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Abstract: The influence of thermally sprayed aluminum coatings (Al99%; arc spraying) on the fatigue
strength of gas metal arc welded (GMAW) non-alloyed structural steel specimens with respect to
foundations for offshore wind turbines was investigated. Additionally, the corrosion protection effect
of such coatings for water conditions similar to the Baltic Sea was determined. Wöhler tests were
carried out on test specimens with different weld details in the as-welded condition as well as in the
thermal spray coat under the consideration of different kinds of surface preparation (blast cleaning
with corundum and grit). Substrate and coating were characterized by scanning electron microscopy
and the influence on the residual stress states was determined. Corrosion rate monitoring via LPR
measurements was carried out as well as the monitoring of the galvanic current between coated and
uncoated steel to characterize the coatings’ sacrificial capability for minor defects. Fatigue strength
was significantly increased through thermal spraying, especially for test specimens with welded
transverse stiffeners (∆σc,var = 127 MPa after coating compared to ∆σc,var = 89 MPa as welded). With
a characteristic value of the stress range of ∆σc,var = 153 MPa, the welded butt joint specimens already
exhibited a high fatigue strength in the as-welded condition. The corrosion studies demonstrated that
thermally sprayed Al99% coatings have a high resistance to corrosion in seawater environments and
are suitable as planar sacrificial anodes sufficiently polarizing bare steel below 0.8 V. The combination
of fatigue strength improvement and corrosion protection makes the thermally sprayed Al coatings
promising for design and operation of e.g., offshore structures.

Keywords: fatigue; corrosion; welding; thermal spraying; Al99; offshore; structural steel; blast
cleaning; LPR; GMAW

1. Introduction

For offshore wind energy plants, achieving the longest possible service life of foun-
dation and tower structure is decisive for their economic efficiency. Due to challenging
mechanical and corrosive conditions, structural steel foundations under water are at a high
risk of degradation. Cyclic loading from waves, wind and plant operation can lead to
108 load cycles or more within the aspired 25 years of service. The design service life of
towers and tower foundations is mainly determined by the fatigue strength of their welded
connections. Apart from the apparent butt-welded connections, the attachment of support
elements (non-load carrying welded attachments; detail category 80 acc. to EN 199319 [1])
limits the fatigue strength of the structure and leads to the use of plate thicknesses of more
than 130 mm [2].
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The fatigue strength of welded components is mainly determined by the geometrical
and technological notch effect of the welds. The higher the quality level of the welds, the
less distinct the notch effect and the better the fatigue strength of the welded detail. Other
factors, such as the base material strength or welding process, are of minor importance
for the fatigue strength of welded components [3]. Offshore wind turbine towers and
tower foundations are manufactured at onshore facilities with high standards regarding
the quality level of execution and quality assurance, so limitations in fatigue strength can
only be raised by applying post-weld treatment methods.

Different kinds of post-weld treatment methods are frequently used for improving the
fatigue strength of welded connections. Principally, post-weld treatment methods rely on
reducing the notch effect of the weld by the reduction of stress concentration at the weld toe
and on the introduction of beneficial compressive residual stresses [4]. In addition to the
more commonly known and regulated burr grinding, TIG dressing, and HFMI processes,
blast cleaning can lead to significant increases in fatigue strength of structural steel as well.
Before coating, the welded components of wind turbine towers are blast cleaned for surface
preparation, so the process can be used as an economic post-weld treatment method that
does not require additional manufacturing steps [5–7].

Generally, post-weld treatment methods are also available for offshore foundations.
However, because of the additional manufacturing effort and the comparatively small
benefit for design due to regulation constraints, they are rarely implemented in production.
Also, wind turbine foundations are rarely coated, so the corrosive effect of seawater must
be expected to diminish the positive effect of potential post-weld treatment methods.
Enhanced benefits from post-weld treatment methods in structural components located
under water can be achieved by considering the coating of the corresponding areas.

Until recently, only active (ICCP) and passive (sacrificial anodes) corrosion protection
systems have been used in the underwater area of wind turbine foundations. A new and
increasingly used method for corrosion protection is the aluminum coating of the entire
foundation structure by means of thermal spraying, see Figure 1. Here, the entire structure
exposed to seawater is preserved by means of arc spraying with a 99% aluminum coating
(Al 99%) as well as an organic sealer [8].
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The arc-spray process is a simple and cost-effective thermal spray technology, which
is determined by a few key factors [9,10]. It is well established for the corrosion protection
of large structures and on-site repairs [11,12].

The effect of thermal spraying on fatigue strength was investigated in different contexts.
Depending on the substrate material, surface preparation, coating process, coating system,
and a potential corrosive medium, thermal spraying can lead to the improvement as well
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as the deterioration of the substrates’ fatigue strength characteristics. The introduction of
tensile residual stresses as well as the increase of the component roughness were identified
as significant variables influencing the fatigue strength of the coated component [13–18].

