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Abstract: Many countries worldwide promote artificial reef projects to increase and preserve fishery
resources; however, how artificial reefs form fisheries is unclear. Nevertheless, specific hydraulic
features of artificial reefs may attract fish. We selected an underwater reef as a research site to clarify
this hypothesis. In this study, environmental conditions around the underwater reef were modeled
and quantitatively assessed using numerical analysis. We identified two hydraulic features related
to fish attraction: the wake region and the local upwelling region. Their spatial distributions were
superimposed on the path of a fishing vessel that was monitored using an automatic identification
system (AIS). We showed that various hydraulic characteristics (such as wake region, local upwelling
region, and flow velocity) identified in the path of the fishing vessel can be quantitatively evaluated.
Increasing amounts of information from the AIS can be used to identify the hydraulic features that
attract the most fish and therefore improve the productivities of artificial reefs.

Keywords: fish activity; fish attraction; fishing vessel; numerical analysis; automatic identification
system; underwater reef; wake region; local upwelling region; Ieodo ocean research station

1. Introduction

The “attraction and production” debate belabors whether artificial reefs (ARs) pri-
marily attract fish or spawn the production of new fish biomass [1]. Figure 1 illustrates
the marine ecosystem according to each opinion. The natural state initially features two
biomasses (Figure 1a). According to those who favor attraction, the amount of biomass
does not change—only its spatial distribution (Figure 1b). On the other hand, those who
support the production theory believe that the magnitude of the total biomass increases
because the QAR in the AR generates additional biomass (Figure 1c). Which opinion is
correct remains unclear, but studies have found that ARs include either or both attraction
and production effects [2–7]. Overall, this debate has one prerequisite: the attraction effect
generates an ecosystem in the AR. However, the mechanisms that cause the attraction effect
are unknown [8]. Some studies have identified specific hydraulic characteristics that may
attract fish, but these candidates may not align with the spatial distribution of marine life.
Elucidating these hydraulic features would enable more effective designs of ARs.

Biological hotspot waters can be used to evaluate fish attraction. For example, subma-
rine topography, such as a seamount (or an underwater reef), induces several hydrodynamic
features such as turbulence, wake region, internal waves, and upwelling that occur in an
uplifted seabed or valley and affect the abundance of fish resources and biodiversity [9–13].
One study categorized the topography of the seabed into open slopes, deep basins, canyons,
and seamounts, whose biodiversity patterns differed [14]. Upwelling benefits a seamount
because the current can flow along the slopes of the seamount, and turbulence diffuses
nutrients and minerals. In addition, the wake region is known to have the effect of attract-
ing marine life [15–17]. Gove et al. [9] clarified that hydrodynamic properties (upwelling,
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mixing effects, internal waves, etc.) as well as the inflow of matter (including byproducts
of human activities) help form biological hotspots.

Here, an underwater reef with high fishing intensity in the offshore was studied to
reveal which hydraulic characteristics attract fish. Geometrically asymmetric underwater
reefs exhibit different hydraulic characteristics in all current directions; therefore, we com-
pared the different characteristics that occur around the underwater reef in all the current
directions. In addition, the spatial distribution of marine life was predicted by tracing the
path of a fishing vessel (FV) in search of a fishing ground and superimposing information
obtained from an automatic identification system (AIS) to evaluate the hydraulic features
related to the location of the fishery.
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Figure 1. The attraction and production debate: (a) Initially there are two biomasses in a natural 
reef; (b) the attraction hypothesis: the movement of biomass changes after an AR is installed, which 
attracts some biomass (𝑸𝑨𝑹) from the nearby natural reef (𝒅𝟏). However, the total biomass does not 
change to 2; (c) The production hypothesis: ARs increase total biomass (𝟐 + 𝑸𝑨𝑹) because the AR 
serves as a spawning ground. 

  

Figure 1. The attraction and production debate: (a) Initially there are two biomasses in a natural
reef; (b) the attraction hypothesis: the movement of biomass changes after an AR is installed, which
attracts some biomass (QAR) from the nearby natural reef (d1). However, the total biomass does not
change to 2; (c) The production hypothesis: ARs increase total biomass (2 + QAR) because the AR
serves as a spawning ground.

