
Citation: Wang, J.; Qi, S.; Wang, C.;

Luo, J.; Wen, X.; Cao, R. B-YOLOX-S:

A Lightweight Method for

Underwater Object Detection Based

on Data Augmentation and

Multiscale Feature Fusion. J. Mar. Sci.

Eng. 2022, 10, 1764. https://doi.org/

10.3390/jmse10111764

Academic Editors: Simone Marini,

Jacopo Aguzzi, Giacomo Picardi,

Damianos Chatzievangelou, Sascha

Flögel, Sergio Stefanni, Peter Weiss

and Daniel Mihai Toma

Received: 8 October 2022

Accepted: 11 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

B-YOLOX-S: A Lightweight Method for Underwater
Object Detection Based on Data Augmentation and Multiscale
Feature Fusion
Jun Wang, Shuman Qi, Chao Wang, Jin Luo, Xin Wen and Rui Cao *

College of Software, Taiyuan University of Technology, Taiyuan 030024, China
* Correspondence: caorui@tyut.edu.cn; Tel.: +86-132-3368-1616

Abstract: With the increasing maturity of underwater agents-related technologies, underwater object
recognition algorithms based on underwater robots have become a current hotspot for academic and
applied research. However, the existing underwater imaging conditions are poor, the images are
blurry, and the underwater robot visual jitter and other factors lead to lower recognition precision and
inaccurate positioning in underwater target detection. A YOLOX-based underwater object detection
model, B-YOLOX-S, is proposed to detect marine organisms such as echinus, holothurians, starfish,
and scallops. First, Poisson fusion is used for data amplification at the input to balance the number of
detected targets. Then, wavelet transform is used to perform Style Transfer on the enhanced images
to achieve image restoration. The clarity of the images and detection targets is further increased
and the generalization of the model is enhanced. Second, a combination of BIFPN-S and FPN is
proposed to fuse the effective feature layer obtained by the Backbone layer to enhance the detection
precision and accelerate model detection. Finally, the localization loss function of the prediction
layer in the network is replaced by EIoU_Loss to heighten the localization precision in detection.
Experimental results comparing the B-YOLOX-S algorithm model with mainstream algorithms such
as FasterRCNN, YOLOV3, YOLOV4, YOLOV5, and YOLOX on the URPC2020 dataset show that the
detection precision and detection speed of the algorithm model have obvious advantages over other
algorithm networks. The average detection accuracy mAP value is 82.69%, which is 5.05% higher
than the benchmark model (YOLOX-s), and the recall rate is 8.03% higher. Thus, the validity of the
algorithmic model proposed in this paper is demonstrated.

Keywords: object detection; YOLOX; data augmentation; URPC

1. Introduction

With the vigorous growth of target detection in computer vision, underwater tar-
get detection based on optical imaging plays an important role in fishery, aquaculture,
underwater archaeology, marine military, and other fields [1–4]. In the field of marine
fishery, traditional underwater frogmen fish and explore; they require a lot of equipment
support and sufficient underwater experience, and they are also faced with life-threatening
situations at any time. Long-term fishing operations lead to serious occupational diseases,
and the cost of manual fishing operations is gradually increasing [5]. Due to the limitation
of fishing time and the impact of the marine environment, fishing operations provide great
challenges. For example, the habitat of seafood is in the bottom of rocky reefs in the deep
sea and in sediment with dense water and grass [6]. It is a key task to adopt underwater
object detection network algorithms to improve fishing accuracy.

Nowadays, with the rapid progress of Deep learning and its excellent performance in
various fields, an increasing number of scholars are working on the use of deep learning
methods in underwater target detection [7]. However, due to the limitations of the marine
environment, large-scale fishing equipment cannot be used in marine pastures. Nowadays,
fishing operations are mainly carried out using underwater robots. Because of the limitation
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of real-time performance and the computing power of underwater equipment [8,9], large-
scale networks cannot be deployed into underwater mobile equipment [1]. However,
there are few real-time and lightweight underwater target detection algorithms at this
stage. Therefore, with the premise of ensuring detection precision, searching for ways to
lighten the network and quicken the speed of detection has become an important part of
subsequent research.

At this stage, there are two categories based on deep learning methods in the field
of objection detection: one type is two-stage target obbjection algorithms that generate
candidate bounding boxes, such as FastR-CNN [10], FasterR-CNN [11], Mask R-CNN [12],
etc. The candidate regions are generated by the network as target samples, then those
samples with candidate regions are classified and edge regressed using convolutional
neural networks. For example, Wei-Honglin used Roimix to simulate overlapping and
blurred targets for enhancement based on the Faster R-CNN network, which effectively
improved the detection accuracy [6]. Fenglei Han proposed a CNN network to solve
underwater image brightness by combining maximum RGB and grayscale images, and
a new structure of DeepCNN was designed for classification regression prediction [13].
The other type is regression-based one-stage object detection algorithms, such as the
SSD algorithm [14] and YOL-series algorithms [15–18]. The advantage of the one-stage
algorithms over the two-stage target detection algorithms is better real-time capability,
making them better suited to the needs of underwater fishing. For example, Minghua
Zhang et al. used the multi-scale attention feature fusion (affm) [19] module and Depthwise
separable convolution based on YOLOv4 to lighten the network to improve the detection
speed [1]. Zhihua Liu et al. proposed a sample weighting network named SWIPENet,
which improved the detection accuracy of small objects through high-resolution feature
maps and a new sample weighting algorithm [9].

Due to the degradation phenomenon caused by complex and changeable underwater
scenes, the main forms of degradation are color distortion and blurring [20,21]. The image
restoration of low-resolution images captured by underwater robots is a difficult question
that needs to be handled. Improving image quality and color contrast can greatly improve
overall detection accuracy. For image restoration, many scholars use the retinex [22] and
ssr algorithms for image restoration to decrease the influence of the incoming image on the
reflection imaging of the object itself. The msr [23] algorithm performs weighted fusion at
different scales, then performs color balance and normalization on the results. Almahairi
used the Cyclegan [24] generative adversarial network to transfer style for image restoration.
Li J. used the WaterGAN network for transfer learning through aerial images and noise
vectors; however, this is considerably different from the real underwater images [25]. When
training in the neural network, this may have a negative impact on the overall sample,
which is not conducive to the identification of real underwater scenes. Nan Wang used
UWGAN [26] for color recovery and defogging through U-NET to maintain similarity with
the real scene. Whitening is a common method for underwater image restoration to restore
the corrected offset colors.