Arc voltage and current as well as the gas flow, pressure, and type mainly affect the
resulting coating quality [10,19]. In addition, residual stresses inside the coating are heavily
influenced by the aforementioned parameters and the spray kinematics [19,20]. In the
literature, alternating quenching stresses (generating from particles hindered in shrinking
by the substrate as soon as they hit the surface) are reported to dominate the composition
of residual stresses in arc spraying, while thermal mismatch stresses (caused by different
coefficients of thermal expansion for substrate and coating) also play a major role [19–21].
However, this might be altered by phase changes, e.g., due to heat treatment [21,22].
Concerning the superposition of residual stresses and external stresses or an excess of a
certain coating thickness, further studies have revealed pronounced coating delamination
and thus significantly reduced service lives [21]. Both findings were confirmed by our
own investigations [20]. Furthermore, our investigations on cavitation erosion resistance of
thermally sprayed coatings show correlations between the spray parameters, the kinematics,
and the gases used as well as the residual stresses of the coatings [22]. Coatings made of
fatigue-resistant materials were found to be particularly durable in regard to cavitation
erosion. However, the substrate used was pure bulk material instead of welded detail [22].
Consequently, it can be assumed that the longevity and residual stress state of the coating
has a significant influence on the fatigue strength of the welded and subsequently blast-
cleaned and thermally sprayed connections.

The influence of thermally sprayed Al—coatings on welded steel structures subjected
to cyclic loading has not been investigated to date and could be beneficial in terms of
service life and manufacturing costs of offshore foundations.

The sacrificial behavior concerning the cathodic protection of exposed steel as well
as the self-corrosion rate of arc-sprayed aluminum coatings have been investigated thor-
oughly [23,24]. However, investigations on the corrosion protection performance as well
as on the sacrificial behavior of thermal-spray aluminum coatings in sea water with low
salinity via quantitative methods are absent from the literature. Galvanic testing of a
combination of thermally coated and uncoated steel can provide insight into the sacrificial
behavior of thermal-spray aluminum coatings [25]. Regarding large subsea structures this
particular characteristic of thermal-spray aluminum coatings needs to be studied as not
only their barrier properties, but also the polarizing effect on mild steel, are key factors to
their corrosion protection effect.

Hence, first-time investigations on the fatigue resistance of basic weld details coated
with thermally sprayed aluminum under consideration of different surface preparation
methods are summarized in this paper. Moreover, investigations regarding the corrosion
protection performance and sacrificial behavior of corresponding coatings are presented.

2. Materials and Methods

Based on welded connections typical for steel towers and tower foundations, arc-
welded butt joint specimens, as well as specimens with transverse stiffeners, were manu-
factured from plates of non-alloy structural steel EN 10025-2-S355J2+N [26] with a sheet
thickness of t = 8 mm. A S5 SpeedPulse XT welding unit (Lorch Schweißtechnik GmbH)
was used for welding. A welding tractor was used for guiding the welding torch to ensure
reproducible welding results, a constant heat input, and the constant quality of the welds.
After welding, the plates were cut into individual specimens on a band saw. Sharp edges
were removed by breaking them manually using a file. Specimen geometries as well as the
concomitant welding symbols for the GMAW welds are shown in Figure 2.
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Prior to thermal spraying, the surfaces of the specimens were blast cleaned by using
corundum and grit, respectively. Blast cleaning with corundum was performed at the
facilities of Linde AG. Grit blasting was carried out at a manufacturer of steel pipes for
wind energy turbine towers using blasting parameters typical for surface preparation of the
tower segments before coating. To determine the blasting intensity of the blasting processes,
Almen intensity tests according to SAE J433 [28] were carried out at each blasting site using
a sentenso Almen gage model TSP-3 and Almen test strips Type A (Grade 2) according
to SAE J442 [29]. Parameters, consumables, and quality requirements for welding and
blasting are shown in Table 1 (heat input calculated with a coefficient of thermal efficiency
of k = 0.8 for GMAW processes according to [30,31]).

Table 1. Parameters, consumables and quality requirements for welding and blasting.

Welding Parameter Value Blasting Parameters Value

Arc Voltage 27 V Almen Intensity Steel Grit 628 µmA (T = 2.5 s)
Welding Current 300 A Almen Intensity Corundum 467 µmA (T = 18.2 s)

Wire feed rate 10 m/min Blasting Consumables Type & Particle Size

Welding speed 35 cm/min Steel grit ISO 11124 M/HCS/G100 [32]
Heat input 1.1 kJ/mm nominal particle size 1.0 mm

Shielding gas flow rate 12 L/min
Corundum

F24 (FEPA 42-1 [33])
Electrode stickout 18–22 mm 600–850 µm

Welding wire diameter 1.2 mm Blasting Quality Criteria Requirement

Torch angle 10◦ Surface preparation grade Sa3 (ISO 8501-01 [34])
Travel direction Push welding Coverage 100% (SAE J2277 [35])

Welding Consumables Designation Welding Quality Criteria Requirement

Welding wire ISO 17632-A—T 46 6 M M21 1 [36] General Quality Level B (ISO 5817 [37])
Shielding gas ISO 14175—M21—ArC—18 [38]

Thermal spraying of the specimens was carried out at the facilities of Linde AG
utilizing the arc spray process. For the spray experiments, a power source Sparc 400
equipped with a Shark 400 RE gun on a robot was used (both GTV Verschleißschutz GmbH,
Luckenbach, Germany). The spray parameters for the experiments were kept constant and
can be found in Table 2. A meander-shaped type of spray pattern was employed. The
specimens were coated on all sides. The two wires corresponded to type Al 99% (Metco
Aluminium, Oerlikon Metco GmbH, Kelsterbach, Germany; Ø 1.6 mm).

