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Abstract: In a typical underwater acoustic target detection mission, we have to estimate the tar-
get number (N), perform source separation when N > 1, and consequently predict the motion
parameters such as fundamental frequency (F0) from separated noises for each target. Although
deep learning methods have been adopted in each task, their successes strongly depend on the
feed-in features. In this paper, we evaluate several time-frequency features and propose a universal
feature extraction strategy for object counting and F0 estimation simultaneously, with a convolutional
recurrent neural network (CRNN) as the backbone. On one hand, LOFAR and DEMON are feasible
for low-speed and high-speed analysis, respectively, and are combined (LOFAR+DEMON) to cope
with full-condition estimation. On the other hand, a comb filter (COMB) is designed and applied to
the combined spectrum for harmonicity enhancement, which will be further streamed into the CRNN
for prediction. Experiments show that (1) in the F0 estimation task, feeding the filtered combined
feature (LOFAR+DEMON+COMB) into the CRNN achieves an accuracy of 98% in the lake trial
dataset, which is superior to LOFAR+COMB (83%) or DEMON+COMB (94%) alone, demonstrating
that feature combination is plausible. (2) In a counting task, the prediction accuracy of the combined
feature (LOFAR+DEMON, COMB included or excluded) is comparable to the state-of-the-art on sim-
ulation dataset and dominates the rest on the lake trial dataset, indicating that LOFAR+DEMON can
be used as a common feature for both tasks. (3) The inclusion of COMB accelerates the convergence
speed of the F0 estimation task, however, it penalizes the counting task by a depression of 13% on
average, partly due to the merging effects brought in by the broadband filtering of COMB.

Keywords: underwater; object counting; F0 estimation; LOFAR; DEMON; CRNN; comb filter

1. Introduction

Vehicles such as ships and AUVs (autonomous underwater vehicles) radiate large
amounts of noise into the water during movements, including mechanical noises, propeller
noises, flow noises, and so on. Therefore, the state parameters of each target could be
monitored by analyzing the noises collected with a nearby hydrophone [1,2].

Since multiple targets often appear simultaneously, the signal collected by the hy-
drophone is a mixture of several acoustic sources. Therefore, before the explicit parameter
analysis, it is necessary to estimate the number of targets (N) [3] and separate each source
from the noise mixture when N > 1, which is the so-called BSS (blind source separation)
because no prior information on targets is available [4,5]. Then, the motion and phys-
ical parameters, such as shaft frequency and blade frequency, blade number and size,
tonnage, and velocity of the vehicle, can be extracted from the separated noises for each
target. The shaft frequency (also named fundamental frequency and denoted F0 usually)
is numerically equal to the rotation speed of the main shaft. Unfortunately, the spectra of
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different targets overlap seriously, which impacts the object counting, source separation,
and object recognition tasks. Besides that, in broadband continuous spectrums with the
same frequency range, the spectral lines interleave with each other, due to the closeness in
blade number and rotation frequency. For example, the typical blade number ranges from
2 to 9 and the cruising speed is limited to 3 to 12 knots, which means that it is very difficult
to precisely locate the shaft or blade frequency for object recognition.

In [6], we have reported the progress on underwater acoustic source separation, where
an algorithm based on U-Net has been designed to extract a remote target noise when the
SNR (signal-to-noise ratio) of target-noise to self-noise is not lower than −10 dB. Recently,
we tried to separate the mixture signal of multiple sources when N > 2 in the framework
of deep clustering. In another work [7], we proposed a method to estimate the fundamental
frequency by feeding the DEMON (demodulation of envelope modulation on noise) [8]
spectrum matrix into a cascaded network made up of a CNN (convolutional neural network)
and an LSTM (long short-term memory) network. Its performance is promising when the
target is sailing with high speed, and however is infeasible for the low-speed situation
where little cavitation happens. Before parameter estimation or object recognition, we have
to estimate the source number and separate each source in the preprocessing stage. Up to
date, exquisite hand-crafted features are extracted in different tasks or even in different
stages to train the network, such as STFT (short-time Fourier transform) [9], LOFAR (low-
frequency analysis and recording) [10,11], DEMON, and so on. However, such a procedure
largely depends on the prior information or the experience of experts, introducing certain
uncertainties to the final classification results. Therefore, it is necessary to build a universal
feature extraction principle that is applicable to the common noise analysis mission, which
not only should be suitable for both the early stage object counting task and later-stage
target recognition task, but also covers different working conditions, that is, compatible for
both high speed and low speed conditions.

The state of the art in acoustic object counting and F0 estimation are reviewed in the
following subsections.