The above works describes mainstream models and image restoration techniques in
the field of underwater object detection, mainly aiming at a lightweight neural network
and to solve the image blur caused by poor underwater imaging conditions and serious
underwater robot visual jitter [6,27]. However, in our research we found that the large
number of small targets in underwater images and the diversity of marine organisms led
to the issue of missed detection in final recognition. The living habits of echinus, scallops,
holothurians, and other marine organisms lead to coincidence and the dense distribution
of targets, which makes the model have a low detection accuracy during prediction. With
regard to the above questions, we chose the newer YOLOX algorithm in the YOLO family of
one-stage object recognition algorithms as the base network for this paper. In contrast with
the other object recognition networks of the YOLO series, the YOLOX algorithm adopts
double-head decoupling and the anchor free algorithm to enhance the object detection
velocity of the object detection network, which is more applicable to underwater detection
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and identification. We propose a network suitable for underwater object detection, which
we name B-YOLOX-S. Several key points of our work are shown below:

1. The use of Poisson Matting to solve the negative impact of large differences in
the various of categories in the dataset on the network. By clipping and screening the
target anchor boxes of each category and then merging to achieve data amplification, the
recognition ability of the network is improved.

2. We propose using the Haar wavelet transform [28] for image restoration work.
Different filters of the Haar wavelet pool are used for pooling processing to solve the large
differences in image color caused by different water and different lighting conditions and
the blurring of underwater images.

3. A new connection method of the neck layer is proposed. We propose a BIFPN-S
algorithm, which retains the details of the image through a bidirectional feature extraction
network to deal with the issue of low accuracy of small object detection. Moreover, in this
paper we advance the multi-scale feature fusion performance of the network by fusing it
with FPN to enhance the detection network’s ability to detect targets at different scales.

4. We use EIoU_Loss as the localization loss function in this paper to make the
prediction box closer to the ground truth box, thereby accelerating the convergence speed
and heightening the localization precision of the network.

2. Related Works
2.1. The YOLOX Algorithm

The YOLOX [29] algorithm contains four models: the YOLOX-s, YOLOX-m, YOLOX-l,
and YOLOX-x algorithms. Figure 1 shows the structure of the YOLOX-s network, which is
the least computationally intensive algorithm in the YOLO series, and is chosen as the base
algorithm for this paper to better meet the needs of mobile hardware platforms deployed in
underwater robots. Its channel scaling factor depth is 0.33 and its layer scaling factor width
is 0.5. However, using the lightweight YOLOX-s algorithm suffers from poor recognition
accuracy for underwater obscured targets and small underwater targets that cannot achieve
accurate positioning performance.

Input layer: The methods of mosaic [18] data augmentation and Mixup [30] data
augmentation are mainly used.

Mosaic data enhancements improves the algorithm by randomly scaling four photos,
flipping left and right, and changing the color gamut of image saturation, tones, and
brightness to enrich the dataset. Then, the processed photos are randomly distributed
together to enhance the data in order to further strengthen the network’s learning of small
targets and blocking targets.

Mixup: A new image is obtained by filling the two images up and down and left and
right, respectively, and then performing weighted fusion.

Backbone layer: The backbone feature extraction network of YOLOX uses the Dark-
net53 network structure with a Spatial Pyramid Pooling (SPP) [18] structure. The image of
the input network is first extracted from the Cross-Stage Partial (CSP) Darknet to obtain
the information of three feature layers, the three effective feature layers are transmitted
to the Neck layer for feature enhancement. Using the focus network structure, four inde-
pendent feature layers are obtained and then stacked to make sure the input channels are
quadrupled.

Focus: By slicing the image, a value is obtained for every pixel in a picture, similar
to neighborhood downsampling, resulting in four pictures. In this way, the W and H
information is pooled into the channel space, and the input channels are expanded by
a factor of four. By stitching and stacking them, the image becomes twelve channels,
compared to the original RGB three-channel mode. Finally, the new image is convolved to
obtain a two-fold downsampled feature map without information loss.

Neck Layer: As an enhanced feature extraction module in a YOLOX algorithm, the
three feature layers obtained by the backbone feature extraction network are used for feature
fusion in this layer. The detailed and semantic information of each effective feature layer
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is obtained by fusing the feature information of each scale in different feature layers. The
PaNet (Path Aggregation Network) model is employed, which achieves feature fusion by
upsampling and downsampling in the form of Feature Pyramid Networks(FPN) [31] +
Pixel Aggregation Network (PAN) [18].

Prediction layer: In this case, classification and regression are performed in the
YOLOX network using the YOLO head. The feature map transmitted from the Neck
layer is judged by the corresponding feature points. The presence of objects in these feature
maps, the type to which they belong and the object’s corresponding position information
(x, y, w, h) are detected. Compared with the previous YOLO series, the YOLOX algorithm
uses an anchor-free decoupled head in this layer.

YoloHead: Classification and regression were fused together in the single decoupled
head used in the YOLO family of algorithms prior to the YOLOX algorithm. However, the
focus of classification and regression tasks in YOLOX is different. Classification is mainly
based on which category the extracted features belong to, while regression focuses more
on parameter correction with the ground truth box details through the positioning loss
function. Therefore, classifying and regressing the same feature map has an effect on the
results, resulting in inaccurate positioning and classification [32]. In YOLOX, the YOLO
head implements classification and regression separately, and finally fuses them together
in the prediction stage.

Figure 1. YOLOX network structure diagram.

Anchor-free: Unlike the anchor-based approach used by the previous YOLO network,
the anchor box [33] is no longer used in YOLOX [34]. Taking the input size of 640 × 640 as
an example, the parameters of the anchor-based algorithm are three feature maps of 80 × 80,
40 × 40, 20 × 20, and each feature map has three anchor boxes corresponding to each pixel.
Each anchor box has a number of data set types n, coordinate and attribute information x,
y, w, h, and type information, for a total of n+5 parameters. The parameters used by the
anchor-based algorithm are 3 × (80 × 80 + 40 × 40 + 20 × 20) × (n + 5) = 25,200 × (n + 5)
prediction boxes. The anchor-free approach includes all prediction boxes in a feature map
through multiple decoupling heads, meaning that its parameter quantity is (80 × 80 + 40 ×
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40 + 20 × 20) × (n + 5) = 8,400 × (n + 5). There are three scales of 8 × 8, 16 × 16, and 32 × 32
anchor size prediction boxes; thus, the number of parameters obtained using this method
is reduced by nearly two thirds.

