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Abstract: Floodwater entering the damaged cabin and impacting the bulkhead can cause damage
to the watertight compartment and affect the survival of the ship. The elastic deformation of the
bulkhead can slow down the impact and affect the flow field, which affects the hydrodynamic
distribution inside the cabin. In this work, numerical simulations on the flooding phenomena into the
damaged cabin with various stiffness, watertight bulkheads are carried out by using the mixed-mode
function-modified moving particle semi-implicit (MPS) method, with the objective of investigating
the influence of the stiffness of the watertight bulkheads on the structural impact load. Firstly, the
numerical model based on the MPS method is set up to predict the dam-break wave impact load
on an elastic plate and compared with the experimental measurements to verify the feasibility of
the method. Then, the evolution of the flooding process of the damaged cabin with four different
stiffnesses are simulated and the impact pressure on the bulkhead is predicted and compared. It is
found that the flexible watertight bulkheads not only can reduce the peak pressure acting on it, but
also have an effect on the hydrodynamic pressure distribution of the entire cabin. This implies that
properly selected stiffness and material properties of watertight bulkheads can mitigate the impact of
flooding on the damaged cabin’s bulkheads.

Keywords: moving particle semi-implicit (MPS) method; damaged cabin; flooding; flexible bulkhead;
fluid–structure interaction

1. Introduction

Accidents such as collisions and grounding occur on a regular basis when ships are
at sea. Some of these will cause ship damage and a large amount of seawater to flood
into the cabin in a short period of time, potentially causing the ship to become unstable or
capsize. Subdivision design is used by the majority of modern large-scale ships to improve
the survivability of damaged ships. In the event of hull damage, watertight bulkheads
are critical to ship survival [1]. However, once the cabin is damaged, high-speed flooding
can lead to a large impact load on the subdivision baffle and other parts of the bulkhead,
resulting in the structural response of the entire ship, or even hull structure destruction.
Therefore, it is essential to research the effects of flooding, forecast the magnitude of the
impact load, and finally mitigate it.

The majority of existing studies on the phenomenon of flooding into the damaged
cabin, however, focus on the ship’s behavior and movement [2–5], whereas hydrodynamic
research primarily focuses on tank sloshing in regular motion, such as the translation or
shaking of sine or cosine law [6–10]. The complexity of the transient motion characteristics
of the flooding in the cabin, on the other hand, makes it difficult to reduce to a simple
mathematical model. As a result, some researchers conducted additional in-depth stud-
ies. Huang et al. [11] studied the dynamic characteristics of this water spike during the
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early flooding process by a three-dimensional fast multipole boundary element method
(FMBEM), based on the potential theory, and revealed that the water flooding spike has
complex and non-linear dynamic behavior. Bennett and Phillips [12] conducted an experi-
mental investigation on the influence of floodwater and transient flooding on the motions
and structural response of a ship hull following a grounding incident. Results show that
floodwater can have a significant effect on the magnitude of ship responses. Rodrigues
and Soares [13] studied the progression of transient still-water vertical loads throughout
the flooding process for a damaged shuttle tanker in full-load condition, determined and
analyzed the probability and magnitude of higher intermediate loads and the main effects
of the damage parameters and the factor interactions. Yu et al. [14] used the commercial
software STAR-CCM+ to simulate the time domain of the instantaneous asymmetrical
water inflow process of a 28.8 m breeding care boat in the Bohai Sea under transverse wave
conditions, and obtained the variation of the boat’s pressure distribution during the cabin
flooding process. Cao et al. [15] developed an SPH model to study the dynamic response
of the damaged ship in beam seas. It is revealed that the liquid loading conditions on
the dynamic response of the damaged ship in regular beam waves. Gu et al. conducted
an experimental study [16] and showed that the ingress and egress of floodwater and its
interaction with the ship’s motions significantly affect the impact loads acting on the ship.
Siddiqui et al. [17] performed a series of forced oscillatory heave tests in a wave flume on
a thin-walled prismatic hull form. The presented results demonstrate the occurrence of
sloshing and piston-mode resonances in the tests and their influence on the hydrodynamic
loads of a damaged ship.

