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Abstract: This study was conducted to assess the feasibility of biomass estimation by non-destructive
sampling, determine whether the results derived from various types of marine macroalgae are
reliable, and a newly proposed method. A quantitative survey was conducted on marine macroalgae
communities distributed in the subtidal zone in 67 coastal regions in Korea. Regression analyses were
conducted on 11,642 fresh weight datasets covering of 135 species of marine macroalgae. The linear
function was FW = 17.721C (adj r2 = 0.745, p < 0.001) and the power function was FW = 4.48C1.251 (adj
r2 = 0.891, p < 0.001). Our analysis accounted for the fact that there were three vertically distributed
layers of a marine macroalgal assemblages with various shapes (i.e., the Ecklonia complex, the
Sargassum and Undaria complex, and the understory complex). For the Ecklonia complex, the linear
function was FW = 27.360C (adj r2 = 0.886, p < 0.001) and the power function was FW = 9.626C1.223 (adj
r2 = 0.909, p < 0.001). For the Sargassum and Undaria complex, the linear function was FW = 18.389C
(adj r2 = 0.916, p < 0.001) and the power function was FW = 6.567C1.255 (adj r2 = 0.942, p < 0.001). For
the understory complex, the linear function was FW = 10.419C (adj r2 = 0.737, p < 0.001) and the power
function was FW = 4.377C1.182 (adj r2 = 0.871, p < 0.001). Our findings demonstrated that the proposed
method can accurately estimate the primary productivity of a wide range of coastal ecosystems based
on remote sensing and non-destructive surveys of small-scale marine macroalgal communities.

Keywords: biomass estimation; non-destructive sampling; coverage; coefficient; formula; macroalgae;
regression analysis; remote sensing

1. Introduction

The marine macroalgal community analysis biomass, coverage, density, etc. by quan-
titative survey using a quadrat, and analyzes the community characteristics based on
quantitative value [1,2]. Biomass is used as a major research method to identify community
characteristics such as succession and change from the surrounding environment [3,4], and
productivity is used in research in various fields such as biofuel [5–7], bioremediation [8,9],
food and biomedicine [10–12].

Quantitative surveys to measure biomass are easily accessible methods for ecolog-
ical studies, but they can cause ecosystem disturbances by sampling [13]. Recently, the
distribution of marine macroalgal communities has been decreasing worldwide due to
barren grounds, and various studies are being conducted on the status, transplantation,
management, and monitoring of marine macroalgal communities to preserve marine
macroalgae [14–18]. Ecosystem disturbance by quantitative sampling, which is a destruc-
tive investigation, in such ecological studies or habitats with poor marine macroalgal
community conditions, can play a significant role [19].

Non-destructive research is widely used to study large brown algae (kelp) populations
that are easy to analyze [20,21], such as individual density and length, and for reason
such as speed, efficiency, and prevention of ecosystem disturbance [20,22,23], it is used for
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biological population surveys, extensive marine macroalgal distribution and eco-mapping
studies [24]. However, non-destructive research has the disadvantage of not being able
to analyze biomass, so biomass is estimated through regression analysis and derivation
of relational expressions on the relationship between biomass and parameters such as
lengh, width, and surface area for each species. To date, both in-lab studies [25,26] and
field work studies at the individual and population level in field studies [4,27–30] and
some studies related to meaningful results were derived. Biomass estimation by a non-
destructive method can be calculated only by measuring the length that can be analyzed
for each marine macroalgal species when conducting research on a wide range of research
areas, habitats in various conditions, and communities with different species composition
acts as a disadvantage. Therefore, there is a need for a comprehensive biomass estimation
method that uses less time-consuming and cost-effective, and can be widely applied to
various types of marine macroalgae, along with the development of a methodology that
can compensate for these shortcomings. Recent research trends show that non-destructive
sampling will be of high value in future ecological studies as it has many advantages, such
as sustainable preservation of healthy ecosystems, protection of useful marine macroalgae
communities, and prevention of anthropogenic disturbance of marine ecosystems [4,28–30].