2.2. Data Augmentation

Although Deep Learning has performed well in the field of computer vision, a large
number of training samples are required for training deep learning-based neural networks.
However, using a small number of training samples is inadequate to support network
training, leading to overfitting [35]. Due to the particularity of target detection, if geometric
transformation is directly used, the processing of the ground truth box can affect the
accuracy of network detection [36–38]. The use of data augmentation techniques can solve
the above-mentioned drawbacks and heighten the robustness of the target recognition
network without the added complexity of network inference. To enhance the adaptability
of the target detection network in different scenarios and strengthen the robustness of target
detection, many scholars have devoted themselves to researching image enhancement. The
complex and changeable habitat environment of marine organisms, the numerous small
underwater targets, and the severe disturbance of negative samples such as topography,
rocks, and coral reefs mean that choosing which strategy to adopt in order to enhance data
in underwater target detection has become a difficult problem.

In recent years, many scholars have used Cutmix [39], Cutout [40], and Mixup [30]
to enhance images in order to obtain satisfactory training results. Chunhe Song et al.
improved the robustness of model recognition using Gaussian blur and image rotation for
UAV transmission line inspection [41]. In the Pascal VOC Challenge, the Ali Turing Lab
proposed using the instance-balanced augmentation method to augment the dataset. First,
the original image is magnified by one point five times to obtain the sample image, then
the initial size is taken as the smooth window to translate the sample image horizontally
and vertically three times. During the parallel shift process, different disturbance rules
are used to obtain nine images of equal size to the original image for data augmentation.
Kisantal et al. solved the problem of small target numbers through oversampling, then used
the copy–paste strategy to augment the target class objects to perform data augmentation
in order to advance the detection performance of their Neural Network [42]. However,
the current data enhancement methods do not deal well with obfuscation and overlap of
underwater targets [43]. Therefore, this paper uses the Poisson matting technique combined
with style migration to solve the above problem from the perspective of data augmentation.

3. Materials and Methods

This section details the dataset used in this paper and the proposed object detection
algorithm. The improved B-YOLOX-S model structure is shown in Figure 2. First, the
input end performs Poisson matting to complete data augmentation, then performs style
transfer and image restoration processing through wavelet transform. After processing,
the image is compressed to a resolution of 640 × 640 and input to the backbone layer of
the network. Then, through feature extraction of the original image through the backbone
network, three feature layers of 80 × 80, 40 × 40, and 20 × 20 are obtained. The three effective
feature layers are transmitted to the Neck layer. The FPN + BIFPN-S module performs
upsampling, downsampling, and multi-scale feature fusion on three different scale feature
layers. Finally, the three effective feature layers after fusion are transmitted to the prediction
layer of the network, and classification and regression prediction are performed through
the decoupled head. The methods and datasets are described in detail in the following
sections. Section 3.1 mainly deals with the statistical analysis of the URPC dataset used in
this paper. Section 3.2 shows the data augmentation method from the two aspects of data
augmentation and image restoration. Sections 3.3 and 3.4 introduce our proposed feature
fusion module and the localization loss function, respectively.
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Figure 2. B-YOLOX-S network structure diagram.

3.1. URPC Dataset

The dataset utilized in this paper was the public URPC2020 dataset, which was
provided by Pengcheng Lab for use in the optical event of the underwater target detection
algorithm of the Underwater Robotics Competition 2020. Sample data of this dataset are
shown in Figure 3. It contains target images of different waters, different geographical
environments, and different lighting conditions.

Figure 3. Sample dataset.

The dataset contains 5543 underwater images, of which the categories in the dataset are
echinus, scallop, starfish, and holothurian. Examples of ground truth boxes corresponding
to each category are shown in Figure 4.
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Figure 4. Species annotation numbers in the URPC 2020 dataset.

The results of our analyses and the statistics of the URPC2020 dataset are shown
in Table 1:

Table 1. The number of different aspect ratios in the URPC dataset.

Aspect Ratio Numbers

(3840, 2160) 1712
(1920, 1080) 596

(720, 405) 3153
(704, 576) 38
(586, 480) 44

The ‘Numbers’ column in Table 1 represents the number of images corresponding to
different resolution images. In this dataset, the number of images with an aspect ratio of 1
is 34,039, the number with an aspect ratio of 2 is 6585, the number with an aspect ratio of 3
is 717, the number with an aspect ratio of 4 is 82, the number with an aspect ratio of 5 is 12,
the number with an aspect ratio of 6 is 2, and the number with an aspect ratio of 7 is 3.

3.2. Data Augmentation Strategy

Through our analysis of the URPC2020 dataset and previous experiments with this
dataset, we found the number corresponding to each category and its imbalance, as follows:
echinus, 18,676; scallop, 5554; starfish, 5704; and holothurian, 4574. Insufficient training
samples and class imbalance can lead to poor detection performance of the model [42].
Sample augmentation is needed to balance the effect of the number of each sample cate-
gory [44]. Furthermore, the color of the water column varies widely under different light
and water conditions. When the robot is shooting underwater, data energy is lost due
to the absorption of light signals via the scattering effect of suspended substances in the
seawater [45]. The scattering of interfering light in the optical path leads to poor quality of
the captured images and the occurrence of blurring and distortion blocking [46]. Therefore,
image restoration of underwater images is one of the key tasks of this paper. Finally, this
paper uses the Poisson matting method to perform data augmentation operations on the
dataset. This approach was used to handle the imbalance in the number of category sam-
ples in the UPRC2020 dataset. Then, wavelet transform was used to transfer the style of the
images of different waters in the enhanced dataset to complete the image restoration work.
Sections 3.2.1 and 3.2.2 respectively introduce the implementation steps and core algorithms
of Poisson fusion and image restoration through wavelet transform.

3.2.1. Poisson Matting

In Poisson matting, the content of the source image is indiscriminately fused to the
target image without difference, instead of simply superimposing the pixel contents of the
two images that need to be fused [47]. The intrinsic approach is to ensure that the boundary
pixels of the target image are guided by the gradient field of the target part of the source
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image during fusion; then, the pixels of the fusion region are generated. The source image
passes its gradient field to the target image. Then, the target image is fused by its own
characteristics through the gradient field of the target where the source image is located.
The overall requirement is to keep the target part of the source image as similar as possible
to the pixels generated in the fused region in the gradient field. This is reflected in the
process of solving the mathematical equation to minimize the gradient difference as much
as possible, thus minimizing the problem, as described by Equation (1):

min
f

∫∫
Ω
|∇ f − v|2 with f |∂Ω = f ∗|∂Ω (1)

In Equation (1), Ω represents the source image, f indicates the pixel value of the source
image, ∇ f represents its gradient value, f ∗ represents the pixel value of the target image, v
denotes the gradient of the original image, and ∂Ω represents the source image boundary.
The calculation of the gradient value is shown in Equation (2), and the calculation of the
divergence value is shown in Equation (3).