Despite this fact, experimental methods have limitations, such as the high cost and
complexity of experiment preparation, etc. The application of conventional computational
fluid dynamics (CFD) methods is still constrained by the variability of flow morphol-
ogy and the complexity of interface tracking, despite the researchers’ presentation of
a number of interface-capturing technologies [18–22]. As the well-known meshless meth-
ods, MPS [23,24] and smoothed particle hydrodynamics (SPH) [25–27] do not employ the
computational grid and are not required to deal with the nonlinear convective term in
the momentum equation, making it better to handle the moving interface with very large
deformations and large fluid motion. As a result, it is very applicable to the issue examined
in this paper, which is the interaction between flexible bulkheads and flood. The particle
methods have been successfully applied to a wide range of highly non-linear fluid–structure
interaction problems, such as sloshing in partially filled tanks [6,7], the slamming phe-
nomenon during the water entry process [28–30], and interactions between an elastic gate
with a released water column [30–33], etc. In contrast to SPH, which solves the equation of
state (EoS), the MPS method employs the pressure Poisson equation (PPE) for pressure com-
putation, allowing for a larger time step. The implicit solution of PPE, on the other hand,
can obtain more accurate pressure. The accuracy and stability of the MPS method have
been greatly improved in recent years, with the efforts of many scholars [34–45]. We have
previously used in-house code to investigate problems involving fluid–solid interaction,
such as slamming during water entry [28], and obtained convincing results.

In this paper, we investigate the effects of an elastic watertight bulkhead on pressure
distribution in the transient stage [3] of the flooding process for a damaged ship cabin using
a numerical solver that coupled the modified MPS method and the modal superposition
(rigid and flexible) method. It should be noted that the material models used in this paper
are ideal, and the structures will not fail within the numerical simulation’s deformation
range. The rest of the paper is organized as follows: Section 2 introduces the fluid and
structure numerical models; the validation of the numerical models and the detailed
discussion of the simulation results are provided in Section 3; and the last section documents
the main conclusions.
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2. Numerical Model

In the present study, a numerical solver, which coupled the modified MPS method and
the modal superposition method [46], is used to numerically simulate the water entering of
the damaged cabin with a flexible watertight bulkhead. We will give a brief description of
the numerical method in this section.

2.1. Present MPS Method

According to our previous study [5], the viscosity effect during the water entry of
a damaged cabin is negligible; therefore, the incompressible continuity equation and the
inviscid Navier–Stokes equation in the Lagrangian framework are used in this study, and
are expressed as follows:

∇ · u = 0 (1a)

Du
Dt = − 1

ρ∇P + g (1b)
(1)

where u, ρ, P, g, and D
Dt represent the velocity vector, the density of the fluid, the pressure,

the gravitational acceleration (9.81 m/s2), and the material derivative, respectively.
The computational domain is discretized by a number of particles. The particles

interact with one another during the calculation process according to a weight function (or
kernel function).

W
(
rij
)
=

{ re
rij
− 1 0 ≤ rij ≤ re

0 rij ≥ re
(2)

where rij =
∣∣rj − ri

∣∣ is the spacing between particles i and j, and r is the position vector of
the corresponding particle. re is the effective radius, usually set to 2.1 l0 ~ 4.0 l0.

In the MPS method, continuous fluid can be represented by physical quantities of mass,
coordinates, velocity, and pressure for particles. All of the terms in governing equations are
described as the interaction of neighboring particles. The gradient term, Laplacian term,
and divergence term of the i-th particle is modeled as follows:

〈∇φ〉i = d
n0 ∑

j 6=i
∇φij

(rj−ri)
|rj−ri|W

(∣∣rj − ri
∣∣) (3a)

〈
∇2φ

〉
i =

2d
n0λ ∑

j 6=i

(
φj − φi

)
W
(∣∣rj − ri

∣∣) (3b)

〈∇ · u〉i = d
n0 ∑

j 6=i

(rj−ri)·(uj−ui)

|rj−ri|2
W
(∣∣rj − ri

∣∣) (3c)