Recently, marine macroalgae has become an issue in various fields, such as the effect
of macroalgal blooms (like golden tide, green tide), its role as a primary producer (carbon
sink) related to blue carbon, and community change due to global climate change and
reginal environmental pollution, so extensive surveys and biomass estimation methods
using them are absolutely necessary [23–32]. In general, ecological community studies
generate data through quantitative sampling. However, if macroalgal biomass data can be
obtained by qualitative sampling, it is thought that it will be possible to prevent disturbance
of the marine ecosystem, which is a disadvantage of quantitative survey, and to be free
from damage caused by quantitative survey. This study was conducted to examine whether
biomass estimation by non-destructive sampling is possible, whether the results of analysis
on marine macroalgae with various types are reliable, and to analyze the future use value
of this research method. Therefore, a study was conducted on the development of a
methodology that can be easily applied, high accuracy, and capable of estimating biomass
in a large-scale marine macroalgae habitat without artificial disturbance, and biomass
estimation according to marine macroalgae coverage.

2. Materials and Methods

A quantitative survey was conducted on marine macroalgae communities distributed
in the subtidal zone in 67 coastal regions along the East Sea, South Sea, and Jeju coast in
Korea (Figure 1). The marine macroalgal coverage (%) was recorded while sequentially
collecting for each layer, such as upper, second, and lower layers after installing a quadrat,
and photography was taken simultaneously using an underwater camera (Sony a7mIII,
Tokyo, Japan). Later, the field records and the photographed photos were compared
and verified, and it was converted into coverage rate per unit area (%/m2). The collected
samples were thoroughly washed with fresh water to remove impurities, and then observed
with the naked eye and a microscope (Olympus SZX9, Olympus BX50, Tokyo, Japan),
classified and identified. For the samples identified by species, all surface moisture was
removed with a towel, and fresh weight was measured up to 0.01 g using an electronic
scale (CAS, CBL3200H, Korea), and it was converted into fresh weight per unit area (g/m2).

When applying the regression function to the relationship between coverage and fresh
weight for each species, several functions such as linear function (y = ax + b), quadratic
function (y = ax + bx2 + c), and power function (y = axb) can be considered. For linear
function and quadratic function, when the value of the x-axis is small due to a constant
term (or y-intercept), the y-axis shows a negative value, or the sum of the residuals does
not become 0, so the coefficient of determination (R2) is a problem that you cannot use [13].
The function considers the equation passing through the origin, because the biomass shows
a negative value when the coverage approaches zero. Therefore, a total of six regression
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analyzes were performed depending on whether the constant term was removed for the
linear function, quadratic function, and power function. Among them, we would like
to suggest the power function (FW = aCb), which had a relatively high coefficient of
determination (r2) while passing through the origin, and the linear function (FW = aC) by
removing the constant term (y-intercept) (FW is fresh weight, C is coverage, a and b are
constants). In addition, for simple and broad application, marine macroalgae was divided
into several groups and an estimation formula for each group was calculated. Due to the
nature of using coverage in the regression equation, it was approached from the perspective
of the vertical layer of marine macroalgal assemblage when classifying groups [33,34]. IBM
SPSS Statistics 27 was used for statistical processing and relational expression calculation.
The AlgaeBase of Guiry and Guiry [35] was referenced for marine algal species.
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Figure 1. Map of study sites each area of Korea.

3. Results
3.1. Regression of Marine Algae Data Set

As a result of regression analysis on 11,642 fresh weight data sets coverage of 135 ma-
rine algae (12 green, 38 brown, and 85 red), the linear function was FW = 17.721C (adj
r2 = 0.745, p < 0.001), power function was FW = 4.48C1.251 (adj r2 = 0.891, p < 0.001), and the
coefficient of determination of power function was the highest (Supplementary Table S1,
Figure 2).