Gradient: v = (u, v) = ∇ f , u =
∂ f
∂x

v =
∂ f
∂y

(2)

Divergence: div v =
du
dx

+
dv
dy

(3)

where div is expressed as the divergence of the vector field and x, y represent the two
gradient directions of the two-dimensional image.

To make the target image fus into the original image more realistically, the boundary
of the generated region needs to be consistent with the boundary value of source images
in the fusion region, that is, the Laplacian results of the two should be as consistent as
possible. In solving Eqeuation (1), the solution with the smallest change is the solution
of Poisson’s equation, such as Equation (4), which is the Laplace equation satisfying the
Dirichlet boundary condition:

∆ f = div v over Ω, with f |∂Ω = f ∗|∂Ω (4)

In Equation (4), ∆ is the Laplacian operator.
We randomly cropped the category targets according to the label positions correspond-

ing to the XML files in the dataset. The targets were categorized and filtered, and the
blurred and incomplete images were eliminated to form a category dataset. When analyz-
ing the categories in the original dataset, we found that the amount of echinus categories
is significantly higher than other categories. Therefore, we retained the target number of
echinus as a constant and performed Poisson matting of scallops, holothurians, and starfish
to achieve data augmentation and to enhance the learning performance of our network.

The target in the above category template was randomly rotated and scaled to match
the original image. The gradient fields of the category image and the image to be enhanced
were calculated using a differential approach, and the extent of the category image was
adjusted according to the target size in different resolutions in the dataset. The gradient
fields of the enhanced images were processed using a mask; that is, a layer of mask was
covered on the gradient field tensor of the enhanced image to select the location tensor
of the region of interest. Gradient field fusion was performed on the masked gradient
field and the category image. Convolution was performed using a Laplace convolution
kernel to compute the scatter field of the fused image in order to compute the value of the
equation BX = a. For the construction of the sparse matrix B, as shown in Equation (5),
each row of the matrix has five non-zero elements, corresponding to the convolution kernel
of the Laplace algorithm; the value of its diagonal position is −4, and in each row the
corresponding four non-zero elements in its adjacent positions have a value of 1.



J. Mar. Sci. Eng. 2022, 10, 1764 9 of 24

B =



1
1

1
1

1 1 −4 1 1
1

1
1

1


(5)

Solving BX = a, a is the divergence of the image, as shown in Equation (5). The
equations are solved for each of the three channels in the image separately. Then, the
corresponding pixel R-value, G-value, and B-value of each point are obtained, and the pixel
values of the resulting X are replaced by the pixel at the fused position. Finally, the fused
image and the XML file corresponding to the label position is generated.



1
1

1
1

1 1 −4 1 1
1

1
1

1


•



R1 G1 B1
R2 G2 B2
R3 G3 B3
R4 G4 B4
R5 G5 B5
R6 G6 B6
R7 G7 B7
R8 G8 B8
R9 G9 B9


=



uR1 uG1 uB1
uR2 uG2 uB2
uR3 uG3 uB3
uR4 uG4 uB4
uR5 uG5 uB5
uR6 uG6 uB6
uR7 uG7 uB7
uR8 uG8 uB8
uR9 uG9 uB9


(6)

In Equation (6), the Ri value, the Gi value, and the Bi value are the matrix of the sought
X. The right part of the equation is the scatter value of the source image, which is a.

Taking the scallop enhancement as an example, we calculated the gradient value of
each pixel of the background image in the category dataset. Point M was used to specify
the enhanced position of the scallop template image in the background image, where point
M is the center position of the scallop template, as shown in Figure 5b. The specified target
category ’scallop’ is selected from the category dataset, and the scallop image is matched
with the original image. The gradient field of the fusion area is calculated, and the pixel R,
G, and B values of the fusion point are obtained and replaced, as shown in Figure 5d.

Figure 5. Original background image and fusion result image. Image (a) is the original background image,
Image (b) is the image to be fused, in which the location of the M-dot marker is the augmentation point,
Image (c) is the augmentation category image, and Image (d) is the resulting image after fusion.
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3.2.2. Image Restoration Based on Wavelet Transform

Underwater images exhibit an initial blue-green tint due to absorption of red wave-
lengths, as well as scattering from suspended matter, resulting in image distortion and
blurring. In this paper, image restoration was performed on real images captured by
underwater robots and the processed underwater images were Poisson matted without
relying on any physical model. We used a novel encoder–decoder structure, using wavelet
correction transformation as a network module through this network structure to perform
style transfer learning and image restoration on underwater images with different colors
and from different waters. Through high fidelity image recovery to improve global contrast,
the impact of noise on images was decreased and degraded and distorted images were
recovered and enhanced to keep the original details of the image.

Through singular value decomposition (SVD), the style information in the image
was removed, the overall structure information of the image was retained, and pixel de-
correlation, which is a whitening transformation, was realized. Coloring transformation
was used to perform the inverse transformation of the whitening change. The image was
then divided by the maximum pixel value of 255 to make its pixels between [0, 1]. Then,
average subtraction was performed for each pixel in the image, centering at 0 to render
each pixel value in the image. The eigenvalues needed to perform SVD were obtained
by computing this 0-centered covariance matrix. The transformation equation is shown
in Equation (7):

Xzca = B · diag(
1√

dig(A) + α
) ·UT ·Y (7)

where B consists of the left singular vector, A consists of the singular values of the nor-
malized dataset covariance, and Y is the normalized dataset, which is the hyperparameter
responsible for controlling the whitening effect.

The Haar wavelet transform was used to restore the spatial signal without any am-
plification of noise, and style transfer was performed on the image. The Haar wavelet
pooling operation has four sub-bands, which are composed of the high-frequency and
low-frequency filters LLT, LHT, HLT, and HHT, respectively, as shown in Figure 6. In
this paper, we used a low frequency sub-band (LL) to capture smooth surface and texture
information in images. The high frequency sub-bands (LH, HL, HH) were used to acquire
edge information.