Table 2. Thermal spray parameters.

Gas Flow Rate
in m3/h

pGas
in Bar

Robot Speed
in m/min

Robot Offset
in mm

Stand-Off
Distance in mm

Number
of Passes

Voltage
in V

Current
in A

Wire Feed
Rate in m/min

Air 93.0 3.5 40 9 100 2 28 107 6.2
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Micro-sections of the specimens were prepared by cold mounting (two-phase system:
liquid hardener and powder resin), gradual grinding, and subsequent polishing up to
3 µm polishing suspension, which was finished by OP-S polishing. Moreover, Nital etching
(3%) was applied for enhancing the contrast.

Micrographs of the micro-sections and fracture surfaces were taken using an optical
microscope (OM) Leica DM6000M (Leica Microsystems GmbH, Wetzlar, Germany) and the
software DHS tool (dhs GmbH, Greifenstein-Beilstein, Germany). Moreover, representative
analyses regarding the morphology were carried out using a scanning electron microscope
(SEM) JEOL JSM-IT100 (JEOL Germany GmbH, Freising, Germany; with an acceleration
voltage 10 kV, a backscatter detector, and a low vacuum mode). Further investigations
were carried out on the microstructure of the substrate materials regarding the impact of
blast cleaning and thermal spraying. Additionally, the fracture surfaces were analyzed
particularly focusing on the origin of the fatigue cracks. Both were investigated using the
same equipment as described earlier.

The coating thickness was determined quantitatively in the OM micrographs, record-
ing 3 times the 7 measured values, while eliminating maxima and minima values for each.
In addition, the number of coating defects (i.e., porosity, oxidation, and cracks) was quanti-
fied at 3 random areas of the SEM images. For that purpose, the software ImageJ (National
Institutes of Health, USA; in the region of interest using Despeckle filter, normalization,
and finally the Trainable Weka Segmentation tool) was applied.

Residual stress measurements were carried out for specimen characterization prior to
fatigue testing. The measurements were performed by the hole drilling method combined
with electronic speckle pattern interferometry (ESPI) using the PRISM system and the
PrismS software (both Stresstech GmbH, Rennerod, Germany) with three measurements
for each specimen. The coated specimens and the reference material (without grit blasting
or thermal spraying) were tested after the application of a developer spray (typically used
in the non-destructive penetration test) to reduce surface reflections and, in the case of
the coated samples, in the as-sprayed state. The holes were processed in varying steps
using high-speed steel end mills (2 fluted, TiN coated, and Ø 0.8 mm) up to a final profile
depth of 400 µm. The inner integration radius was twice the hole diameter, while the outer
integration radius corresponded to four times the hole diameter. The Poisson ratio used for
calculation was 0.334, while the Young’s modulus was assumed to be 71 GPA. Both values
correspond to bulk aluminum, which should be kept in mind regarding the evaluation. A
Tikhonov regularization factor of 0.01 was applied in stress calculation.

Fatigue tests were performed under axial loading and generally according to the
ISO/TR 14345 [39]. A resonance testing machine, the Power Swing 100 kN from SincoTec
Test Systems GmbH, was used for carrying out the tests. The testing frequency was
f = 60 Hz for the butt-welded specimens and f = 110 Hz for the specimens with transverse
attachments. Runouts were defined for 5 × 106 cycles. Specimen failures aimed for an even
distribution over the target live range of 5 × 104 < N < 5 × 106 cycles. A complete crack of
the specimens or a visually detectable crack close to being a complete crack were defined
as failure criteria. Specimens were loaded by constant amplitude loading with a stress ratio
of R = 0.5. The limit to the maximum stress applied was the base material yield strength
determined via the tensile tests, which led to a maximum stress range of ∆σmax = 200 MPa.
Statistical evaluation of the fatigue test results was carried out according to the background
document [40] to the Eurocode 3 Part 1–9 [1]. The runouts as well as specimens with cracks
in the base metal area were excluded from the statistical evaluation.

The corrosion protection capability of the Al99% coating was tested in a close-to-real
environment. For this purpose, a test stand consisting of 5 Intermediate Bulk Containers
(IBC) was set up indoors at a constant temperature of 21 ± 1 ◦C. Each of the IBCs holds
600 L water, while the one where the testing occurred was also partly filled with sediment.
The IBCs are interconnected and a circulative flow of 600 L/h is generated by a submersible
pump. Water and sediment were recovered from the Baltic sea at an area 35 km northeast
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of the island Rügen at 40 m depth. Table 3 provides an overview of the water composition
analyzed by ion chromatography and the additional water properties.