1.1. Acoustic Object Counting

Most research on object counting is based on array signal processing, and can be
roughly divided into three categories:

• Information theory-based methods . Denote sensor number M and source number N.
Generally, M ≥ N should be satisfied to guarantee that the problem is well-posed.
Methods based on information theory try to estimate the source number n̂ by optimiz-
ing a specific criterion derived from the covariance matrix of the received noise signal.
Common criteria include AIC (Akaike information criterion) [12], MDL (minimum
description length) [13], and HQ (Hannan Quinn) [14], but they are prone to fail when
the number of snapshots is small or the noise is non-Gaussian [15].

• Direction of arrival (DOA). Assume the position of each remote source does not change
drastically in a short period. Under the far-field assumption, DOA-based methods
estimate the source number and arrival direction simultaneously by clustering the
sparse point set extracted from the time-frequency spectrum with a mixture Gaussian
model, where the number of components corresponds to source number N [16].

• Deep learning. Deep networks have also been introduced to count acoustic sources in
recent years. In [17], a spatial pseudo-spectrum derived from MUSIC (multiple signal
classification) is fed into the CNN network to estimate the source number and DOA
simultaneously. In [18], the CNN network is trained to predict the source number
from the eigenvalues of the covariance matrix.

It can be concluded that model-driven methods rely on prior knowledge of target
information and background noises, and are very sensitive to slight variations in SNR,
while deep learning-based algorithms have better generalization ability. It is worth noting
that recently, source counting research based on single-channel noise signal [19,20] also
uses deep networks to predict source numbers from various time-frequency spectrums.
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1.2. F0 Estimation

In the underwater noise analysis community, researchers have special interests in
the motion and physical parameters of the targets, including F0, blade frequency, ton-
nage, and the number of blades or shafts. As a typical representative, we consider the
F0 estimation in this paper. However, the method can be extended to other parameter
estimation problems (propeller recognition [21], for example) by minor modifications, for
example, replacing the final full-connection layer when required. In practical engineer-
ing, the DEMON spectrum analysis method is often adopted to extract the modulation
spectrum, which corresponds to the low-frequency line spectrum where F0 and blade
number could be estimated from the integral multiplication relationship between F0 and
its harmonics [7]. Traditional F0 estimation methods include the GCD (greatest common
divisor) method [22,23], sequence matching method [24], etc. Yin et al. [22] weighted the
line spectrum from each sub-band under a low SNR ambient noise, and then calculated the
shaft frequency of the propeller by the GCD algorithm. Yang et al. [24] used an improved
DEMON method to extract the line spectrum of the propeller shaft frequency by the aver-
age energy accumulation, improving the SNR of the line spectrum and reducing errors in
line spectrum detection. Rao et al. [25] proposed to use the CSEA (cyclic spectral entropy
algorithm) to obtain the DEMON spectrum for fundamental frequency estimation, however,
the frequency resolution in the CSEA must be manually adjusted. Similar to the trends in
acoustic object counting, deep learning has also been applied to underwater acoustic object
recognition, please refer to [26] for a review. It is worth noting that deep learning has been
used for pitch estimation in speech and music signal processing community [27–29].

1.3. Overview of Our Work

Three conclusions can be drawn from above discussions:

• Single hydrophone. Acoustic object counting methods are mainly divided into two
categories: single microphone and microphone array. In practice, the premise that the
number of array elements is equal to or more than the number of sound sources may
not be satisfied. For example, due to the limits in space and aperture, only one or a
few hydrophones could be loaded on a mini-AUV. We choose hence to perform the
underwater acoustic object counting and recognition task with a single hydrophone.

• Deep learning. Attributed to their plasticity and adaptability in modeling complex
space-time relationships, deep networks have good generalization abilities in practical
acoustic applications, including object counting, sound source separation, and object
recognition. Consequently, we carry out related research on object counting and
recognition in the deep learning framework.

• Feature extraction. It is strenuous for deep networks to extract high-level semantic
information or frequency-related information from noise signals directly, especially in
the case of strong ambient noises and multi-path effects. It is thus more reasonable to
extract and evaluate the time-frequency feature at first.

Therefore, we decide to discuss the time-frequency features for underwater acoustic
object counting and F0 estimation under the framework of deep learning with a single hy-
drophone. Firstly, to ensure the feature works in both high-speed and low-speed movement
conditions, the LOFAR and DEMON features are extracted and combined to form a uniform
time-frequency spectrum. Secondly, to alleviate the deteriorations brought by ambient
noises and multi-path propagation in underwater acoustics, the combined time-frequency
spectrum feature is enhanced with the comb filtering [30,31]. Finally, the performance of
the combined feature and comb filter in object detection and F0 estimation tasks is eval-
uated through simulation and lake trial datasets, where CRNN is chosen as a workhorse
classification network.