Figure 6. Haar wavelet pooling. LL is the low frequency feature, and the rest (indicated with H)
are high frequency sub-band features. The wavelet transform of the next stage is used for the LL
sub-band of the previous stage.
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The semantic information captured using the low-frequency filter is passed to the next
encoder module, while the high-frequency filter is directly connected with the decoder
module. This method was used to prevent the loss of spatial information caused by the use
of upsampling and maximum pooling, and to ensure high fidelity during image recovery.
The mirror operation of wavelet pooling is a de-pooling operation. By convolving and
summing the components, the primeval signal can be reconstructed with minimal noise
amplification, which helps to preserve the structural information of the image and can
help in performing style transfer and image restoration. Under the conditions of different
waters, different depths, and different light scattering, the color and clarity of underwater
images changes as well. Figure 7 shows the comparison image before and after processing
using the wavelet transform.

(a) (b)

Figure 7. The original image and the result after Style Transfer under different waters and lighting.
Image (a) is the original image under different waters, different depths, and different illuminations.
Image (b) is the result after wavelet transform processing.

3.3. Strengthening the Feature Fusion Module

Based on the BiFPN algorithm proposed in EfficientDet [48], this paper proposes
a highly efficient multiscale feature fusion algorithm, BIFPN-S, adapted to the YOLOX
network, as shown in Figure 8. First, the semantic information of the high-level feature
maps was amplified using two layers of upsampling. Then, the texture features of the
feature map were retained through two layers of downsampling to reduce the amount of
computation. The detailed information of the mid-level feature map was preserved using a
jump connection, and multi-scale feature fusion was performed. Finally, the feature maps
were mapped to the target size after two layers of upsampling.

The BIFPN-S algorithm is a bi-directional feature pyramid network which is able to
avoid a sharp drop in detection accuracy when detecting small objects, thereby preserving
the image details in the underlying model. We used multi-scale feature fusion to extract
higher-level semantic information through bottom-up downsampling, then used top-down
upsampling to combine the feature map with high-level semantic information with the
previous feature layer. This feature fusion was performed to provide information on
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different semantics and expand its recognition of objects with different resolutions. In the
YOLOX network itself, nodes without feature fusion are removed to simplify the model of
the network in order to accelerate the detection speed of the model. The feature map with
high-level semantics uses the connecting edges from the original node to the final output to
ensure stability of detection. The location information of the feature map is enhanced via
multi-scale fusion through BIFPN-S to ensure more accurate positioning. Because FPN is
mainly aimed at the enhancement of semantic features, it does not transmit the positioning
information in the feature map, which affects the precision of object detection. FPN is used
for fusion with the proposed BIFPN-S, allowing the strong localization features of BIFPN-S
to fuse with the high semantic features of FPN. Ultimately, the detection speed and the
detection precision of the enhanced feature extraction network are considerably improved
compared with PanNet itself.

Figure 8. BIFPN-S algorithm model structure diagram.

The proposed BIFPN-S algorithm was integrated into the YOLOX network, and its
network structure is shown in Figure 9. The original image is extracted to three feature
layers through the CSPDarknet backbone network, then residual processing is performed
by FPN to enhance feature extraction. The three enhanced effective feature layers are
transmitted to the BIFPN-S algorithm for enhanced feature fusion, which better preserves
the semantic information of the image.

3.4. Localization Loss Function

The loss function was calculated to compare the predicted results of the network with the
true results. In the model of this paper, the loss function is composed of three components:

1. reg: determines the regression parameters of the feature points, then uses the
prediction box and the ground truth box to calculate the IoU_Loss.

2. obj: determines whether the feature points contain objects. The feature points
homologous to the ground truth box are all positive samples; otherwise, they are negative
samples. A prediction is made as to whether the feature points of the over positive and
negative samples contain objects to calculate the loss.

3. cls: judges the type of objects contained in the feature points. The calculation of loss
is performed according to the prediction boxes of the kinds of feature points and the kinds
of ground truth boxes.

As far as IoU is concerned, it is determined by the ratio of the area of the intersection
of the predicted box and the ground truth box to the combined total area. However, IoU
ignores the problem of unbalanced bounding box regression. A large number of boxes with
little overlap with the anchor box plays a major role in the positioning of the bounding
box. A loss function based on IoU leads to slow convergence and inaccurate regression
positioning. Therefore, this paper uses EIoU_Loss as the positioning loss function.



J. Mar. Sci. Eng. 2022, 10, 1764 13 of 24

Figure 9. BIFPN-S enhanced feature fusion module based on YOLOX network.

The EIoU_Loss [49] is an improvement of the localization calculation based on the
CIoU_Loss. However, CIoU_Loss only considers the aspect ratio of the rectangular
box, which ignores the difference in the confidence of the width and length itself, as
in Equation (8):

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (8)

The definition of the value of v is shown in Equation (9), and the gradient value of the
width w and height h is shown in Equation (10):

v =
4

π2

(
arctan

Wgt

hgt − arctan
W
h

)2

(9)

∂v
∂w

=
8

π2

(
arctan

wgt

hgt − arctan
w
h

)
× h

w2 + h2

∂v
∂h

= − 8
π2

(
arctan

wgt

hgt − arctan
w
h

)
× h

w2 + h2

(10)

Because of the relative ratio of width and height used by CIoU_Loss, it can be seen
from ∂v

∂w = − h
w

∂v
∂h that the gradients of w and h have opposite signs in value; that is, when

one value of w and h increases, the other value decreases, and they cannot increase and
decrease at the same time. When performing regression, if both w and h are larger than the
detection target, if h is larger than the target while w decreases, h needs to expand, resulting
in a decrease in the convergence speed. Therefore, EIoU_Loss adds the side length loss
(Lasp) to its loss function, and directly predicts w and h, to a certain extent, in order to
solve situations in which the side length is wrongly amplified. Finally, EIoU_Loss modifies
the aspect ratio part of CIoU_Loss to calculate the loss function separately for length and
width. This modification makes the network more accurate in localization, and measures
the overlapping area, side length, and center point, as shown in Equation (11):

LEIOU = LIoU + Ldis + Lasp

= 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

c2
w

+
ρ2(h, hgt)

c2
h

(11)

IoU =
(A ∩ B)
(A ∪ B)

(12)
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EIoU_Loss divides the loss function into the three components of IoU loss LIoU ,
distance loss Ldis, and side length loss Lasp. The calculation of IoU is shown in Equation
(12), where Ch and Cw represent the height and width of the rectangle, respectively, for
calculation of the localization loss function when the ground truth box and the prediction
box coincide, that is, when the intersection ratio = 1 and the loss = 0. At this time they both
have a high degree of coincidence, as shown in Equation (13).