(3)

where φ symbolizes the arbitrary scalar variable of the particles; d and n0 equal the num-
ber of space dimensions and the initial particle number density for incompressible flow,
respectively; P̂i is defined as P̂i= min

(
Pj
)

[23,24]. The particle density n and parameter λ
are defined below:

〈n〉i = ∑
j 6=i

W
(
rij
)
(4a)

λ =
∑
j 6=i

W(rij)rij
2

∑
j 6=i

W(rij)
(4b)

(4)

The calculation process of the MPS method is mainly divided into two steps. Firstly, the
viscous force (if considered) and gravity are calculated, and the velocity and position of the
particles are updated on this basis, and the updated particles are called intermediate state
particles; secondly, the pressure P is obtained by solving the pressure Poisson equation by
enforcing the incompressibility conditions in the intermediate state, and the particle position
and other relevant physical quantities are updated again. In this study, to control the
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nonphysical oscillation of the particle pressure, the following pressure Poisson equation [47]
was applied:

∇2Pk+1 = (1− α)ρ
∇ · u∗

∆t
+ αρ

n0 − nk

n0∆t2 (5)

where u∗ is the intermediate velocity of a particular time step, ∆t is the size of a single time
step, superscripts k and k + 1 are, respectively, the kth and (k + 1)th time steps, and α is
a coefficient normally far smaller than 1.

Furthermore, some other technologies are used in the MPS model of this study, in-
cluding particle shifting, adjacent particle searching, Neumann-type boundary conditions,
etc., which makes the simulation of the flow field with violent free-surface motion more
accurate and stable compared with the original MPS [23,24]. In view of the length problem,
we will not repeat them here, and more details are given in Ref. [47].

2.2. Coupled Rigid-Body/Elastic Modes Method

Since the flexibility of the watertight bulkhead structure is considered in this study,
the coupled rigid-body/elastic modes model presented by Sun [46] is applied. We will give
a brief derivation below.

Two types of coordinate systems are used for the description of the damaged cabin
structure, which includes a global system, X−O−Y, and a local system, s−oF−w, as shown
in Figure 1. The rigid/flexible watertight bulkhead is represented by the fixed–fixed-type
beam model. The dynamics of the damaged cabin could be represented by the deflection of
the beam η and the position of the gravity center oR.
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For a flexible bulkhead structure, its motion could be described by the coordinates of
the points on the central line, XF = [XF(t), YF(t)]

T , as:

XF = XR + RoR−F + Rξ (6)

where XR = [XR, YR] is the coordinate of the local system origin oR in the global system.
oR−F =

[
xo f , yo f

]
is the vector from oR to oF. R is the rotation matrix that relates the local

system s − oF − w to the local system xR − oR − yR and global system X−O−Y, in this
study, is defines as:

R =

[
0 − 1
1 0

]
(7)
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ξ is the coordinate of the points on the beam’s central line in the local system:

ξ = [s, η]T (8)

The elastic deformation η is represented by the modal superposition approach. To be
more specific, the spatial and time dimensions of η are treated separately by a set of mode
function Φ = [φ1(s), φ2(s), φ3(s), . . . , φN(s)]

T and the corresponding general coordinates
q = [q1(t), q2(t), q3(t), . . . , qN(t)]

T . N is the number of modes that has been taken into
account. Therefore, the deflection along the beam is formulated as below:

η(s, t) = ΦTq (9)

According to the extended Hamilton’s principle [48], the motion of the whole cabin
system could be described by the Lagrange’s equation, as provided in Equation (10):

d
dt

(
∂T

∂
.
X

)
+

∂V
∂X
− ∂T

∂X
= Q (10)

Where T and V represent the kinetic and potential energy of the whole structure
system, respectively. If only the first three-order flexible modes, i.e., q1, q2, and q3, are
used, X = [X, Y, θ, q1, q2, q3] denotes the general coordinates, where X and Y are co-
ordinates of the origin oR in the global system X−O−Y, respectively. θ denotes the ro-
tational angle from the X-axis in the global system to the xR-axis in the local system.
Q = [Q1, Q2, Q3, Q4, Q5, Q6] indicates the non-conservative forces corresponding to
each coordinate mentioned above.