The paper is organized as follows. The pipeline of the proposed object counting and
F0 estimation method, including the combined feature, comb filter, and network structure,
is explicitly described in Section 2. The simulation model for the ship-radiated noises and
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the lake trial settings are presented in Section 3. The experimental results are provided in
Section 4, and the paper is concluded and discussed in Section 5.

2. Methodology

The proposed algorithm is composed of four steps, including radiated noise data
acquisition, time-frequency feature extraction, harmonic enhancement, and CRNN-based
object counting and F0 estimation. Firstly, the radiated noises emitted by underwater
acoustic targets are collected by the seabed or shore-based hydrophone, or the towed
array or flank array carried by ship or AUV (single hydrophone towed by the mother
ship in our experiment, see Section 3.2). Then, a time-frequency feature, which is the
combination of LOFAR and DEMON and will be explained later in Section 2.1, is extracted
from the incoming noise signal. For comparison, the traditional STFT, GST [32], LOFAR,
DEMON, and MFCCs [33] are also extracted to predict the target number or F0 in the
experiment section. The feature combination of low-velocity compatible LOFAR and high-
velocity compatible DEMON supports the radiated noise analysis in all working conditions.
Due to the multi-path effects in underwater sound propagation and the disturbance from
underwater ambient noise, the harmonic components of F0 may be out of place, translated,
weakened, broadened, or even distorted. Therefore, the comb filter is employed to enhance
the harmonics and improve the quality of the time-frequency features. Finally, considering
that the CRNN has become one of the standard tools for time series signal analysis and our
main purpose is to optimize the feature extraction in detection and recognition tasks, we
choose the basic CRNN as the classifier and do not modify the network structure in this
paper. The proposed acoustic target detection system is displayed in Figure 1. The later
three steps will be described in the following paragraphs, while the noise signal collection,
including the noise simulation method, lake trial settings, and the corresponding noise
datasets, will be presented in detail in Section 3 and Section 4.

N>1?

N

Figure 1. The pipeline of our proposed algorithm for underwater acoustic object counting and F0

estimation. Again, when the target number N > 1, mixed spectra must be separated into mono
spectrums before feeding into the CRNN, and related works will be present in a future report, which
is not a concern in this paper.

2.1. Feature Extraction
2.1.1. Feature Combination

Radiated noise of underwater acoustic targets mainly includes the continuous spec-
trum, modulation spectrum, and line spectrum. A major source of continuous spectrum
and modulation spectrum is cavitation noises, while the line spectrum and modulation
spectrum are determined by the propeller rotations. The spectrum range to be analyzed
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should be carefully selected according to the relative intensity of each spectral component,
which is largely related to the rotation speed of propellers.

1. Low-speed case: With a low-speed rotation, the cavitation of the propeller is so weak
that the peak of the continuous spectrum mainly lies on the high-frequency range.
Therefore, the spectral lines are very prominent in the low-frequency range, and F0
can be estimated directly by using the simple variants of STFT, such as the LOFAR
spectrum. Please refer to [34] for a full introduction of LOFAR.

2. High-speed case: With the increasing of rotation speed, the continuous spectrum grows
rapidly, which reduces the comparative advantages of spectral lines to the continuous
spectrum. On the other hand, the peak of the continuous spectrum gradually shifts
to the low-frequency range, which further hinders the protrusion of spectral lines
from the continuous spectrum. Fortunately, the periodic motion of the propeller
has a very significant modulation effect on the strong high-frequency cavitation
noises, from which the rotation parameters could be estimated confidently, such as in
DEMON analysis. Please refer to [35] for an explicit description of DEMON.

It can be inferred from the above discussion that LOFAR and DEMON alone are
unable to cope with arbitrary rotation speed estimation. In machine learning, the fusion of
complementary features or classifiers helps improve the generalization ability of expert
systems. Fusion can be accomplished at the feature level, for example, by concatenation,
principal component analysis, and linear discriminant analysis, or the decision level, such
as by Bayesian inference, Dempster–Shafer evidence theory, and so on [36]. Since both
LOFAR and DEMON are time-frequency maps, we choose to concatenate them in the
time dimension, which enriches the information of the feature without losing the physical
attribution of both spectrums. Another reason for preferentially selecting feature-level
fusion is that LOFAR and DEMON are appropriate for completely unrelated situations,
which implies that only one estimation result is trustworthy, leading to the failure of
decision-level fusion.