2. Materials and Methods

This study was divided into two phases (Figure 2): locating the fishery [18] and a
numerical analysis to quantitatively characterize the fluid in the target waters. First, the
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location of the FV was accurately found from the AIS information, and the position of the
fishery was estimated by assuming that the FV moved to the location of the fishery. In
addition, the current direction through the numerical tidal map was determined from the
time information of the AIS according to the position of the FV. Second, the topography of
the seabed, water depth, and current direction were considered during preprocessing; the
candidates expected to be related to fish attraction were selected and quantified according
to the current direction. The relationship between fish attraction and hydraulic character-
istics was assessed by superimposing the numerical analysis result on the path of the FV
generated from the AIS.
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Figure 2. Research flowchart of this study.

2.1. The Target Waters and Underwater Reef

The target underwater reef, called Ieodo (or Socotra Rock), is located at the south-
ernmost tip of Jeju Island (see Figure 3a). Its most shallow peak is about 7.1 m (based on
approximately highest high water). Ieodo ranges about 1700 m north–south and 1200 m
east–west based on a water depth of 47 m; it slopes steeply in southern and eastern regions
and gently in northern and western regions (Figure 3b). The Ieodo Ocean Research Station
(I-ORS) was constructed on the rock to better cope with natural disasters (e.g., earthquakes,
typhoons, and climate change) and understand the ocean dynamics in the East China Sea
(ECS) [19,20].
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Figure 3. Study area and the target underwater reef (Ieodo): (a) Location of the study area (Ieodo);
(b) Topography of the underwater reef. Its top is located at a depth of 7.1 m, and its southern slope
from the top is very steep.

2.2. AIS Information Phase
2.2.1. FV Assumption

A fish finder can reliably find a fishery. The location of the fishery can, however, be
indirectly estimated by assuming that there is always a fish finder on a FV of a prerequisite
size. This is because the FV will inevitably encounter the fishery where fish gather. In this
study, this is called the FV assumption, which presumes that the location of the fishery
matches that of the FV.

2.2.2. FV Tracking Using Automatic Identification System Information

AIS is a navigational tool that can receive information on land control system while
transmitting information such as its location to other nearby vessels through a wireless
data communication system. In this study, AIS was used to track the FV passing through
the target waters. The AIS information included IMO number (MMSI number), vessel
type, speed, heading, latitude, longitude, and time information. The FV was identified
from the vessel information, the fishing activity was judged from the speed information,
and the position of the FV was confirmed from the latitude and longitude. Finally, the
tide-induced direction of the current was determined from the time information of the
AIS and the numerical tidal current map, the Ocean Data in Grid Framework provided by
Korea Hydrographic and Oceanographic Agency (KHOA) [21]. This system updated the
numerical tidal current map every 10 min.

2.3. Numerical Analysis Phase
2.3.1. Framework of Numerical Analysis

In this study, commercial code FLOW-3D was used as a numerical model to estimate
the hydraulic characteristics of the waters around the underwater reef (Ieodo) caused by
the current directions. Each element was numerically calculated using the finite volume
method, and the turbulent flow energy (k) and turbulent dissipation rate (ε) were modeled
by their respective transport equations. The volume of fluid (VOF) method and fractional
area volume obstacle representation were also applied to calculate the free surface of
the domain and the hydraulic characteristics of the underwater topography and at the
boundary. In these methods, the surface and volume of parts blocked by obstacles were
calculated during preprocessing to construct an efficient numerical analysis model.
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The analysis program (FLOW-3D) used a Eulerian–Eulerian approach to simulate flow
and compute equations explicitly and implicitly. The turbulence region was solved based
on the continuity equation (Equation (1)) and the equation of momentum (Equation (2)); the
effect of sudden fluctuations was minimized. The boundary and free surface flow of each
fluid were reproduced using the VOF method. The continuity and momentum equations
for incompressible fluids including VOF variables are expressed as follows:

∂

∂xi
(ui Ai) = 0 (1)

∂ui
∂t

+
1

VF

(
uj Aj

∂ui
∂xi

)
= −1

ρ

∂p
∂xi

+
∂

p∂xi

(
µ

∂ui
xj
− u′iu

′
j

)
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Here, ui and ui’ are average velocity and velocity fluctuation, Ai is the fractional area
open to flow in the directions of the element, VF is the volume in contact with the fluid, and
p and gi are pressures and weight forces, respectively, for the three perpendicular directions
in Cartesian coordinates (i = 1, 2, and 3). A turbulence model is required to simulate the
Reynolds stress expression (−u′iu

′
j) in Equation (2).