Table 3. Seawater composition and properties.

Component Sodium Potassium Calcium Magnesium Chloride Bromide Sulphate

Concentration in mg/L 2906.9 99.6 227.4 480.6 6518.7 47.8 800.1

Property Salinity pH O2 Temperature

Value 0.81 g/L 7.5 ± 0.1 7 ± 0.3 mg/L 21 ± 1 ◦C

The coated test specimens are made of S355J2+N Steel with a size of 175 mm × 50 mm
× 5 mm. Prior to arc spraying the steel was blast cleaned to Sa 3 to a roughness between
60 µm and 100 µm according to ISO 8501-1 [34]. The coating thickness ranged between
400 µm and 600 µm due to manual application. The bare steel coupons that simulate
damage to the coating were sized at 17 mm × 13 mm × 10 mm. All test specimens were
provided with a threaded bore with a diameter of 4 mm on the topside for electrical
connection. The electrical connection as shown in Figure 3 was established by the standard
banana plug measurement cables cut to length and tightened to the coupons. Insulation
from the surrounding electrolyte was guaranteed by a silan-modified polymer sealant;
with the sealant covering the whole topside of the bare steel coupons and their remaining
surface area representing 5% of the surface area of the coated specimens.
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Figure 3. (a) The electrical connection of a thermal spray-coated specimen with insulation by silan-
modified polymer sealant; (b) A bare steel specimen with the electrical connection.

Three different specimen configurations were tested simultaneously. Four thermal spray-
coated S355J2+N specimens as well as four bare steel specimens were exposed as stand-alone
for reference purposes. As a third configuration the thermal spray-coated specimens were
electrically coupled to bare steel specimens through a specifically developed Arduino-based
connection box in between the measurements and through the potentionstat while measuring.
This way an electrical connection between the coated specimens and the bare steel was always
provided with the protection current being quantifiable on a regular basis.

Prior to immersion, all specimens were degreased using isopropanol and deionized
water. As shown in Figure 4 all configurations were positioned in one IBC around a single
Ag/AgCl reference electrode (RE) which was replaced daily. The counter electrode (CE)
made from graphite with the dimensions 400 mm × 400 mm × 30 mm was placed on the
side of the IBC. The specimens were hung by their cables with a fixed distance of 5 cm
(minimum) between the galvanic couples.
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Figure 4. The test setup in IBC with the graphite counter electrode to the right, the reference electrode
in the middle, and the specimens arranged around it. The galvanic couples are on the left side. The
thermal spray-coated specimens are in the middle of the picture and the bare steel specimens are
placed to their right.

The potentiostat used was a Metrohm Autolab PGSTAT 302 N equipped with
3 multiplexers for the serial measurement of 12 test specimens or specimen couples. The
test duration for the corrosion test was 30 days. At the beginning and end of the test the
potentiodynamic polarization curves were recorded using additional specimens. These
specimens were polarized down to −1.2 V vs. RE-potential before scanning up to −0.5 V
vs. RE-potential using a scan rate of 0.5 mV/s.

The open circuit potential (OCP) of all specimen configurations and the current be-
tween the galvanic couples were recorded every 4 h. At the beginning of each measurement
the potentiostat established an electrical measurement circuit parallel to the connection box.
After 10 s the wiring through the Arduino-based box was cut for the recording duration
(see Figure 2). The values of every channel were tracked for 120 s before reconnecting
through the arduino-box and disconnecting the potentiostat.

Once per week and twice during the first week LPR measurements were performed.
After 120 s of OCP scanning time the specimens and specimen couples were polarized at
±10 mV around OCP with a scan rate of 0.1 mV/s. The results from the LPR measurements
and the Tafel constants ba and bc gathered from the polarization curves were used to
calculate the corrosion rates using the Stern–Geary [41] equation. For the calculation of the
corrosion rates of the galvanic couples the equivalent weight of aluminum was used due to
the surface area ratio between the coated specimens and the bare steel.

After the exposure period the images in a wet and dried state, the SEM images (same
equipment as above), and the energy dispersive x-ray spectrometry (EDX) maps (JEOL Dry
SD25 detector (JEOL Germany GmbH, Freising, Germany; acceleration voltage 10 kV)) of
selected specimens were acquired. The deposits formed on the coating were analyzed by
IR-spectroscopy (FTIR-Spectroscope ALPHA (Bruker Optik GmbH, Leipzig, Germany).

For the base material characterization, the base material yield strength was determined
via tensile tests according to ISO 6892-1 [42] and the chemical composition of the base
material was verified by optical emission spectrometry (OES) using a Spectromaxx (Spectro
Analytical Instruments GmbH, Kleve, Germany).
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3. Results
3.1. Materials Characterization
3.1.1. Base Metal Properties

Tensile tests according to ISO 6892-1 [42] resulted in a medium upper yield strength of
ReH = 403 MPa (s = 7 MPa; n = 4). The OES analysis results and content limits according to
EN 10025-2 [13] are shown in Table 4.

Table 4. The OES analysis results and content limits according to EN 10025-2 [13].