The mode shape functions need to satisfy the following orthogonal conditions in
Equations (11) and (12): ∫

f
ΦΦTρlds = IN (11)

∫ (d2Φ

ds2

)
EJ
(

d2Φ

ds2

)T

ds = Λ, Λ = diag
(

ω2
k

)
, k = 1, 2, 3 . . . N (12)

where ρl , E, and J are the line density, Young’s modulus, and the second moment of the
beam’s cross section, respectively; ωk stands for the kth natural circular frequency of the
beam and IN is the N × N identity matrix. The fixed–fixed-type beam is used to represent
the bulkhead structure, and the mode shape function is provided in Equation (13):

φi =
1√
M f

[cosh(κix)− cos(κix)− σi(sinh(κix)− sin(κix))]

σi =
cos(κi l)−cosh(κi l)
sin(κi l)−sinh(κi l)

(13)

where l is the length of the beam model (i.e., the height of the bulkhead in 2D models)
and x is the distance from the origin of s− oF − w system to any point on the model. The
parameter κil corresponding to the first three flexible natural frequency are as follows:

κ1l = 4.7300407446

κ2l = 7.8532046242

κ3l = 10.9956078382

(14)

Moreover, in order to simplify the governing equations below, we will introduce the
following definitions:
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ψ0 = [ψ01, ψ02, ψ03, · · ·, ψ0N ] =
∫

Φρlds

ψ1 = [ψ11, ψ12, ψ13, · · ·, ψ1N ] =
∫

sΦρlds
(15)

In the present study, as no concentrated force or moment is applied on the whole
structure, if the mode function is chosen up to three order, the governing motion equations
for the cabin are obtained:

MF
..
XR −MF

.
θ

2(
xo f cos θ − yo f sin θ

)
−MF

..
θ
(

xo f sin θ + yo f cos θ
)

+

(
.
θ

2
cos θ +

..
θ sin θ

)
(ψ01q1 + ψ02q2 + ψ03q3)

+2
.
θ sin θ

(
ψ01

.
q1 + ψ02

.
q2 + ψ03

.
q3
)

− cos θ
(
ψ01

..
q1 + ψ02

..
q2 + ψ03

..
q3
)
+ MR

..
XR = Q1

(16)

MF
..
YR −MF

.
θ

2(
xo f sin θ + yo f cos θ

)
+ MF

..
θ
(

xo f cos θ − yo f sin θ
)

+
.
θ

2
sin θ(ψ01q1 + ψ02q2 + ψ03q3)−

..
θ cos θ(ψ01q1 + ψ02q2 + ψ03q3)

−2
.
θ cos θ

(
ψ01

.
q1 + ψ02

.
q2 + ψ03

.
q3
)
− sin θ

(
ψ01

..
q1 + ψ02

..
q2 + ψ03

..
q3
)

+MR
..
YR +

(
MR + M f

)
g = Q2

(17)

MF

[
xo f

(
−

..
XR sin θ +

..
YR cos θ

)
− yo f

( ..
XR cos θ +

..
YR sin θ

)]
+MF

..
θ
(

x2
o f + y2

o f

)
− 2

.
θxo f

(
ψ01

.
q1 + ψ02

.
q2 + ψ03

.
q3
)

+yo f
(
ψ01

..
q1 + ψ02

..
q2 + ψ03

..
q3
)
+

..
θ IR + MF

(
xo f cos θ + yo f sin θ

)
+
( ..

XR sin θ −
..
YR cos θ

)
(ψ01q1 + ψ02q2 + ψ03q3)

−2
..
θxo f (ψ01q1 + ψ02q2 + ψ03q3) +

..
θ I f +

..
θ
(
q2

1 + q2
2 + q2

3
)

+2
.
θ
( .
q1q1 +

.
q2q2 +

.
q3q3

)
+
(
ψ11

..
q1 + ψ12

..
q2 + ψ13

..
q3
)
= Q3

(18)

−
( ..

