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Abstract: Wave energy is a kind of clean energy that is rich in reserves and has not been exploited on
a large scale. The slope-pendulum wave energy conversion (S-PWEC) device has been optimized in
structure and its capture efficiency has been increased. Taking the selection of the Zhejiang sea area
as the research background, this paper performs numerical simulation and array WEC experimental
testing of S-PWEC under 66 major sea conditions. The experimental results show that S-PWEC
adds a slope structure to the bottom, which can effectively improve the motion response ability and
resistance to extreme sea conditions. In the regular wave and irregular wave tests, the electron power
output efficiency can be increased by 13.24% and 10.06%, respectively; in the array WEC experiment,
the diffraction effect and radiation effect will affect the work of the array WEC, and the optimal
arrangement distance can be selected to maximize the power output of the WEC system.

Keywords: WEC; Zhejiang sea area; numerical model; power output efficiency; array WEC

1. Introduction

Wave energy converters (WECs) are devices used to absorb energy in waves and
convert the output into electrical energy. Although wave energy conversion projects have
not fully reached the commercial stage, it is an ancient discipline, and hundreds of different
forms of wave energy conversion device concepts and models have been proposed and
experimented with over the past few hundred years [1–4].

There are many ways to classify wave energy conversion devices, which can be divided
into onshore, nearshore, and offshore according to the installation location. The offshore
WEC can be in a higher-energy wave environment, which is conducive to absorbing more
wave energy, but it will bring great challenges to the structural stability, cost, installation,
and maintenance of the device [5], which is unfavorable for the commercialization of wave
energy conversion devices. Therefore, the WEC built onshore or nearshore does not need
to arrange long submarine cables, manual maintenance is relatively easy, the cost is greatly
reduced, and the long-term operation of the WEC can be achieved, which may be more
attractive for commercial investment. How to develop a stable and efficient WEC is a very
challenging research project.

Companies or research teams have developed several different modes of wave energy
conversion devices near the shore and on land. The Oyster device developed by Queen’s
University in the United Kingdom has been updated for two generations. It has performed
well in various indicators and has successfully achieved long-term stable operation under
real sea conditions [6]. Unlike Oyster, WaveRoller uses a fully immersed floating pendulum,
which can form an array power generation module. All floating pendulum movements are
completed under the water surface, and its power range is 350 kW-1000 kW [7]. Eco Wave
Power combines a pendulum-type wave energy conversion device with a breakwater, and
currently has more than 325.7 MW of important project pipelines worldwide [8]. Wavestar
combines offshore wind energy capture devices to achieve multi-energy hybrid absorption
and improve commercial competitiveness [9].
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The main technologies for optimizing the WEC are physical experiments, numerical
simulation, and real sea condition testing. With the development of modern computers,
numerical simulation technology provides more space for optimization. Its advantage is
that it is relatively convenient and fast, does not require the construction of physical objects,
and the cost is low [10]. Poguluri et al. used CFD technology to test WEC-rotor, which can
be well consistent with the results of physical experiments [11]. This article mainly focuses
on a set of open-source programs developed by the WEC-Sim team to optimize the design
of a new type of WEC. Ruehl et al. used WEC-Sim to make meaningful optimizations and
designs of floating oscillating surge wave energy converters [12]. Wei et al. learned the
feasibility of the multi-pump multi-piston power take-off system for the WEC [13], and
Sricharan and Chandrasekaran used WEC-SIM and PTO-Sim to evaluate the output of
a bean-shaped multi-body floating wave energy converter to maximize power [14].

Complex and changeable sea conditions, and the size and shape of the WEC will affect
the work efficiency of the WEC. If the amplitude of WEC motion is increased while the
original cost remains unchanged, wave energy capture and power output can be increased,
which may be an effective method. The slope-pendulum wave energy conversion device
designed in this paper is based on this concept. Through the reflection of waves under the
free liquid level, the floating plate is subjected to greater wave excitation force, thereby
increasing the incoming torque from the power take-off (PTO) to the hydraulic cylinder,
and realizing the first-level wave energy capture efficiency improvement, and ultimately
realizing the entire WEC device conversion efficiency improvement.

In short, the development and research of WECs are accelerating, and it is the goal of
many researchers and countries interested in developing wave energy to design a WEC
device that is suitable for real sea conditions and has a high yield. In this paper, the concept
and model of a new wave energy conversion device are studied and developed under the
conditions of Zhoushan, Zhejiang, China. In Section 2, this model concept is introduced
and described in detail. Next, Section 3 defines and describes the steps and methods of
this device experiment. Finally, meaningful results are obtained from these numerical
simulation experiments, and discussions and research are carried out.