Steel Content in % C Si Mn P S N Cu Ni Cr Mo

S355J2+N
acc. to [43]

Max. content
acc. to [13] 0.20 0.55 1.60 0.025 0.025 - 0.55 0.42 0.29 0.11

x (n = 5) 0.159 0.197 0.72 0.0085 0.0042 0.022 0.021 0.042 0.056 0.012
sx 0.0083 0.0038 0.0040 0.0002 0.0001 0.0025 0.0001 0.0021 0.0009 0.0002

3.1.2. Weld Seam Quality

Figure 5 shows the macro sections of a butt-welded specimen and a specimen with
transverse stiffeners (both blast cleaned and thermally sprayed). Quality level B according
to ISO 5817 [37] was met for the imperfections of the welded joints in the specimens and
verified via visual testing.
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Figure 5. Macro-sections of thermally sprayed specimens, etched with Nital (5%), (a) butt-weld;
(b) fillet weld.

3.1.3. Surface and Coating Properties

Regarding surface preparation, grit blasting shows a stronger impact on the near
surface microstructure of the steel substrate compared to blasting with corundum. A more
severe plastic deformation and a visible compression of the microstructure of the surface
material layer can be seen in the micro-section of the grit-blasted specimen compared to
the specimen blasted with corundum, see Figure 6.

This stronger deformation is also reflected in the subsequent coating analyses. First, it
is obvious that the grit-blasted samples exhibit higher coating thicknesses, which are also
constant over a larger area in the section, see Figure 7. Apart from this, a typical lamellar
morphology with good bonding to the substrate can be observed. Both types of surface
preparation share the non-uniform distribution of cluster-like coating defects, which are
marked in Figure 7. Yet, these variations are apparently more frequent for the specimens
blasted with corundum. In contrast, layered oxides typical for arc spraying are hardly
visible. However, coating breakouts can be detected in part for both surface preparations
as a result of the polishing process, although they are more pronounced for the specimens
blasted with corundum.
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Figure 7. Representative SEM images showing the substrate on top and the coating below (specimen
bottom) for the samples blasted with (a) corundum; (b) grit.

The observations on the coating microstructure can further be confirmed quantita-
tively, see Table 5. For example, the grit-blasted specimens had higher coating thickness
than the corundum-blasted specimens, with similar percent standard deviations for both
surface preparations.

Table 5. The quantitative coating analysis showing thicknesses and defects.

Blasting Procedure Coating Thickness in µm Amount of Defects (Porosity, Cracks, Oxides) in %

Corundum 78 ± 20 4.7 ± 2.3
Grit 97 ± 26 6.2 ± 0.5

Likewise, according to the representative analyses, a uniform coating structure is
recognizable for specimens blasted with grit. Although the absolute number of defects is
somewhat higher, the higher standard deviation of the corundum blasted samples indicates
an increased inhomogeneity.

3.1.4. Residual Stress Measurements

The residual stress measurements show a high amount of compressive residual stresses
in the blast-cleaned steel substrate (Figure 8). In the as-welded condition, the untreated
specimen shows significant tensile residual stresses in the area of the weld transition.
The measurements were performed at a distance of 5 mm from the weld toe in the base
material. The compressive stresses in the grit-blasted specimens reach deeper underneath
the specimen surface and gain a higher compressive stress value of up to −200 MPa
compared to the specimens blasted with corundum, with a compressive stress maximum of
about −100 MPa, see Figure 8. At a drilling depth within the range of a coating thickness of



J. Mar. Sci. Eng. 2022, 10, 1731 10 of 19

approximately 0.05 to 0.1 µm, a transition from tensile stresses to compressive stresses can
be seen in the residual stress depth profiles obtained. Tensile residual stresses in the coating
of the specimens are higher in the specimens blasted with steel grit and reach levels of up
to 200 MPa, compared to less than a 100 MPa tensile stress in the coating of the specimen
blasted with corundum. At a depth of 0.35 mm, nearly no compressive stresses could be
measured in the specimen blasted with corundum, whereas the grit-blasted specimen still
showed compressive stresses of more than −50 MPa at the same drilling depth.
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Figure 8. The residual stress measurement results of thermally sprayed specimens previously blasted
with grit or corundum and non-treated reference specimens in the as-welded state at the weld toe.

3.2. Fatigue Tests

Fatigue strength evaluation by statistical analysis with a variable slope according
to [40] leads to a characteristic value of the stress range of ∆σc,var = 153 MPa with a slope of
mvar = 9.9 for the butt-welded reference specimens (n = 5). The specimens with transverse
attachments show a characteristic value of ∆σc,var = 89 MPa with a slope of mvar = 4.0
(n = 9). Blast-cleaned and subsequently thermally sprayed butt weld specimens show a
nearly identical characteristic value of ∆σc,var = 152 MPa (mvar = 14.7; n = 8) compared to
the non-blasted butt weld specimens. Fractures generally occurred at the weld toe of the
specimens. However, with the blast-cleaned and thermally sprayed butt joint specimens,
fractures also occurred in the base material area of several specimens (n = 11). Regarding
the non-blasted, non-coated specimens, fractures in the base material area did not occur.
Blast-cleaned and subsequently thermally sprayed specimens with transverse attachments
show a characteristic value of ∆σc,var = 127 MPa (mvar = 6.6; n = 18). For both types of
specimens, the kind of surface preparation (grit blasting and blasting with corundum) does
not seem to make a difference in the fatigue test results. The corresponding S–N diagrams
including the testing parameters and characteristic values of the stress range can be seen
in Figure 9.