IoULoss = 1− IoU (13)

4. Experiments and Results
4.1. Experimental Environment and Training Parameter Settings

Table 2 shows the experimental environment configuration of this paper. The Pytorch
version 1.7.0+cu101 deep learning framework was used, with an Intel(R) Core (TM) i7-9700
CPU @ 3.00 GHz, 16G memory, 2080 NVIDIA GeForce GTX graphics cards, and Windows
10 operating system; the software programming environment was Python 3.6.

Table 2. The configuration environment used for the experiments.

Environment Parameter

CPU Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz
GPU NVIDIA GeForce GTX 2080 *2, Single GPU
OS Windows10 64

CUDA V 11.4.100
PyTorch V 1.7.0+cu101

The URPC2020 dataset training and test sets were divided following a ratio of 9:1.
Among them, the training set contains 4988 pictures and the test set 555 pictures. The
training set was then divided into 499 images in a 9:1 ratio for use as the validation set.
During model training, there are four categories: echinus, scallop, starfish, and holothurian.
In this paper, the pre-trained weights of the VOC dataset were used for the training of
B-YOLOX-S. Because the YOLOX network requires a fixed input size, we set the input
image resolution to a uniform 640 × 640. In the training process, a total of 100 epochs
were set for training, and the confidence and non-maximum threshold (nms_iou) were
set to 0.5. To make the network more capable during feature extraction and ensure the
stability of the weights, the backbone layer was frozen for the first 50 epochs to accelerate
the training efficiency of the network, then unfrozen for the last 50 epochs. During this
time, the parameters of the network change. During training, the original figure of the
learning rate of the first 50 groups was adjusted to 0.001 and the initial value of batch_size
was adjusted to 32; while for the last 50 groups the value of the learning rate was set to
0.0001 and the value of batch_size to 16.

We ensured that there were pictures taken in different waters and under different
lighting conditions in the training set, test set and validation set. There is obvious blurring
in the images caused by camera shake when the underwater robot is shooting and by
the underwater optical imaging conditions; the low-resolution images captured by the
underwater robot are more blurred, and it is difficult to identify the target. Moreover, the
label positions in the dataset are not accurate, and many targets are missed through manual
labeling. Therefore, data enhancement was mainly performed on images with a resolution
less than or equal to 720 × 405.

4.2. Evaluation Indicators

In this paper, representative evaluation indicators commonly used in target detection
models are used, namely, the AP, mAP, and FPS parameters.

AP (Average Precision) reflects the average recognition accuracy of the model for each
class. The AP value is approximated using a smoothing operation by calculating the area of
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the P–R(Precision–Recall) curve, with recall as the horizontal axis of the coordinate system
and precision as the vertical axis of the coordinate system and the coordinate axis.

mAP (mean Average Precision) reflects the average AP value of all categories. In
this paper, mAP50 and mAP75 are used to evaluate the model. For mAP50, the detection
precision of the model had an IoU (Intersection over Union) threshold of 0.5, while for
mAP75 the detection precision of the model had an IoU threshold of 0.75. mAP is one
of the most important indicators of the target detection evaluation model, and is shown
in Equation (14):

mAP =
1
m

n

∑
b=1

AP(b) (14)

In Equation (14), m is the individual category in the dataset, while AP(b) refers to the
average detection accuracy corresponding to each category.

Parameter represents the number of parameters convolved in the network.
FPS (Frames Per Second) represents the number of images recognized in one second.
Apec, APho, APsc, and APst represent the AP values of echinus, holothurian, scallop,

and starfish, respectively, with the IoU threshold set to 0.5.

4.3. Experimental Results

In Section 4.3.1, we combine the proposed method with the YOLOX base network
to conduct ablation experiments. In Section 4.3.2, the validity of our model is verified by
comparison with other mainstream models. Section 4.3.3 presents our results and analysis
on the URPC dataset.

4.3.1. Ablation Experiments

We conducted ablation experiments on the YOLOX-s network to visualize the better
performance of the proposed method in underwater target detection and the effectiveness
of each method. The ablation experiments were mainly performed at the Input layer, the
Neck layer, and the Prediction layer of the model. To ensure the uniformity of the validation,
the first 50 groups of experiments were used to freeze the backbone layer for training, and
the last 50 groups were used to unfreeze the training.

This paper describes the following experiments conducted on the network. On the
input of the network, the first step was to test the impact of the Poisson matting algorithm
and our proposed wavelet transform algorithm on the model. In the second step, the two
data enhancement algorithms proposed above were combined for comparative detection.
For the Neck layer of the network, we verified the detection effect using the enhanced
feature fusion algorithm BIFPN-S proposed in this paper, referred to here as Bs. For the
Prediction layer, we sought to detect the influence of EIoU_Loss, used as the localization
loss function in this paper on the model. The ablation experimental results are shown in
Table 3, where Apec, APho, APsc, and APst represent the AP values of echinus, holothurian,
scallop, and starfish, respectively, with the IoU threshold set to 0.5

Table 3. Results of ablation experiments on the URPC2020 dataset.

Model Apec/% Apho/% Apsc/% Apst/% mAP50/% Parameter/MB FPS

YOLOX-s 88.68 68.65 70.12 83.13 77.64 8.94 59.05
YOLOX-s + Poisson Matting 90.51 72.36 75.15 83.99 80.50 8.94 60.36

YOLOX-s + wavelet transform 90.23 69.07 74.00 82.47 78.94 8.94 59.54
YOLOX-s + Poisson Matting + wavelet transform 91.30 73.12 76.35 83.39 81.04 8.94 59.33

YOLOX-s + Bs 89.92 71.38 73.94 83.07 79.57 12.32 51.76
YOLOX-s + EIoU 90.37 71.06 73.82 82.81 79.51 8.94 61.93

YOLOX-s + Bs + EIoU 91.08 73.24 73.99 83.75 80.51 12.32 53.21
Ours 91.48 74.75 80.15 84.34 82.69 12.32 54.02
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Table 3 shows the Poisson matting and the wavelet transform that were performed
on the dataset; the verification analysis in the basic network of YOLOX-s shows that mAP
increased by 2.86% and 1.87%, respectively. By combining the Poisson matting algorithm
and the wavelet transform algorithm, the average detection accuracy improves by 3.5%. It
can be seen from the comparison of mAP values that the data enhancement method used
at the input end in this paper achieves considerable improvement in underwater target
detection and recognition. For the Neck layer, with the replacement BIFPN-S algorithm
proposed in this paper, the mAP is improved by 1.93% in our model, a slight increase,
which reveals the applicability of the algorithm. By adding the EIoU_Loss module, the
detection precision is increased by 1.87% and the detection speed is augmented without
increasing the model parameters. This proves that modification of the localization loss
function of YOLOX-s improves the recognition ability and detection rate of the model in
complex environments. When combining the BIFPN-S algorithm proposed in this paper
with the EIoU module, the mapping of this method on the dataset is 2.87% higher than
without data augmentation. At the same time, the number and size of model parameters
increases only slightly, and the training speed and training memory requirements of the
improved network remain basically unchanged. The B-YOLOX-S algorithm proposed in
this paper combines YOLOX-s with Poisson matting, wavelet transform, BIFPN-S, and
EIoU_Loss. With only a slight increase in model size and the number of parameters, there
is only a small decrease in detection speed and an increase of 5.05% in detection accuracy.
Although the FPS is reduced, it continues to satisfy the demand of real-time recognition.