The area around the top of Ieodo was modeled to investigate changes in currents
due to underwater reefs using numerical model simulation. The size of the domain was
1200 × 1700 × 50 m, and its topography was modeled with a resolution of 10 m. The fluid
in the simulation was designated as water with a density of 1024 kg m−3 and a viscosity
of 1.0 × 10−3 kg m−1s−1. In this simulation, the maximum aspect ratio was 1.05, and
variable elements were configured to prevent numerical errors at the side boundary (inlet
condition). The number of elements in the calculation domain was 5.83×106. A variation of
less than 5.0 × 10−4 from the mean was considered steady state in this simulation because
unsteady state flow in a turbulent state occurs as an initial flow. The boundary conditions
of the domain were assigned as follows: its wall boundary at the bottom obeyed the no-slip
condition as well as zero velocity condition normal to the boundary, the top boundary
included a static pressure of 1 atm, and the side boundaries included the inlet and the
outlet according to the direction of each current, whose flow velocity was considered to
be 1 ms−1.

2.3.2. Identification of Hydraulic Features Related to Fish Attraction

Two hydraulic features related to fish attraction were determined as follows: First, the
wake region was defined as a region whose current direction was reversed relative to the
main direction (inflow direction) as shown in Figure 4a. The wake region occurs mainly
at the back of a blunt body such as a concrete structure that blocks the current [22]. The
magnitude of current velocity in the wake region is 20–30% of the surrounding current
velocity [22].

Second, we considered upwelling—a phenomenon in which low-temperature, nutrient-
rich deep water rises to the surface layer in a high-temperature, nutrient-depleted state.
Good fisheries form in waters where upwelling occurs due to abundant nutrients, and
high fishery production can be expected. Local upwelling was induced so that the current
could climb up the artificial structure. Biomass and biodiversity increased rapidly over
10 months [23], indicating that artificial structures can improve marine productivity. We
therefore used a numerical model based on high-resolution seabed topography data to
analyze local upwelling.

In this study, an upward current in target waters (1.7 × 1.2 km) was defined as a “local
upwelling region” and analyzed using a numerical model (see Figure 4b). The seabed
topography of the target waters was analyzed with a resolution of 10 m, and the spatial
distribution and volume of the local upwelling region were quantified according to water
depth and current direction. The local upwelling region was defined as a region with a
vertical velocity component (w) greater than 5% of the inlet current velocity; the value of
5% classifies the local upwelling region that occurs according to the current directions.
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Figure 4. Hydrodynamic features that can render an underwater reef a biological hotspot: (a) The
wake region (red part) was defined as a region with negative u-velocity. It primarily occurs down-
stream of an underwater reef; (b) the local upwelling region (blue part) was defined as the w-velocity
region greater than 5% of the inlet current velocity (u0). It occurs primarily on upstream slopes due
to the uplifted seabed.

3. Results
3.1. Quantification of Two Candidates Related Fish Attraction Using Mumerical Analysis

We used numerical analysis to quantitatively characterize wake regions and local
upwelling regions, whose hydraulic characteristics may relate to fish attraction. Figure 5
shows the results for 12 directions at intervals of 30◦ corresponding to the direction of
the current, which changes according to the tidal cycle. The geometric asymmetry of
the underwater reef greatly influences hydraulic characteristics depending on the current
direction. The wake region had the greatest volume when the current direction was is 0◦:
1,645,191 m3. Spatially, a large amount of wake region arose on the southern steep cliff; this
pattern has been noted in previous numerical analyses [24–28]. The wake region usually
occurs in conditions where an object blocks the flow. This is because the wake region occurs
from pressure gradients and turbulence downstream of the object. This pattern can also
be found in previous studies [10,29,30]. In the case of Ieodo, since the slope in the south
direction is very steep, there is a large wake region in the 0◦ direction. On the other hand, in
the 180◦ direction, the wake region is relatively small compared with 0◦. This is because the
terrain changes at the north of the island is gentle. The local upwelling region is governed
by the slope of the seabed topography. A large-scale local upwelling region develops when
it flows along a steep slope of the seabed topography. Therefore, there is a characteristic
that mainly appears upstream from the top of the Ieodo. As shown in Figure A1 (included
in the Appendix A), it can be seen that the location where the local upwelling region and
the wake region appear is spatially separated. However, a wake region did not emerge in
the 120◦ direction because the topography did not change drastically enough to create one.
The deviation of the wake region’s occurrence was large.