The different types of crack locations are shown in Figure 10. As shown, for some of the
specimens with transverse stiffeners, cracks appeared at both sites of the stiffeners simultaneously.
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Concerning the fracture surfaces shown in Figure 11, the fatigue fracture zone with a
plain surface orthogonal to load direction and the fast fracture zone with distinct plastic
deformation of the material (ductile fracture) can be clearly distinguished. The fatigue
fracture zone of substrate and coating is characterized by different types of cracks. While
orthogonal cracks with a large opening angle are predominantly observed for the substrate,
horizontal cracks are occasionally found in the coating. These mostly occur at the interface
or nearby, thus indicating lower adhesion in these areas. Yet, in general the coatings
still adhere well to the substrate over most of the observed fracture surfaces. In contrast,
orthogonal cracks could not be observed in the coating during the analyses before fatigue
testing. Moreover, small particles from the substrate could partly be detected in the coatings
(not shown). A single origin of the fatigue fracture could not be found for the specimen
shown. Instead, multiple crack fronts originating at multiple points across the weld toe
seem to blend together over the width of the specimen. With some of the grit-blasted and
thermally sprayed specimens, fatigue cracks occurred at both sides simultaneously or, on
the contrary, only at one side of the weld toe. No evidence was found to indicate whether
the cracks initiated from the coating or the substrate material. These observations apply to
both kinds of surface preparation equally.
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combined OCP of the galvanic couples ranged slightly higher than those from the stand-
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The galvanic current density over time is shown in Figure 12b. This was calculated 
using the surface area of the bare steel specimens. The values of all the couples were ini-
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Figure 11. The fracture surface of a grit-blasted specimen with transverse stiffeners. (a) Overview
image showing the fatigue fracture zone and the fast fracture zone; arrows indicate the origin and
direction of fatigue crack propagation. (b) The BSE image of the interface area showing different
orientations of secondary cracks in the fatigue fracture zone. (c) The BSE image of the parallel crack
at the interface of the coating.

3.3. Corrosion Testing

Figure 12a shows the OCP values during the immersion. The steel’s OCP started at
around −0.55 V and stabilized after 3 days of immersion between −0.65 V and −0.67 V,
respectively. During the whole immersion time no further changes in the steel’s OCP were
observed, except for a decreasing difference between measurements. From the initial values
between −0.80 V and −0.86 V the coating’s solo potential declined within 3 to 10 days
to less than −1.0 V. Subsequently, it increased and seemed to stabilize at around −0.95 V
by the end of the test duration. The values from the galvanic couples were observed to
be in-between these values. The OCP values of the couples started at around −0.65 V
and declined within 2 to 3 days to values close to −1.0 V. At the end of the test duration
the combined OCP of the galvanic couples ranged slightly higher than those from the
stand-alone coating and were in the region of −0.9 V.

The galvanic current density over time is shown in Figure 12b. This was calculated
using the surface area of the bare steel specimens. The values of all the couples were
initially between 130 mA/m2 and 180 mA/m2. From the outset of the experiment, the
values started to rise reaching their maxima after 3 to 5 days. All maxima lay between
400 mA/m2 and 500 mA/m2. After the maximum was reached, the current density declined
with the curve being shaped asymptotically. After 20 days of immersion the values of all
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the couples were slightly above 100 mA/m2, but still decreasing. At the end of the test all
the values were lower than 100 mA/m2.
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Figure 12. (a) OCP vs. Ag/AgCl of the single specimens and specimen couples over the test duration;
(b) Galvanic current density of the thermal spray coated and bare steel specimen couples over
exposure time.

Figure 13a presents the difference between a steel specimen that was electrically
coupled to a coated specimen on the left side and to stand-alone steel on the right side.
The coating cathodically protected the bare steel sufficiently during the test. No signs of
corrosion were visible on the surface of any bare steel specimens that were coupled to
coated specimens in the wet state directly after being retrieved from exposure. Conversely,
a thin layer of corrosion products formed on the earlier-protected bare steel coupled in the
dried state. There was no observed effect of the orientation of the steel specimen on the
coated plates.

Figure 13b shows the coated specimen that was electrically coupled to the bare steel
specimen shown in Figure 13a on the left side. IR Spectroscopy identified the white deposits
as aluminum oxide. No optical difference between stand-alone coated specimens and the
coated specimens from the galvanic couples after exposure was detected.
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Figure 13. (a) Bare steel specimens after 30 days of immersion in Baltic sea water; (b) a thermal spray
coated specimen that was electrically coupled to a bare steel specimen.