4.3.2. Comparison with Other Object Detection Algorithms

Table 4 shows the experimental results with the initial two-stage algorithm FasterR-
CNN and the one-stage algorithms YOLOV3, YOLOV4, YOLOV5-s, YOLOX-s, and B-
YOLOX-S (our proposed model). In this experiment, the input scale resolution of all models
was 640 × 640. The results of calculation and comparison of the Parameter, Backbone, AP,
mAP50, mAP75, and FPS indicators of different models in the URPC2020 dataset are shown
in Table 5.

Table 4. Experimental results of the comparative experiments.

Model Backbone mAP50/% mAP75/% Parameter/MB FPS

FasterR-CNN Resnet50 73.25 20.84 28.31 26.11
YOLOV3 CSPDarknet53 73.92 22.13 61.54 48.28
YOLOV4 CSPDarknet53 75.42 28.74 63.95 40.33

YOLOV5-s CSPDarknet_s 71.83 26.29 7.07 61.89
YOLOX-s CSPDarknet_s 77.64 41.71 8.94 59.05

Ours CSPDarknet_s 82.69 44.55 12.32 54.02

From the analysis in Table 5, the parameter value in our proposed B-YOLOX-S is
obviously lower than in FasterR-CNN, YOLOV3, and YOLOV4, and slightly higher than
YOLOV5-s in terms of model size; thus, it is easy to deploy on mobile platforms for
detection and identification using underwater robots on the seabed. Taking FPS as the
evaluation index to measure the target detection speed by comparing the FPS of different
models, it can be concluded that the detection speed of the one-stage models is significantly
higher than that of the two-stage model, and the detection speed of the B-YOLOX-S model
is significantly faster than those of YOLOV3 and YOLOV4. While it is slightly slower than
the YOLOV5-s model, it can nonetheless achieve real-time detection. Taking the mAP value
and AP value as the indicators to measure the detection accuracy and using mAP50 as the
evaluation indicator, the average detection accuracy of YOLOX-s are 4.3%, 3.7%, 2.22%, and
5.81% higher than other models, respectively. However, it is 5.05% lower than B-YOLOX-S.
Comparing the results of mAP75, it can be intuitively seen that when the IoU threshold is
0.75, the detection accuracy of YOLOX-s shows good performance, which is significantly
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higher than others model by 20.87%, 19.58%, 12.97%, and 20.42%, respectively, and just
2.84% lower than our proposed model.

Table 5. Results of comparative experiments.

IoU = 0.5 IoU = 0.75

Model Apec/% Apho/% Apsc/% Apst/% Apec/% Apho/% Apsc/% Apst/%

FasterRCNN 82.61 68.44 61.71 80.25 18.66 19.82 19.56 25.32
YOLOV3 87.87 60.43 68.01 79.36 22.88 12.08 24.93 28.65
YOLOV4 86.54 66.15 69.29 79.72 24.84 19.60 32.68 37.87

YOLOV5-s 88.01 57.17 64.25 77.88 27.89 13.52 30.59 33.15
YOLOX-s 88.68 68.65 70.12 83.13 46.61 34.43 37.75 48.05

Ours 91.48 74.75 80.18 84.34 47.63 35.66 45.92 49.01

Based on the analysis of the AP values of echinus, holothurian, scallop, and starfish
in Table 5, it can be concluded that the detection accuracy of YOLOX-s has considerable
advantages. This has many practical applications, and was our reason for selecting YOLOX-
s as the basic model in this paper. Comprehensive analysis of the mAP value and AP
value shows that the B-YOLOX-S network proposed in this paper has advantages in high-
precision detection and a high detection accuracy pair, which is 2.84% higher than YOLOX-s.
The mAP value and single category AP at the IoU thresholds of 0.5 and 0.75 are higher
than the other models. The demonstrated accuracy of our method is the best among the
other methods in terms of detecting target category occlusion and overlap. In summary, it
can be seen from the comparative experiments that although there is a slight gap between
the B-YOLOX-S and YOLOV5-s networks in terms of model size and detection speed,
the detection accuracy of the former is significantly higher than other mainstream target
detection algorithms, and it is more capable of meeting the needs of underwater target
detection. Through the above comparative experiments, the validity and practicability of
our model are verified.

4.3.3. Experimental Results on the URPC2020 Image Dataset

Through the above experiments, we compared the detection products of the YOLOX-s
network and the B-YOLOX-S network on the URPC2020 dataset. We mainly show the
detection images in the following two complex situations.

1. Detection of images in dense and overlapping states
By comparing the underwater images in different dense and overlapping states, the

detection results of image (a), image (b), and image (c) in Figure 10 can be seen. When the
targets of each category have serious overlap, the prediction box detected by B-YOLOX-S
network is similar to the ground truth box, and the number of false detections is significantly
smaller than that of the YOLOX-s algorithm. The analysis of image (g), image (h), and
image (i) shows that the classification accuracy and localization accuracy are higher in
the case of blurred environments and image distortion, and the miss detection rate is
significantly lower than that of the YOLOX-s algorithm. Through the analysis of image
(d), image (e), and image (f), it can be concluded that due to the influence of the target
object’s habitat, for example when there are a large number of categories that are not part
of this dataset, such as aquatic plants, reefs, and other factors that block a large area of the
target object, the YOLOX-s algorithm detects only fifteen targets, which is four targets away
from the ground truth box. Ours model, on the other hand, detects the real objects that
are not observed through the artificially annotated ground truth box, which has practical
application significance.

