissipation, and enhance-
ment coefficients. The wave force and the wave-induced seabed response around the
vertical breakwater are analyzed. From the present study, the following conclusions can
be drawn:

1. The presence of the submerged breakwaters in front of the vertical breakwater can ei-
ther provide shelter or worsen the hazards, depending on the condition of the vertical
breakwater reflection. The relative distance between the breakwaters determines how
the wave energy is transferred locally, and the two Modes of wave transformation can
be clarified: wave reflection and wave trapping. Reflection and dissipation of wave
energy by frontal submerged breakwaters cause the magnitude of the flow velocity to
decrease under Mode 1, and trapping of wave energy cause the magnitude to increase
under Mode 2, at the back side of the submerged breakwaters;

2. Trapping more wave energy under the F–P resonance condition leads to a smaller
reflection coefficient, but also to a larger dissipation, enhancement coefficients, wave
force, wave-induced pore pressure, and dynamic stresses. The presence of the sub-
merged breakwaters tends to enhance the wave force and the potential of the maxi-
mum liquefaction depth in the vicinity of the vertical breakwater, comparing this with
the case with the vertical breakwater condition, only;

3. With the consideration of the bottom friction and the viscous dissipation, the reflection
and dissipation coefficients are out of phase with the enhancement coefficient;

4. The enhancement coefficient is in phase with the wave force, the wave-induced pore
pressure, and the dynamic stresses. A strong amplification or damping is achieved.
The optimal distance is So/L = 4+8n

16 (n = 0, 1, 2, 3, . . .) for the Bragg resonance pe-
riod, and the shifts to the left with the increase of kd. With the greater detuning
frequency, the reflection and dissipation of the breakwaters are more important than
the F–P resonance;

5. The result reveals that triple submerged breakwaters with a high porosity is the most
effective configuration in reducing the wave energy and to shelter the backward
structure. The dissipation coefficient becomes larger as the presence of an additional
submerged breakwater, hence the forced action on the vertical breakwater, the dy-
namic stresses, and the maximum liquefaction depth around the vertical breakwater,
become smaller, especially under Mode 1. Increasing the porosity of the submerged
breakwaters can also induce more significantly wave dissipation. Following a full
wave-structure interaction, the magnitude of the wave force and the dynamic stresses
within the seabed decreases with the increase of the porosity of the submerged break-
waters, especially under Mode 2.
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