2. Mathematical
2.1. S-PWEC

To be able to maximize wave energy capture, Wan et al. [15] designed a slope-
pendulum wave energy converter, as shown in Figure 1. The device consists of
two main modules:
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PTO Module: The part is mainly composed of a hydraulic system and generator,
a floating plate under the action of wave excitation, and rotating movement around the
fixed hinge pivot point, pushing the hydraulic rod. The hydraulic rod movement will
compress the hydraulic cylinder and convert the mechanical energy of the floating plate into
hydraulic energy. The hydraulic system is a hydraulic circuit consisting of a high-pressure
accumulator (HPA), a low-pressure accumulator (LPA), and a check valve. Afterward, the
hydraulic energy will be converted into electrical energy using a generator and stored in
a battery, or the electricity can also be directly integrated into the grid system.

AAM Module: Different angular positions of the slope in the water have different
effects on the reflection and transmission of the incident waves [16]. Under different sea
conditions, the AAM system is used to adjust the position of the slope to make the best
reflection of the incident waves, which allows the floating plate to absorb as much wave
energy as possible to maximize the power output.

When the S-PWEC model does not have a slope structure, it is defined as NS-PWEC
in this article.

2.2. Motion Response

Based on the Cummins time domain equation [17], and considering the floating plate
viscous effect [12], the motion response equation of the floating plate to the pivot point can
be obtained:

(I + A55(∞))
..
θ = Mex −

∫ t

0
KR(t− ξ)

.
θ(t)dξ + Mb −MG + Mvis + MPTO (1)

In the above equation:

• θ,
.
θ, and

..
θ are the angular displacement, angular velocity, and angular acceleration of

the device moving at the pivot point, respectively.
• I and A55(∞) are the moment of inertia of the device and the additional moment of

inertia at infinite frequency, respectively.
•

∫ t
0 KR(t− ξ)

.
θ(t)dξ is the convolution term of the radiation moment, which represents

the memory effect of the fluid, where ξ is a small time step.

KR =
2
π

∫ +∞

0
B(ω) cos(ωt)dt (2)

B(w) is radiation damping.

• Mb and MG are the buoyancy moment and the gravitational moment, respectively,
which constitute the recovery moment of the floating plate, which is KSθ.

• Mex is the excitation moment; the excitation moment of the regular wave can be given
by the following equation:

Mex(t) = Re
{

R f (t)
H
2

M̃ex(ω, θ)eiωt
}

(3)

where Re denotes taking the real part, M̃ex(ω, θ) denotes the moment per unit wave
amplitude of the floating plate at frequency ω, and R f (t) is used to avoid strong
transient flow, which is expressed as:

R f (t) =

{
1
2

(
1 + cos

(
π + πt

tr

))
t
tr
< 1

1 t
tr
≥ 1

(4)

t is the computation time and tr is the continuous function computation time.
The excitation moment for the irregular wave case can be expressed as follows:

Mex(t) = Re

{
R f (t)

N

∑
j=1

M̃ex(ω, θ)ei(ωjt+φj)
√

2S
(
ωj
)
∆ω

}
(5)
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S
(
ωj
)

is for calculating the random wave spectrum under the sea state.

• Mvis is the secondary viscous drag moment; in practice, the wave energy converter
device in the process of action with the wave will induce vortex detachment, resulting
in a viscous effect [18].

Mvis = (−CD|V−V0|(V−V0))× Lvis (6)

where CD = 1
2 ρCd Ad is the coefficient of the secondary damping term in the viscous

torque. CD can be obtained from the relevant literature or hydrodynamic experiments.
V is the speed of the floating plate, V0 is the speed of the surrounding fluid, and Lvis
represents the moment of the viscous force on the pivot point.

• MPTO is the damping torque of the hydraulic power take-off.

MPTO = ∆ppiston Apiston × LPTO (7)

where ∆ppiston is the pressure difference in the hydraulic rod, Apiston is the cross-
sectional area of the hydraulic rod, and Lpiston is the distance from the intersection
of the hydraulic rod and the floating plate to the pivot point. Assuming that the
hydraulic rod is always perpendicular to the floating plate, and the nonlinearity of the
PTO is not considered, the influence of the nonlinear PTO on the wave energy capture
efficiency will be studied in future work.