XR cos θ +
..
YR sin θ

)
ψ01 +

..
θyo f ψ01 +

.
θ

2
xo f ψ01 +

..
θψ11

−
.
θ

2
q1 +

..
q1 + ω2

1q1 = Q4

(19)

−
( ..

XR cos θ +
..
YR sin θ

)
ψ02 +

..
θyo f ψ02 +

.
θ

2
xo f ψ02 +

..
θψ12

−
.
θ

2
q2 +

..
q2 + ω2

2q2 = Q5

(20)
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−
( ..

XR cos θ +
..
YR sin θ

)
ψ03 +

..
θyo f ψ03 +

.
θ

2
xo f ψ03 +

..
θψ13

−
.
θ

2
q3 +

..
q3 + ω2

3q3 = Q6

(21)

where MF and MR are the masses for flexible and rigid parts, respectively.
The detailed derivation is provided in Appendix A. The governing equations,

Equations (16)–(21), are solved at each FSI iterations using the Newmark method [49] and
Newton–Raphson methods. For the fluid–structure interaction process, more detailed
information can be found in Ref. [46].

3. Results and Discussion
3.1. Validation of the Present Numerical Model

To verify our numerical model, a numerical simulation of a dam-break wave impact
on an elastic plate [50] is performed and the results are compared with their corresponding
experimental data. As shown in Figure 2, the computational domain is 0.584× 0.356 m, and
the initial water column has the dimensions 0.146 × 0.292 m. The elastic plate is placed on
the bottom at a distance of 0.286 m to the left wall of the tank. The width and the height of
the plate are 0.012 and 0.08 m, respectively. The density and Young’s modulus of the elastic
plate are 2500 kg/m3 and 106 N/m2, respectively. Three particle spacings, i.e., 0.004 m,
0.002 m, and 0.001 m, are selected to test the convergence of the numerical results.
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Figure 2. Simulation model of the water column with an elastic plate.

The water column on the left will collapse and impact the elastic plate fixed at the
bottom during the simulation, resulting in the deformation of the solid structure and
fragmentation of the water body. Figure 3 shows the comparison of the water profile
between numerical and experimental results [51]. The shapes of the water surface predicted
by the present model agree well with video images of the experiment during the process.

Figure 4 shows the displacement of the upper left corner of the elastic plate versus
time. The particle spacings, 0.001 m and 0.002 m, are very close and show good agreement
with the ANSYS results and FE-SPH, which indicates good convergence and good accuracy
of the MPS method. The results of this paper are slightly different from those of other
methods during t = 0.3–0.4 s, which could be attributed to the simplification of bending by
the Euler–Bernoulli beam model.

As the pressure simulation of the method had been verified many times in our previous
study [28,53], it will not be repeated herein. Sections 3.2 and 3.3 have shown that the present
method is effective and independent of particle spacing. Therefore, we will adopt this
model to study the problem of damaged cabin water entry in the following sub-sections.
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3.2. Damaged Cabin cross-Section Models

When a cabin is damaged and flooding with high momentum flows into it, it will
result in an impact load on the cabin’s bulkhead. In general, changing the bending stiffness
of the cabin’s watertight bulkhead can alter load distribution and the likelihood of excessive
loads. The effects of stiff and flexible bulkheads with various Young’s modulus on the
hydrodynamic distribution in the damaged cabin are compared in this section.

The damaged cabin cross-section, shown in Figure 5, weighs 242.349 kg, is 0.7 m wide,
and 0.52 m high. The hole is 0.16 m long. We conducted four sets of numerical simulations,
which are listed in Table 1, to investigate how different watertight bulkheads affected the
distribution of impact loads.
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Table 1. Parameters of the watertight bulkhead used in the numerical simulations.