3.2. Regression of Marine Algae Form (Complex)

The concept of a vertical layer of marine macroalgal assemblage with various shapes
was applied to the analysis. A perennial large brown algae, canopy-forming year-round,
with little seasonal variation in biomass, Ecklonia complex (3 species, n = 702), perennial or
annual large brown algae, canopy-forming according to seasons, and large biomass fluctua-
tions, Sargassum and Undaria complex (15 species, n = 1056), and the rest of the understory
species complex (117 species, n = 9866) were divided into three groups and regression
analysis was performed. For the Ecklonia complex, the linear function is FW = 27.360C (adj
r2 = 0.886, p < 0.001), the power function is FW = 9.626C1.223 (adj r2 = 0.909, p < 0.001), and
for the Sargassum and Undaria complex, the linear function is FW = 18.389C (adj r2 = 0.916,
p < 0.001), the power function is FW = 6.567C1.255 (adj r2 = 0.942, p < 0.001), and for the
understory complex, the linear function is FW = 10.419C (adj r2 = 0.737, p < 0.001), and
the power function was analyzed as FW = 4.377C1.182 (adj r2 = 0.871, p < 0.001), so the
power function application was more suitable for all three groups (Supplementary Table S1,
Figure 2).
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3.3. Regression of Marine Macroalgae Species

The mean ratio of fresh weight and standard error (SE), linear function FW = aCb

(r2 = 0.873–0.999), and power function FW = aCb (r2 = 0.799–0.997) for coverage were
analyzed by marine macroalgal type, and significance was high (p < 0.001) in all results.
The regression analysis results for each species were arranged in the largest number of
samples (Supplementary Table S1, Figure 3).

Marine macroalgal species with a high ratio of fresh weight to coverage (linear function,
power function) are mainly Phaeophyceae, Laminariales, Lessoniaceae (Ecklonia bicyclis, E.
cava, E. stolonifera), and Alariaceae (Undaria peterseniana, U. pinnatifida), in the order Fucales,
Sargassaceae (Sargassum spp.), Lithophyllum okamurae (Corallinaceae), Grateloupia elliptica
(Halymeniaceae), Scinaia spp. (Scinaiaceae), Gelidium elegans (Gelidiaceae), Pterocladiella
capillacea (Pterocladiaceae) in Florideophyceae, in Ulvophyceae, Codium spp. (Codiaceae),
and Caulerpa okamurae (Caulerpaceae).

When comparing the linear function and power function of each marine macroalgal
species, Dictyota linearis, Dictyopteris divaricata, Myagropsis myagroides, Sargassum horneri, S.
patens, U. pinnatifida, E. cava, Carpomitra costata, Sporochnus radiciformis, Amphiroa echigoensis,
Jania arborescens, Scinaia japonica, S. okamurae, Dasysiphonia japonica, Kallymenia crassiuscula,
Gymnogongrus flabelliformis, Grateloupia elliptica, Peyssonnelia caulifera, Plocamium uncinatum,
Botryocladia wrightii, and Halopeltis adnata had a higher coefficient of determination for
power function; however, the other species had a higher coefficient of determination
of the linear function and the difference was small. The difference in the coefficient
of determination between the function of each species was in the range of 0.001–0.146
(Supplementary Table S1).
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Figure 3. The regression line between marine macroalgal coverage and fresh weight of each species.
The linear regression is the red line and power regression is the blue line.

4. Discussion

The biological estimation method combines the estimation formula for a specific
species and the coverage rate to estimate the total biological volume of the target area,
and if research on large areas is conducted simultaneously using satellite data, aerial
photography, and multi-beam, it can be used more efficiently [3,31,36,37]. However, the
remote sensing method still has difficulty in identifying species that grow in the subtidal
zone [36,38]. Accordingly, as a result of conducting a regression analysis on 11,642 data sets
of 135 species of marine macroalgae for the application of a wide and simple estimation
equation, the significance and determination coefficient showed a high level of reliability.
When regression analysis was conducted by classifying by layer (Ecklonia complex, Sar-
gassum and Undaria complex, Understory complex 3 group), both functions showed high
coefficients of determination (adj r2 = 0.886–0.909, p < 0.001). In the understory species
complex containing various species, the coefficient of determination was relatively low
(adj r2 = 0.737–0.871, p < 0.001), but it was determined to be sufficient to estimate the fresh
weight of the whole macroalgal mat.