J. Mar. Sci. Eng. 2022, 10, 1619 7 of 13

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

region did not emerge in the 120° direction because the topography did not change dras-
tically enough to create one. The deviation of the wake region’s occurrence was large. 

  
(a) (b) 

Figure 5. Volume diagrams of the wake region volume and the local upwelling region, which are 
shown according to the current direction from the numerical analysis: (a) wake region volume dia-
gram (expressed in log scale); (b) local upwelling volume diagram. 

The largest volume of the local upwelling region was 3,833,730 m3 when the current 
direction was 0°, and the lowest volume was 2,332,694 m3 when the current direction was 
270°. However, unlike the wake region, its deviation of the volume according to current 
direction is relatively small. Moreover, the local upwelling region primarily occurred on 
the upstream slope of Ieodo. Figure 6 shows the maxima and minima of the wake region 
and local upwelling region, which mostly occurred when the current direction was 0°. On 
the other hand, the minimum volumes of the wake region and local upwelling region 
occurred at 120° and 270°, respectively. 

 
(a) (b) (c) 

Figure 5. Volume diagrams of the wake region volume and the local upwelling region, which are
shown according to the current direction from the numerical analysis: (a) wake region volume
diagram (expressed in log scale); (b) local upwelling volume diagram.

The largest volume of the local upwelling region was 3,833,730 m3 when the current
direction was 0◦, and the lowest volume was 2,332,694 m3 when the current direction was
270◦. However, unlike the wake region, its deviation of the volume according to current
direction is relatively small. Moreover, the local upwelling region primarily occurred on the
upstream slope of Ieodo. Figure 6 shows the maxima and minima of the wake region and
local upwelling region, which mostly occurred when the current direction was 0◦. On the
other hand, the minimum volumes of the wake region and local upwelling region occurred
at 120◦ and 270◦, respectively.

Figure A2 (included in the Appendix A) shows the vertical velocity distribution in the
flow direction passing through the top of Ieodo to investigate the change of local upwelling
according to the flow direction. In the results, it was confirmed that the magnitude of the
vertical velocity was strongly shown in front of the top, and in particular, it was found to be
high at 120◦, 150◦, 180◦, and 210◦ which had a steep. This is related to the thick distribution
of local upwelling around the top in Figure A1. Additionally, at 0◦, 30◦ which has a steep
slope behind the top, the local upwelling occurred behind the top, which is thought to be
caused by inducing circulation flow due to the creation of the wake region. This indirectly
confirms that the slope behind top is related to the formation of the wake region.

3.2. Superimposition of AIS Information-Based FV Path and Numerical Analysis Results

The path of FV1 was superimposed on the numerical analysis results in the direction
of the current at that time (Figure 7) by using the AIS-based location and time information
of FV1. The FV1′s AIS information was collected on 11 March 2022 from 19:41–23:23 (GMT).
A white dot indicates the position recorded when the AIS information was collected. Table 1
shows the AIS information of FV1. At this time, the current direction could be determined
through a numerical tidal current map. Thus, it can be checked whether there is a path
of FV1 at the location where the wake region and the local upwelling region occur. As
FV1 moved, the direction changed to 120◦, 150◦, and 180◦ as shown in Figure 7a, b, and c,
respectively. FV1 could be used to confirm where the local upwelling region occurred. The
local upwelling region that arose in the northern region of Ieodo (P4–7 at Figure 7) changed
to a wake region when the current direction shifted from 150◦ to 180◦. Likewise, the path
of FV1 was concentrated in the northern region of Ieodo.
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Figure 7. The spatial distribution of the wake region and local upwelling region around the un-
derwater reef according to numerical analysis. A solid line indicates the path of FV1. The AIS
information was collected for 3 h, during which time the current direction changed from 120◦to 180◦:
(a) Numerical analysis result when the current direction was 120◦ from (GMT) 19:41 to 20:40 on 11
March 2022; (b) current direction is 150◦ from 20:41 to 21:40; (c) current direction is 180◦ from 21:41
to 22:40.
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Table 1. Location and time of FV1 obtained from AIS information.