The SEM analysis of the steel coupon in the dried state primarily showed iron oxides
on the surface. This corroded layer was also optically visible and established during drying
after the exposure. In addition, sulfur, magnesium, and sodium were also detected. The
SEM images and EDX maps shown in Figure 14 demonstrate an even distribution of the
corresponding elements.
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Figure 14. The SEM images and EDX maps of a bare steel coupon that was continually galvanically
coupled to a coated specimen.

Figure 15a shows the corrosion rates of coated specimens and Figure 15b shows the
galvanic couples’ corrosion rates during exposure. Initially, the values of the stand-alone
coating were lower than those for the galvanic couples. They ranged from 30 µm/a to
50 µm/a. Over the exposure period the corrosion rates decreased to as low as 20 µm/a
at the experimental completion. The corrosion rates of the galvanic couples—one could
also call them a coating with a 5% defect—were initially higher, ranging from 55 µm/a
to 70 µm/a. Instead of directly decreasing after the start of the test, the values rose to a
maximum of 80 µm/a. During the 14 days it took the galvanic current density to decrease
to 100 mA/m2, the corrosion rates also decreased to around 30 µm/a. At the end of the
exposure time the corrosion rates of the galvanic couples reached the same levels as the
stand-alone thermal spray coating with the slope still pointing to even lower values.



J. Mar. Sci. Eng. 2022, 10, 1731 15 of 19J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

  

(a) (b) 

 

(c) 

Figure 15. (a) The corrosion rate of the thermal spray coating; (b) The corrosion rate of the galvanic 
couples ;(c) Potentiodynamic polarization curves of the coating at the start of the test, and of the 
coating and a galvanic couple after 30 days. 

4. Discussion 
The fatigue strength of the butt-welded non-blasted specimens is close to base mate-

rial fatigue strength of Δσc = 160 MPa (m = 3) according to EN 1993-1-9 [1]. This surpasses 
the general recommendation of detail category 90 for butt-welded connections according 
to the standard by far. This result can be explained by the good execution of the welds 
with low levels of imperfections, especially regarding angular and axial misalignment, 
and a general benefit in fatigue strength known for thin-walled specimens [44]. The 
steeper slope and the lower fatigue strength of the as-welded specimens with transversal 
attachments were expected and are congruent with the regulatory values (detail category 
80 for plates with transversal attachments according to [1]). The process of blast cleaning 
only can lead to different results regarding fatigue strength of the blasted components, 
depending on the abrasive and blasting parameters used: in prior investigations, blasting 
with corundum led to a reduction in fatigue strength due to an increased surface rough-
ness and only minor effects on the near surface microstructure, whereas grit blasting led 
to a significant fatigue strength improvement due to the increased compression of the near 
surface microstructure, the cold hardening effects, and an increased introduction of com-
pressive stresses [7]. Given that the thermally sprayed specimens show the same fatigue 
strength characteristics regardless of the blasting process used for the surface preparation, 
the thermal spraying itself seems to lead to an increase in fatigue strength as well: for the 

Figure 15. (a) The corrosion rate of the thermal spray coating; (b) The corrosion rate of the galvanic
couples; (c) Potentiodynamic polarization curves of the coating at the start of the test, and of the
coating and a galvanic couple after 30 days.

Potentiodynamic polarization curves of the coating at the start of the test and of the
coating and a galvanic couple after 30 days are displayed in Figure 15c.

4. Discussion

The fatigue strength of the butt-welded non-blasted specimens is close to base material
fatigue strength of ∆σc = 160 MPa (m = 3) according to EN 1993-1-9 [1]. This surpasses the
general recommendation of detail category 90 for butt-welded connections according to the
standard by far. This result can be explained by the good execution of the welds with low
levels of imperfections, especially regarding angular and axial misalignment, and a general
benefit in fatigue strength known for thin-walled specimens [44,45]. The steeper slope and
the lower fatigue strength of the as-welded specimens with transversal attachments were
expected and are congruent with the regulatory values (detail category 80 for plates with
transversal attachments according to [1]). The process of blast cleaning only can lead to
different results regarding fatigue strength of the blasted components, depending on the
abrasive and blasting parameters used: in prior investigations, blasting with corundum led
to a reduction in fatigue strength due to an increased surface roughness and only minor
effects on the near surface microstructure, whereas grit blasting led to a significant fatigue
strength improvement due to the increased compression of the near surface microstructure,
the cold hardening effects, and an increased introduction of compressive stresses [7].
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Given that the thermally sprayed specimens show the same fatigue strength characteristics
regardless of the blasting process used for the surface preparation, the thermal spraying
itself seems to lead to an increase in fatigue strength as well: for the specimens blasted
with corundum the thermal spraying seems to compensate for the issues that are normally
associated with this kind of surface preparation [7].