2. Small target detection in images including complex terrain
By comparing small target detection in images involving complex underwater terrain,

the detection results of image (a), image (b), and image (c) in Figure 11 are analyzed. The
original YOLOX-s algorithm detects only two targets, while the algorithm in this paper
detects a total of six targets with accurate positioning, no missed detection, and no false
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detection targets. In contrast, YOLOX-s has a high missed detection rate and inaccurate
positioning of small targets in complex underwater scenes. Comparing the detection results
of small targets in different waters, such as image (d), image (e), and image (f) in Figure 11,
the B-YOLOX-S algorithm detects a total of thirteen targets, the same as the ground truth
box. The YOLOX-s model detects a total of nine targets, and misses two echinus targets.
From this experiment, it can be concluded that the data augmentation algorithm used in
this paper has good generalization in different waters. In analysing the detection results of
image (g), image (h), and image (i), when the small target object is occluded, the model
in this paper misses two targets and has no false targets, while the original YOLOX-s
model misses four targets and incorrectly detects submerged rocks as echinus. Analysing
of the detection results of image (g), image (h) and image (i), in which there are a lot
of water plants and reefs in the water environment, the model in this paper accurately
detects all targets, while YOLOX misses two targets. In cases in which the scallop targets
are small and have a high similarity with the reef, the model in this paper demonstrates
better recognition performance. Under the influence of various negative factors, using the
multi-scale enhanced feature fusion module in our proposed model leads to a much lower
miss rate and higher detection precision than the initial network.

In summary, the results of the B-YOLOX-S model are obviously better than those of
the YOLOX-s model in the detection experiments in different scenes, and the recognition
effect in different waters is significantly improved. In particular, the detection rate and error
recognition rate are lower and more accurate in cases of target overlap, dense distribution,
more small target categories, external occlusion, and image distortion, which illustrates the
validity of our work.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Cont.
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(g) (h)

(i)

Figure 10. Comparison between the detected image and the ground truth box in the dense and
overlapping state of the target. Image (c), image (d), and image (i) show the corresponding ground
truth box in the dataset under the occlusion and overlapping state of the target; image (b), image (f),
and image (g) show the prediction box detected by the B-YOLOX-S model; and image (a), image (e),
and image (h) show the prediction box detected by the YOLOX-s basic network algorithm.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Cont.
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(g) (h)

(i) (j)

(k) (l)

Figure 11. Comparison between small target detection images and ground truth box in complex ter-
rain. Image (c), image (d), image (i), and image (l) show the ground truth box corresponding to small
targets under different terrains in the dataset. Image (a), image (f), image (h), and image (k) show the
prediction box detected by the B-YOLOX-S algorithm proposed in this paper. Image (b), image (e),
image (g), and image (j) show the prediction box detected by the original YOLOX-s algorithm.

5. Discussion
5.1. Target Detection in Different Waters

The training and learning of neural networks are based on data-driven approaches.
Different data domains have a certain degree of influence on the detection accuracy, which
has become a major difficulty in underwater target detection. The color water bodies
varies under different water conditions because of the effect of light scattering. While the
generalization ability of the detection network can be raised by increasing the number
of samples through cross-domain training, this may lead to overfitting of the detection
results [50]. Through experiments, we found that high-quality domains often lead to false
detection during cross-domain detection. However, low-quality domains cannot be learned
well during training due to blurry images and low resolution. Thus, the impact of cross-
domain detection is low and the generalization is high. In this paper, we solve the drawback
of cross-domain training using style migration for image recovery of low-quality domains
and better restoration of image detail information to enhance the learning ability of the
target detection network. We found that the mAP value of the detection network is lower
if the image restoration is performed on the entire training set compared to performing
image restoration only on the low-quality domain. Especially in dark waters, the target
categories of echinus and scallop are similar to underwater rocks and reefs, causing the
detection network to have a high false detection rate and a low recall rate.

We increased the types and numbers of target categories in different waters by aug-
menting the dataset to improve the detection accuracy of the network. The direct fusion of
images causes a large difference from the real image, which has a considerable negative
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impact on the training of convolutional neural networks. Finally, we performed data
augmentation, first performing Poisson matting on the images and then using wavelet
transform to perform image restoration to eliminate differences. The effectiveness and
superiority of this method were proved by our ablation experiments. However, in certain
types of complex waters our method experiences the phenomenon of missing detection.
Therefore, there is research space for further image enhancement and image restoration in
different waters.

5.2. Small Target Detection under Underwater Occlusion

Aiming at the current hot research field of small target detection, many scholars have
focused on improving the precision of small target recognition through research on data
enhancement, attention mechanism, and feature fusion [51–53]. However, many strategies
for small target detection are not well adapted to small underwater targets, and the current
research on the detection of small underwater targets is relatively scarce. Because the
underwater environment is diverse and uncertain, large-scale detection networks cannot
be deployed due to the limited carrying capacity of underwater robots, making the study of
underwater small object recognition a considerable challenge. We propose an enhanced fea-
ture fusion module that fuses shallow texture features with high level semantic information
using concatenation and skip connection to improve the recognition accuracy and sensitiv-
ity of the detection network for different scale features. Through experiments, we found
that the BIFPN-S algorithm has higher detection accuracy and a lower missed detection rate
for underwater small target detection than the YOLOX-s feature fusion algorithm. Under
the occlusion condition with higher detection difficulty, our model has a high recall rate and
a low false detection rate, and the positioning is more accurate. However, under conditions
of blurred water bodies and extremely complex terrain, the lightweight detection network
inevitably misses detection at times, and the recognition accuracy is not high, which is a
problem that needs to be overcome in future work.

6. Conclusions

In this paper, we propose a real-time detection algorithm, B-YOLOX-S, for underwater
objects. First, the Poisson matting method is used to solve the differences in the amount
of samples in the dataset, then style transfer and image restoration through wavelet trans-
formation are used to achieve generalization in different waters. We propose a BIFPN-S
multi-scale feature fusion network and combine it with FPN to reinforce the information
extraction capability of the network for feature maps and to retain the detailed informa-
tion of images. Aiming at the problem of accurate positioning of dense and overlapping
targets, we use EIoU_Loss as a loss function to improve the precision of localization. The
experimental data prove that the B-YOLOX-S algorithm performs well in sophisticated
environments, such as those involving different water and lighting conditions. In the recog-
nition of small underwater objects, the detection network proposed in this paper shows
higher detection precision and recall rate along with a lower missed detection rate and
false detection rate. Compared with the YOLOX-s algorithm, the AP values on the echinus,
holothurian, scallop, and starfish categories are increased by 2.8%, 7.1%, 10.03%, and 1.21%,
respectively. The lightweight model proposed in this paper is small in terms of parameters
and easy to deploy on underwater vehicles for real-time detection and identification in
fishing operations. In our next work, we intend to study a target detection model with
higher recognition accuracy that can guarantee detection speed.
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