Name Density ρ (kg/m3) Young’s modulus E (Gpa) Thickness (mm) w1 (rad/s) w2 (rad/s) w3 (rad/s)

Model I 2500 1.8 0.04 508.4265 1401.4972 2747.4948
Model II 2500 3.6 0.04 508.4265 1401.4972 2747.4948
Model III 2500 7.2 0.04 508.4265 1401.4972 2747.4948
Model IV 2500 +∞ 0.04 508.4265 1401.4972 2747.4948

3.3. Effects of Watertight Bulkheads with Various Young’s Modulus

Figure 6 shows the time histories of the deflections at the middle point of the water-
tight bulkhead for the three flexible models. It can be seen that the stiffer the watertight
bulkhead, the less the deflection, and the maximum deflection of Model I (E = 1.8 Gpa) is
approximately three times greater than that of Model III (E = 7.2 Gpa).

As illustrated in Figure 7, the quality of flooding into the models increases at first,
then decreases slightly. Before the instant of t = 1.1 s, the quality of the water inflow
is close, while, after that, the model with the greater watertight bulkhead elasticity has
the greater flooding quality. This agrees with the time histories of deflection shown in
Figure 3, especially after the instant of t = 1.1 s, indicating that the elasticity of the watertight
bulkhead has an impact on the water inflow, and the influence grows larger as the inflow
increases. It should be noted that the fluctuation of quality of Model IV at the final stage in
Figure 7 is caused by the non-physical hole.

It can be clearly seen from Figure 8 that the time-history curves of roll motion for
the four models are nearly overlapping. This demonstrates that the four models’ motion
attitudes are consistent, hence the subsequent pressure study may disregard the impact of
rolling motion.
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Figure 9 depicts the distributions of the average pressure (0~1.2 s) acting on the wa-
tertight bulkheads of various models. The difference in average pressure acting between
watertight bulkheads of different stiffnesses is negligible; for individual watertight bulk-
heads, the closer to the bottom of the cabin, the greater the average pressure, a characteristic
resembling the distribution of hydrostatic pressure.
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Figure 9. Distributions of the average pressure (0~1.2 s) acting on the bulkheads.

Figure 10 shows the distributions of the peak pressure (0~1.2 s) acting on the bulkheads
of different models. It is clear that the peak pressure distribution is significantly influenced
by stiffness. The watertight bulkhead’s peak pressure rises with increasing stiffness, with
the peak pressure of Model IV reaching nearly three times that of Model I. Additionally,
unlike the distribution of the average pressure (shown in Figure 9), the peak pressure on
the two edges of the watertight bulkheads is higher than that at their middle, which needs
to be taken into account in the design of the cabin.
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Figure 10. Distributions of the peak pressure (0~1.2 s) acting on the bulkheads.

By influencing the deformation of the watertight bulkheads and the distribution of
the load on it, the stiffness of the watertight bulkhead eventually leads to the difference in
hydrodynamic distribution throughout the damaged cabin. Figure 11 shows the pressure
distribution for various models at t = 1.2 s, and the clear difference in the flow field is visible.
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Figure 11. Selected screenshots representing pressure contours of the flooding processes at t = 1.2 s,
where (a–d) corresponds to Model I~IV shown in Table 1, respectively.

Figure 12 displays the time histories of the pressure at monitoring points P1 and P2 for
models with rigid and flexible bulkheads. It can be seen that the peak pressures at points
P1 and P2 increase as the bulkhead’s stiffness increases. Model IV, with a rigid bulkhead,
has the highest peak pressure, while Model I, with the bulkhead of the smallest Young’s
modulus, has a lesser peak pressure.
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As listed in Table 2, as compared with Model IV, the peak pressures at points P1 and P2
of Model I are reduced by roughly 57.1% and 61.8%, respectively. In addition, for average
pressure, the loads on the two points in Model I are lowered by roughly 34.6% and 20.1%,
respectively. According to the comparison, flexible watertight bulkheads often perform
better in terms of reducing the peak and average value. This is because the elastic bulkhead
can more effectively absorb the energy of flooding and reduce the impact on the other
interior bulkhead.

Table 2. Peak and average pressures at points P1 and P2.