Since marine macroalgae exhibits a wide variety of morphological characteristics,
from microscopic filaments to macroscopic kelp reaching several meters in size, regression
analysis was performed at the species level [39,40]. As a result of the regression analysis
by species, the species with a high fresh weight to epidermis ration had large length and
volume growth, a dense and hard cellular structure in terms of species characteristics, or
a characteristic high moisture or calcium carbonate content (thick leathery, sponge-like,
crustose and lumpy coralline, mucilage-rich, densely branched, and branched in three
dimensions). Species with a low fresh weight ratio to coverage generally exhibited small or
thin characteristics (with one to several cell layer, filamentous, sheet-like, rarely branched,
and branched in two dimensions).

Species with a large standard error of the fresh weight estimate (slope of linear function,
power of function, mean ratio of fresh weight/coverage ratio) are large brown algae or
relatively large species, and are considered to be due to differences in species characteristics,
timing, and growth areas. For example, large brown algae such as Ecklonia spp. are
characterized by distinct differences in shape, size, and biomass between young thallus and
adult thallus individuals [41,42]. Therefore, in these species, the difference in biomass is
inevitably large between young thallus dominates and adult thallus dominates depending
on the survey time or region, and the differences in biomass will also increase as the
coverage increases. In the same way in the coverage and biomass estimation using other
parameters as well, the error increases as the individual size increases [27]. Therefore, when
using the biomass estimation method of this study, it can be analyzed by considering the
error when the coverage value of large brown algae is large, or by applying the error to the
constant of the estimation formula when the individual size of the target area is identified.
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For example, in Ecklonia cava, a biomass of 301.29~21,502.82 g/m2 is estimated when an
error is applied to the power function when the coverage is 100%/m2. Therefore, it is
necessary to develop various methodologies to reduce the error in the future.

In the wet weight estimation model using the coverage presented in this study, an
estimation formula based on the fresh weight of each species was obtained for a number of
species. This method is expected to be able to estimate and change the primary production
of a wide range of coastal ecosystems based on remote sensing as well as non-destructive
survey of small-scale marine macroalgal communities using quadrat. As interest in the
carbon sequestration potential of the macroalgal community in relation to the current
blue carbon increases [43–45], it will be possible to estimate even a wide range of carbon
sequestration when combined with the carbon content data [46–49] by marine macroalgal
species in the wet weight estimation equation [50,51]. In particular, it is considered that
the Ecklonia complex can be sufficiently applied to Ecklonia spp. and Eisenia spp., which
are kelp that are globally distributed and have high productivity and are very similar in
shape [15,35,52]. If the results of this study are widely used in similar studies such as
biomass estimation, calculation, and securing a blue carbon sink, more valuable results can
be derived if more accurate estimation formulas are developed for more diverse species
through additional research.

5. Conclusions

This study has conducted to assess the feasibility of biomass estimation by non-
destructive sampling and a newly proposed method. Regression analyses were conducted
on 11,642 fresh weight datasets covering of 135 species of marine algae. The linear function
was FW = 17.721C (adj r2 = 0.745, p < 0.001) and the power function was FW = 4.48C1.251 (adj
r2 = 0.891, p < 0.001). For the Ecklonia complex, the linear function was FW = 27.360C (adj
r2 = 0.886, p < 0.001) and the power function was FW = 9.626C1.223 (adj r2 = 0.909, p < 0.001).
For the Sargassum and Undaria complex, the linear function was FW = 18.389C (adj r2 = 0.916,
p < 0.001) and the power function was FW = 6.567C1.255 (adj r2 = 0.942, p < 0.001). For
the understory complex, the linear function was FW = 10.419C (adj r2 = 0.737, p < 0.001)
and the power function was FW = 4.377C1.182 (adj r2 = 0.871, p < 0.001). Our findings
demonstrated that the proposed method can accurately estimate the primary productivity
of a wide range of coastal ecosystems based on remote sensing and non-destructive surveys
of small-scale marine macroalgal communities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10111676/s1, Table S1: Relation expression between marine
macroalgal coverage and fresh weight.
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