Code LON LAT Timestamp (GMT) Location

FV1

125.1871 32.13589 11 March 2022 19:41 P1
125.1873 32.13599 11 March 2022 21:53 P2
125.1854 32.13173 11 March 2022 22:11 P3
125.1790 32.13143 11 March 2022 22:13 P4
125.1812 32.13128 11 March 2022 22:21 P5
125.1811 32.12952 11 March 2022 22:23 P6
125.1791 32.12979 11 March 2022 22:25 P7
125.1730 32.13166 11 March 2022 22:40 P8

4. Discussion

In this study, the wake region occurring in the actual seabed topography was numeri-
cally analyzed. In addition, the volume and spatial distribution of the wake region were
used to determine whether the wake region correlated with fish attraction according to the
current direction, the tidal cycle, and the location of the FV. The upwelling region accounts
for 5% of the total ocean and 25% of the world’s total number of fish [31]. In 1991, Japan
attempted to build an artificial structure with a width of 45 m and a height of 10 m to
profit from upwelling and to increase catches [32]. Upwelling occurs primarily on the coast,
which is explained by wind-driven Ekman transport. However, it is almost impossible
to observe upwelling because its vertical velocity is very slow. For example, a previous
numerical model of the coast of Oregon state, USA determined the upwelling velocity to
be 2 × 10−2 cm s−1 [33]. Upwelling that occurs locally along the uplift seabed is especially
difficult to predict or observe because its mechanism is unrelated to Ekman transport. The
wake region helps to form an artificial fishery by providing a shelter and spawning ground
for fish [15,17,34–38]. These studies showed that an artificial fishery is more likely to form
in larger wake regions with lower internal currents. If successful, the spatial correlation
between the wake region and artificial fishery can be determined. Good fisheries most
commonly form in wake regions around seabed uplifts such as underwater reefs, where
FVs spontaneously gather.

Hydraulic features that explain fish attraction can be identified and quantified from
numerical analysis if the FV assumption is valid. Better AR projects can be developed by
including these hydraulic features that attract fish. Currently, countries that operate ARs
are concerned about how their shape and placement can better attract fish; accordingly, an
AR is recorded on video shortly after installation to monitor the gathering of marine life.
Although the ecological habits of most marine life are often unknown, our study identified
factors that attract fish from a macroscopic perspective.

Our numerical analyses and the AIS information on FV1 show that the local upwelling
region correlates with high-quality fisheries, which agrees with previous studies [23,37,38].
However, this study has some limitations: First, we obtained relatively little information
from the AIS to track FV because large amounts are not supported statistically. More
information could better clarify the relationship between fish attraction, wake regions,
and local upwelling regions. Second, the FV assumption is uncertain but can be modified
according to the FV’s target marine life species, fishing gear, fishing methods, and the
captain’s control. Finally, the numerical analysis may be unreliable because it is difficult
to accurately predict fluid behavior using the numerical model. Time and space were
approximated in our quantitative numerical analyses. Thus, it is necessary to sufficiently
converge the error within the target error range.

5. Conclusions

In this study, an AIS was used to track an FV, and numerical analysis revealed and
quantitatively evaluated hydraulic features that attract fish: the wake region and the local
upwelling region. Fish attraction was assessed by superimposing the numerical analysis
result and information from the AIS used to track the FV. We showed that a reliable
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numerical model can predict the hydraulic features in a specific aquatic region if sufficient
quantitative information is collected from an AIS. The FV assumption is valid if fishing
activity is concentrated in a relatively small region; this study will inform future numerical
models that can be used to develop highly productive ARs worldwide.
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Figure A1. Results of numerical analysis of wake region and local upwelling volumes that occurs
around the underwater reef (Ieodo) when the current direction changes at 30◦ intervals: (a) current
direction is 0◦; (b) 30◦; (c) 60◦; (d) 90◦; (e) 120◦; (f) 150◦; (g) 180◦; (h) 210◦; (i) 240◦; (j) 270◦; (k) 300◦;
(l) 330◦.
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