For measuring the merit of a wave energy conversion device, it is necessary to define
the capture width ratio (CWR), the ratio of the average power absorbed by the device
for the converted wave energy to the incident wave energy power per unit time [19]. In
addition, this paper compares the electron power output efficiency (EPOE) of the device,
which can be defined as the ratio of the electron power output of the WEC device to the
incident wave power:

CWR =
P1

PWaveb
(8)

EPOE =
P3

Pwaveb
(9)

where b is the device width, P1 and P3 are the primary wave energy capture efficiency and
tertiary electrical output efficiency of the WEC per unit time, respectively, and Pwave is the
incoming wave power per unit width of the incident wave.

3. Results and Discussion

The geometry files and hydrodynamic coefficients are imported in WEC-Sim (using
boundary element software such as WAMIT, NEMOH, and ANSYS AQWA) and the motion
response of the imported objects under different sea conditions is determined with the help
of control equations, wave loads, and the PTO-Sim module [20], as shown in Figure 2.
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3.1. Initial Condition Setting
3.1.1. Analysis of Sea State Conditions

The wave period and wave height data from 1 January 2021 to 1 January 2022 in
the sea area of Zhoushan, Zhejiang Province, China are obtained on NOAA, as shown
in Figure 3. The statistical results show that the wave energy generated by waves with
a spectral peak period of 6–9 s and a wave height between 0.5 and 2 m in the Zhoushan
sea area accounts for about 60% of the annual wave energy, which is close to the research
results of Wang et al. [21].
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3.1.2. Single WEC Model

The floating plate and the slope structure are used to obtain BEM hydrodynamic data
in ANSYS AQWA, some of which are shown in Table 1. Meanwhile, a slope-pendulum
wave energy conversion device model is established in MATLAB Simulink [22], and
a hydraulic power take-off (PTO) is used for power generation to complete the conversion
from wave energy capture to mechanical energy and finally realize the output result of
electrical energy.

Table 1. S-PWEC components parameters.

Property Floating Plate Slope

Mass (kg) 802.36 5065.41
XCG(m) −2.24 −2.651
YCG(m) 0 0
ZCG(m) 0.22 −2.7

Ixx
(
kgm2) 1379.1 60,802

Iyy
(
kgm2) 4211.8 42,574

Izz
(
kgm2) 5439.5 17,467

As shown in Figure 4, “plate” represents the main body of the floating plate and
“Slope” represents the slope structure, both of which are constrained by “PTO” so that
the floating plate can only rotate around the fixed axis. “PTO” transmits the wave energy
captured by the floating plate to “PTO-Sim” as a moment, and calculates the power that
can be obtained, which is the hydraulic force extractor chosen in this model. The device is
fixed to the “global reference frame” through the “constraint”, which acts as the seabed in
the model and is used for various data input in the simulation. The “PTO-Sim” works by
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transferring the torque at the connection point between the PTO and the floating plate, and
converting the mechanical energy into the hydraulic system’s pressure energy to achieve
a stable output of electricity. Some of the essential data for the WEC-Sim simulation are
shown in Table 2.
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Table 2. WEC-Sim simulation parameters.

Description Value

Wave height (m) H
Wave period (s) T
Simulink solver ode45

Maximum time step (s) T/200
Wave ramp time (s) 5 T

Convolution integral time (s) 25
Simulation end time (s) 25 T

3.2. Motion Response

The new slope-pendulum wave energy conversion device fixes an adjustable angle
slope structure in the lower part of the floating plate, the presence of which can be used
for wave reflection and limit the angular displacement of the floating plate immersed in
seawater; when it is under severe sea conditions; its maximum angular displacement is
related to the angle of the slope.

As shown in Figure 5, when the floating plate works under a regular wave condition
with a wave height of 2 m, the floating plate will not touch the slope structure and the
overall operation is relatively continuous. However, when the wave height increases to 6 m,
the amplitude of the floating plate increases accordingly, and the downward amplitude
will exceed the initial displacement between it and the bottom slope (the angle between
the floating plate and the slope in hydrostatic water); then, it will touch the bottom slope
structure, and a small oscillation will occur, which is used to reduce the speed of the
floating plate while waiting for the next wave peak to come. This process, which can only
be triggered under larger sea conditions, is an effective self-locking protection mechanism
that uses its own oscillations to consume excess energy, which is useful for trying to apply
captured wave energy under extreme sea conditions (typhoon weather) and for maintaining
the stability of its own system.
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3.3. Power Generation Efficiency of Single WEC