Name Model I Model II Model III Model IV

Peak pressure for P1 (kPa) 15.41 16.71 22.36 35.91
Average pressure for P1 (kPa) 4.50 5.59 5.90 7.94

Peak pressure for P2 (kPa) 21.47 18.55 25.94 56.15
Average pressure for P2 (kPa) 7.59 8.70 8.88 9.50
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4. Conclusions

In this study, the pressure distribution is investigated numerically by the fluid–solid
solver coupled with the modified MPS method and the modal superposition model. First,
the dam-break wave impact on an elastic plate is performed and the results are in good
agreement with the corresponding experimental data, demonstrating the viability of using
the solver to simulate such issues. Then, four damaged cabin models with various stiffness
watertight bulkheads are numerically simulated and the results are analyzed; the following
conclusions are drawn:

• The peak pressure distribution on the flexible bulkhead is larger near both ends and
smaller in the center.

• As the bulkhead’s flexibility is increased over a range, the peak pressure on the
watertight bulkhead is significantly reduced.

• The flexibility of the watertight bulkhead indirectly affects the hydrodynamic pressure
distribution of the entire flow field, reducing peak pressure at points on other rigid
bulkheads in the cabin (e.g., monitoring points P1 and P2).

The aforementioned findings discover that watertight bulkheads with the appropriate
stiffness and material properties can lessen the effect of flooding on the inner wall of
a damaged cabin.
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Appendix A

Derivation of the Governing Equations for Cabin’s Motion
According to the extended Hamilton’s principle [48], the motion of the whole cabin

system could be described by Lagrange’s Equation, as provided in Equation (A1):

d
dt

(
∂T

∂
.
X

)
+

∂V
∂X
− ∂T

∂X
= Q (A1)

The kinetic and potential energies for the rigid body and flexible beams are given in
Equations (A2)–(A5):

TR =
1
2

∫
R

.
X

T
Rρ

.
XRdxdy (A2)

TF =
1
2

∫
F

.
X

T
F ρ

.
XFds (A3)

VR = MRgYR (A4)
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VF = 1
2

∫
F

d2η

ds2 EJ d2η

ds2 ds + MFgYF

= 1
2 qTΛq + MFg

(
YR + sin θxo f + cos θyo f

) (A5)

where TR, VR, Tf , and Vf are the kinetic energies and potential energies for the rigid
structure and flexible beam. The kinetic and potential energies for the whole structure
could be calculated as Equations (A6) and (A7):

T = TR + TF (A6)

V = VR + VF (A7)

After substituting Equations (A2)–(A7) into Equation (A1), the governing equations
for the dynamics of the damaged cabin structure with rigid/flexible bulkhead are derived
in Equations (A8)–(A10):

∫
f
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.
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[
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∫
f


..
X

T
R +

..
θoT

R−FUTRT
R −

.
θ

2
oT

R−FRT
R +

..
θξTUTRT

f

+2
.
θ

.
ξ

T
UTRT

f −
.
θ

2
ξTRT

f +
..
ξ

T
RT

f

(RRUoR−F + R f Uξ
)

ρlds

+IR
..
θ + M f

(
cos θxo f 1 + sin θxo f 2

)
= Qθ

(A9)

∫
f


..
X

T
R +

..
θoT

R−FUTRT
R −

.
θ

2
oT

R−FRT
R +

..
θξTUTRT

f

+2
.
θ

.
ξ

T
UTRT

f −
.
θ

2
ξTRT

f +
..
ξ

T
RT

f

(R f

[
0
1

]
Φ

)
ρlds

+Λq = Qq

(A10)

where U, RR, and RF are defined in Equations (A11)–(A13):

U =

[
0 − 1
1 0

]
(A11)

RR =

[
0 − 1
1 0

]
(A12)

RF = RRU (A13)

In this work, the whole damaged cabin structure is subject to the distributed pressure
P only and they are provided in Equations (A14)–(A16):

QX = [Q1, Q2] =
∫

all
pndl (A14)

Qθ = Q3 =
∫

all
p
(
Xpny −Ypnx

)
dl (A15)

Qq = [Q4, Q5, Q6] =
∫

f
[(pn) · ew]Φdl (A16)
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where n =
[
nx, ny

]
is the normal vector of the structure surface pointing towards the inside

of the solid boundary and ew is the unit vector of oF−w axis.
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