Looking at the micrographs, the generally negative effect of increased surface rough-
ness on the fatigue strength of the blast-cleaned specimens might be reduced by the coating
material filling out the dents on the substrate surface, which might hinder fatigue crack
initiation and growth. This seems to be confirmed by the relative oxide-free coatings, which
are instead dominated by clustered porosity. The microstructural analyses and evaluations
of the fracture surfaces generally showed a good bonding of the coatings and, in particular,
a denser and more uniform coating structure for grit. However, this difference does not
seem to have a direct influence on the fatigue strength. Further research is necessary to
explain the effect sufficiently. The considerable number of post-weld treated butt-weld
specimens with fractures occurring in the base material area shows that the maximum
increase in fatigue strength may have been reached for this type of specimen. For these, the
reduction of the notch effect of the welds led to other specimen characteristics being more
critical, e.g., the tapering of the specimens, which resulted in cracks occurring in the base
metal area rather than at the weld toe. For most of the grit-blasted and thermally sprayed
specimens, the missing single point of origin of the fatigue cracks indicates a uniform notch
effect across the weld toe.

Whilst the Almen intensities of the different blasting processes proved to be on a com-
parable level, the results of the residual stress measurements confirm the earlier findings
already mentioned, which state that blasting structural steel with corundum has more of
an abrasive effect and that in contrast grit blasting, with particles larger and more dense
than corundum, induces a higher number of compressive stresses into the material and
leads to a more distinctive cold work hardening of the near surface areas blasted [5,7]. The
more distinct microstructural plastic deformation of the steel substrate surface layer of
the grit-blasted specimens compared to the specimens blasted with corundum indicates a
stronger cold work hardening effect in the surface area of the grit-blasted specimens and
goes along with the residual stress measurement results. The tensile stresses prevailing in
the thermal spray coating do not seem to transfer into the blast-cleaned base material nor
do they seem to have a negative impact on the fatigue strength of the coated specimens, as
the fatigue strength characteristics determined are the same regardless of the kind of blast-
ing process used for surface preparation, or the height of tensile stresses in the specimen
coating, respectively. Instead, it might also be assumed, that a certain stress compensation
can take place beyond the coating–substrate interface and thus favorable compressive
residual stresses could prevail, which is generally in line with the investigation. However,
the applied elastic parameters of the residual stress measurements solely apply to one
single material and usually cannot include transitions. In addition, parameters for the bulk
material were used, although it is known that the Young’s moduli of thermally sprayed
coatings are in part significantly lower [20,46].

The results of the corrosion test indicate sufficient galvanic protection of areas with
defects in Al99% coatings, where bare steel is exposed to sea water with a low salinity.
No corrosion products were formed on exposed steel surfaces if they were electrically
connected to Al99% coated specimens. During the whole exposure period the OCP values
of the stand-alone coating, as well as of the galvanic couples, were below the protection
level for bare steel [46].

5. Summary

The investigations show that Al99% coatings applied by thermal spraying to welded
structural steel specimens of type S355 J2+N lead to a significant improvement in the fatigue
strength of the basic structure and that the arc-sprayed coatings show sufficient adhesion
even under a fatigue load. For blast-cleaned and coated test specimens with welded
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transverse stiffeners, the characteristic value of the stress range was determined with
∆σc,var = 127 MPa at a variable slope of mvar = 6.6, which is 40 % higher than characteristic
value determined for the as-welded reference specimens (∆σc,var = 89 MPa).

Test specimens with welded butt joints exhibited a very high fatigue strength in the
as-welded condition already, which can be attributed to the low level of geometric imper-
fections of the weld seams and specimens (angular and axial misalignment). Subsequent
coating by thermal spraying resulted in a fatigue strength comparable to that in the ref-
erence specimens, with ∆σc,var = 152 N/mm2. Crack initiation in the thermally sprayed
specimens occurred more in the base material area and less at the weld toe, indicating a
reduction of the notch effect of the weld.

The increase in fatigue strength is independent of the blasting intensity and the abra-
sive used for the surface preparation. However, compressive residual stresses introduced
by grit blasting are much higher and extend deeper below the surface compared to blasting
with corundum. Also, the cold work hardening effects in the near surface area, which
lead to a delay in crack initiation, are more pronounced after blast cleaning with steel grit.
Since these differences did not lead to a difference in fatigue strength of the specimens, the
thermally sprayed coating itself seems to contribute to fatigue strength improvement as
well, e.g., by compensating the generally negative effect of increased surface roughness as
well as the lack of sufficient cold work hardening effects associated with the specimens that
were blast cleaned with corundum only. This may be attributed to the closure of dents on
the substrate surface acting similarly to a reduction in roughness of the specimen surface
and/or the stress compensation effects beyond the substrate coating interface and these
will be investigated further in future studies.

Concerning the corrosion protection properties, it can be concluded that Al99% coating
sufficiently works as a sacrificial anode for exposed steel in aerobic Baltic sea water with
a salinity of 0.8% at room temperature. Further tests can be conducted to determine
functionality at lower temperatures, in seabed sediment, and for larger defective areas.

Overall, the studies indicate that, in combination, surface preparation by blast cleaning
and the application Al99% thermal spray coatings, can sufficiently protect steel structures
from corrosion and simultaneously lead to an increase in fatigue strength of welded
components. This is especially interesting for, e.g., offshore structures exposed to cyclic
loading. The effects examined should be validated in future investigations, for instance in
studies that also consider a combination of cyclic loading and corrosive wear.
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