In order to better illustrate that the bottom-inclined plate structure can reflect the wave
energy under the free liquid surface and facilitate the absorption of the floating plate, it is
necessary to compare the hydrodynamic response results and each power output result
of S-PWEC and NS-PWEC. The initial conditions of the incident wave are: regular wave;
wave height H = 2 m; period T = 6 s. The steady working phase t = 100–150 s is selected,
and the hydrodynamic response results are shown in Figure 6. It can be clearly seen that
the angular displacement amplitude of S-PWEC is larger compared with NS-PWEC, which
is nearly doubled, indicating that the wave excitation force on the floating plate of the
S-PWEC device is larger than that of the N-SPWEC device. The addition of the slope
structure can significantly increase the motion amplitude of the device and provide positive
feedback to the wave energy capture results, which can also be greatly enhanced.

The peak speed of S-PWEC is increased by 58.3%, which again shows that the motion
of the floating plate is more violent and subject to the strong impact of waves, which is very
meaningful for the design of the wave energy conversion device (provided that it is within
the load-bearing range of the device), and by adding a slope structure at the bottom, the
wave field energy reflection is concentrated near the free liquid surface, which increases
the wave intensity near the floating plate and makes the floating plate as high as possible.
It is an essential part of the commercialization to capture wave energy and improve the
efficiency of wave energy capture to obtain more profit with small cost.

The output power of S-PWEC and NS-PWEC in each stage is shown in Figure 7.
“Abspower” represents the power transferred from the floating plate to the hydraulic rod,
which is the first-stage wave energy capture power; “genpower” is the power transferred
from the hydraulic system to the generator; “elepower” is the final output power of the
generator. It is known from Figure 6 that the addition of the slope structure at the bottom
of the floating plate can effectively increase the motion response of the floating plate, the
first-level hydrodynamic capture efficiency and power (despite the loss in the conversion
of mechanical and electrical energy, the final converted electrical power must be increased),
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the wave energy first-level instantaneous capture power by 73.1%, and the final electrical
output power by two times. This result is exciting, showing that a slope structure can at
least have a favorable impact on the wave energy capture, and this optimization on the
WEC structure is certain.
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In Section 3.1.1, the collation of the sea state is carried out, so the main sea state of the
Zhoushan sea area is the condition for simulation experiments, and the range of the test
sea state is shown in Table 3. After the free arrangement and combination, there is a total of
66 groups of sea state experiments, the experimental objects are S-PWEC and NS-PWEC,
and the following will obtain the electron power output efficiency (EPOE) of S-PWEC and
NS-PWEC in the form of a matrix, as shown in Figures 8 and 9.

Table 3. Study of sea state.

Description T(s) H(m)

Value 2–12 0.5–3
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As shown in Figure 9, among 66 kinds of sea state tests, the optimal sea state for the
NS-PWEC device is T = 5 s, H = 3 m sea state, and the power generation efficiency is 20%,
which shows that the better power generation sea state for this wave energy conversion
device is roughly concentrated in such a sea state with small period and large wave height.

As can be seen from Figure 9, for the S-PWEC device, the power output efficiency
is greater than the NS-PWEC power output efficiency results in all of these 66 sets of sea
state tests, once again indicating that the S-PWEC has a significant improvement in wave
energy capture and absorption compared to the conventional NS-PWEC device. Its optimal
sea state is at T = 3 s and H = 3 m, and the power output EPOE reaches 95.58%, which
is an incredible power generation efficiency. For the 3D device, wave energy beyond its
width is absorbed, resulting in a CWR greater than 100%, as has been confirmed by many
researchers [23], but it is also sufficient to show that this sea state is particularly favorable
for the new wave energy conversion device for power output. Of course, the high output
efficiency of the S-PWEC is also due to the resonance of the SOFWEC device in this sea
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state, which means that the efficiency of the WEC is several times higher than usual if the
WEC resonates with the surrounding wave field when capturing wave energy.

Obviously, the optimal capture sea state of the S-PWEC device calculated in this paper
is not the highest-frequency sea state in the Zhoushan sea area, which means that S-PWEC
still has room for optimization. From the above calculation results, it can be seen that the
inherent period of S-PWEC is close to three seconds, which is consistent with the results
of the free decay test. As shown in Figure 10, the subsequent optimization of the S-PWEC
device will start from changing the inherent period of the device and adjusting the shape,
density, and cavity volume of the floating plate to make its inherent period close to the
wave period of the Zhoushan sea, to achieve high efficiency in capturing wave energy.
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Figure 10. S-PWEC free decay test.

The above-mentioned multiple sets of regular incident wave experiments can analyze
some of the working characteristics of S-PWEC, but in the actual ocean, it can be regarded
as a random wave sea condition formed by the random superposition of multiple regular
incident waves. Therefore, it is very necessary to study the working characteristics of
S-PWEC under random waves. Figures 11 and 12 are the results of the power generation
efficiency of the S-PWEC and NS-PWEC models under the random wave spectrum (Jon-
swap spectrum). Compared with regular wave sea conditions, the EPOE of both has been
improved as a whole, but the power generation power has been significantly reduced. This
is because the incident wave power under irregular wave sea conditions is also significantly
reduced, and the captured wave energy is also reduced accordingly.
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The average power generation efficiency of NOSWEC and S-PWEC under regular and
irregular wave sea conditions is shown in Table 4. From the results, adding a slope structure
at the bottom of the floating plate can effectively improve its wave energy capture and
absorption efficiency, which is meaningful for the development of wave energy conversion
devices, which can exchange a smaller cost for a higher yield by adding a slope structure.

Table 4. Average power generation efficiency.

Average Power GenerationEfficiency (%)
WEC

NS-PWEC S-PWEC

Regular wave 10.32 23.56
Irregular wave 17.26 27.32

3.4. Power Generation Efficiency of Array WEC

A single wave energy conversion device can only absorb limited energy. To realize
the large-scale utilization and development of wave energy, it is necessary to study the
arrangement of multiple wave energy devices. As shown in Figure 13, the S-PWEC
is arranged in the direction of wave propagation, and then on the basis of WEC-Sim,
a set of arrays of S-PWEC numerical models arranged along the direction of the incident
wave are developed, as shown in Figure 14. Each floating plate works independently
and is interrelated. In a single floating plate model, the effect of waves on the structure
is mainly considered. However, in the array model, the diffraction effects and radiation
effects of adjacent floats also need to be considered. These will change the local wave field,
thereby affecting the WEC’s capture and absorption of wave energy. Finally, the output
electrical energy of each independent WEC is incorporated into the power grid or stored in
the battery.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 12. Power generation efficiency of S-PWEC under irregular wave sea conditions. 

The average power generation efficiency of NOSWEC and S-PWEC under regular 
and irregular wave sea conditions is shown in Table 4. From the results, adding a slope 
structure at the bottom of the floating plate can effectively improve its wave energy cap-
ture and absorption efficiency, which is meaningful for the development of wave energy 
conversion devices, which can exchange a smaller cost for a higher yield by adding a slope 
structure. 

Table 4. Average power generation efficiency. 

Average Power Generation  
Efficiency (%) 

WEC 
NS-PWEC S-PWEC 

Regular wave 10.32 23.56 
Irregular wave 17.26 27.32 

3.4. Power Generation Efficiency of Array WEC 
A single wave energy conversion device can only absorb limited energy. To realize 

the large-scale utilization and development of wave energy, it is necessary to study the 
arrangement of multiple wave energy devices. As shown in Figure 13, the S-PWEC is ar-
ranged in the direction of wave propagation, and then on the basis of WEC-Sim, a set of 
arrays of S-PWEC numerical models arranged along the direction of the incident wave are 
developed, as shown in Figure 14. Each floating plate works independently and is inter-
related. In a single floating plate model, the effect of waves on the structure is mainly 
considered. However, in the array model, the diffraction effects and radiation effects of 
adjacent floats also need to be considered. These will change the local wave field, thereby 
affecting the WEC’s capture and absorption of wave energy. Finally, the output electrical 
energy of each independent WEC is incorporated into the power grid or stored in the 
battery. 

 
Figure 13. Array S-PWEC model layout diagram. Figure 13. Array S-PWEC model layout diagram.



J. Mar. Sci. Eng. 2022, 10, 1572 12 of 15

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

 

 

 

Figure 14. Array S-PWEC numerical model. 

In the array WEC experiment, the incident waves pass through each floating plate in 
sequence, and ten identical wave energy conversion devices are arranged at the same dis-
tance. Starting from the pivot point of the first S-PWEC, the distance between the hinge 
points of two adjacent WECs is defined as 𝑆𝑆𝑑𝑑. The interaction between waves and floating 
plates can be treated by ANSYS AQWA, and many hydrodynamic coefficients can be ob-
tained. 

When the interval distance of the new wave energy conversion device 𝑆𝑆𝑑𝑑= 15 m, and 
the sea condition is set as a regular wave with T = 6 s and H = 2 m, the PTO-Sim module 
can calculate the power output of 10 different floating plates. As shown in Figure 15, the 
output power of the first floating plates is highest, which is 6.9 kW, and the power gener-
ation efficiency is 15.39%. The latter floating plates are reduced in different degrees. It is 
not difficult to understand that this is because every time an incident wave passes a float-
ing plate, part of the energy carried by it will be absorbed. The energy absorbed by each 
S-PWEC is related to the change in local wave field, and the distance 𝑆𝑆𝑑𝑑  between adjacent 
S-PWECs must be considered. 

 
Figure 15. Power output power of the array S-PWEC. 

Figure 14. Array S-PWEC numerical model.

In the array WEC experiment, the incident waves pass through each floating plate
in sequence, and ten identical wave energy conversion devices are arranged at the same
distance. Starting from the pivot point of the first S-PWEC, the distance between the
hinge points of two adjacent WECs is defined as Sd. The interaction between waves and
floating plates can be treated by ANSYS AQWA, and many hydrodynamic coefficients can
be obtained.

When the interval distance of the new wave energy conversion device Sd = 15 m, and
the sea condition is set as a regular wave with T = 6 s and H = 2 m, the PTO-Sim module
can calculate the power output of 10 different floating plates. As shown in Figure 15,
the output power of the first floating plates is highest, which is 6.9 kW, and the power
generation efficiency is 15.39%. The latter floating plates are reduced in different degrees.
It is not difficult to understand that this is because every time an incident wave passes
a floating plate, part of the energy carried by it will be absorbed. The energy absorbed by
each S-PWEC is related to the change in local wave field, and the distance Sd between
adjacent S-PWECs must be considered.
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From the above analysis and discussion, it is known that the distance between the
floating plates of the S-PWEC array will directly affect the efficiency of the floating plates in
absorbing and capturing wave energy. This time, the control variable experimental analysis
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of the floating plate distance Sd along the wave direction was carried out. Under the sea
conditions with a period of T = 6 s and a wave height of H = 2 m, the numerical calculation
was used to obtain the results shown in Figure 16.
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As shown in Figure 16, the electrical output power of the floating plate at different
spacing is different. In the WEC system with a spacing of 10 m, the electrical output power
of the floating plate of different serial numbers changes significantly, showing that under
small spacing, the hydrodynamic interaction of the adjacent WEC has a greater impact,
and the overall absorption power will decrease. The spacing distance is too close to be
conducive to wave energy capture, and the arrangement distance needs to be increased.
When the spacing increases, the hydrodynamic interaction of the adjacent WEC weakens
and the absorbed power rises. However, if the floating plate has a beneficial interaction
with the adjacent floating plate in this process, the overall power will increase significantly.
From the results, it can be found that the best power generation effect is the working
condition of the array floating plate with a spacing of 25 m. The beneficial interaction of the
adjacent floating plates increases the absorbed power. Under the prescribed sea conditions,
it is a very good arrangement distance. The power generation power of the floating plate
serial number 1–7 is significantly better than those of other working conditions, and the
total power generation power of the ten floating plates reaches 63.87 kW. In addition, if the
distance is too far apart, the number of wave-farm WECs in the same area will be reduced,
and the utilization rate of the sea area will be low, which is not conducive to the absorption
and utilization of wave energy.

4. Conclusions and Future Work

In this paper, the hydrodynamic performance and electric power output of a new
wave energy conversion device are investigated using an open-source program to establish
a numerical model, and the following conclusions can be drawn.

• The slope-pendulum wave energy conversion device adds a slope structure at the
bottom to reflect through waves. The innovation of this structure can effectively
enhance the ability of the floating plate to capture wave energy and improve the
overall efficiency at a smaller cost.
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• It can also cope with extreme sea conditions with large wave heights and has a certain
“self-locking” function to keep the floating plate working normally, and the power
generation efficiency of the wave energy conversion device is effectively improved
under regular and irregular wave sea conditions.

• The array floating plate has a longitudinal optimal arrangement distance, the spacing
is too large or too small, and it is not conducive to the array floating plate power
generation. By experimental calculation, when the arrangement distance is 25 m,
the whole wave energy conversion system electrical energy output power reaches
the maximum.

In the current work, the wave energy capture efficiency has been improved through
the optimization of the structure. In the future work, the angle of the bottom oblique plate
structure will continue to be studied, the optimal angle under different sea conditions will
be given, and the other arrangement of the array floating plate will be studied, and we
will focus on optimizing the design and active control to improve the overall wave energy
absorption capacity.
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