To demonstrate the speed selectivity of LOFAR and DEMON, two examples for the
combined LOFAR+DEMON feature when the “Hailangdao” ship (see Section 3.2) moves
with a lower rotation speed of 600 r·min−1 (F0 = 10 Hz) and with a higher-rotation speed
of 1200 r·min−1 (F0 = 20 Hz) are given in Figure 2 and Figure 3, respectively, where LOFAR
and DEMON are laying on the top and bottom panels, respectively. For the low-speed case
in Figure 2, due to low-level cavitation, spectral lines in the LOFAR spectrum are very clear
to identify, however, those in the DEMON spectrum are very hard to retrieve. The posi-
tions of spectral lines are A = 60 Hz, B = 90 Hz, C = 116 Hz (out of place), D = 150 Hz, and
E = 180 Hz.

Figure 2. An example for LOFAR and DEMON spectrum in low-speed rotation (“Hailangdao" ship,
600 r·min−1), with upper for LOFAR and lower for DEMON. Letter annotations are used to illustrate
the harmonic relationship between spectral lines. The vertical axis represents time and the horizontal
axis frequency.

For the high-speed case in Figure 3, the positions of spectral lines are A1 = 120 Hz,
A2 = 240 Hz, A3 = 360 Hz, B1 = 60 Hz, B2 = 120 Hz, B3 = 180 Hz, and B4 = 240 Hz. It can
be seen that the spectral lines in LFOAR and DEMON satisfy the harmonic relationship
approximately, however, on the other hand, not all the harmonics of the fundamental
frequency are equally legible.
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Figure 3. An example of the LOFAR and DEMON spectrums in high-speed rotation (“Hailangdao”
ship, 1200 r·min−1), with upper for LOFAR and lower for DEMON. Letter and digital annotations
are used to illustrate the harmonic relationship between spectral lines. The vertical axis represents
time and the horizontal axis frequency.

2.1.2. Availability of DEMON in the Case of Multiple Targets

To our knowledge, the DEMON spectrum has not been employed for object counting.
When there are multiple targets, the continuous spectrum of each vehicle is modulated by
the respective line spectrum. An additional cross-term will be introduced in the square
step and may hinder the sequential demodulation step. Therefore, it is necessary to explain
whether the DEMON spectrum is appropriate for the multiple-target case or not.

The radiated noise for a single target can be modeled by s(t) = (1 + m(t))g(t) + l(t),
where m(t) represents the modulation spectrum, g(t) for continuous spectrum and l(t) for
line spectrum, and s(t) is the synthesized noise signal. Please refer to Section 3.1 for details.

According to square-law demodulation,(
N
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where N is the target number and i for the ith target. Define

d1(t) =
N

∑
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(1 + mi(t))
2g2

i (t), (2)

d2(t) =
N

∑
i=1,j=1,i 6=j

(1 + mi(t))gi(t) ·
(
1 + mj(t)

)
gj(t), (3)

d3(t) = 2
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∑
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(1 + mi(t))gi(t)
N
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lj(t), (4)

d4(t) =
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. (5)

Now, let us have a look at each term:

• d1(t)
Let yi(t) = g2

i (t) and zi(t) = (1 + mi(t))2, we have d1i(t) = yi(t)zi(t), and, in the
frequency domain

D1i( f ) = Yi( f ) ∗ Zi( f ) (6)
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Because zi(t) is composed of Gaussian pulses with a fixed period τi,

zi(t) = 1 + 2∑
n

ξi√
2π

e
− (t−nτi)

2

2σ2
i + ∑

n

ξ2
i

2π
e
− (t−nτi)

2

σ2
i , (7)

its spectrum Zi( f ) is also made up of a series of periodic pulses.
According to [25], the power spectrum density (PSD) of yi(t) is Syi ( f ) = R2

G(0)δ( f ) +
2SG( f ) ∗ SG( f ), where RG(τ) = E[gi(t)gi(t− τ)] and SG is the PSD of gi(t).
Note that Yi( f ) has a relatively strong DC component and Zi( f ) is composed of a
series of impulses, thus, convolving Zi( f ) with Yi( f ) (refer to Equation (6)) leads to the
enhancement of line spectrum. Therefore, the harmonic relationship is well preserved
in d1(t).

• d2(t)

Take dij
2 (t) = (1 + mi(t))gi(t) ·

(
1 + mj(t)

)
gj(t), then dij

2 (t) = (1 + mi(t)+
mj(t) + mi(t)mj(t))gi(t)gj(t), where mi(t), mj(t) and mi(t)mj(t) are periodic signals
with periods of τi, τj, and τiτj, respectively. Let m

′
(t) = mi(t) + mj(t) + mi(t)mj(t),

spectral line structure in m
′
(t) is dominated by the first two modulation terms

because mi(t)mj(t) can be treated as an additional modulation signal. Now that

g
′
(t) = gi(t)gj(t) is a continuous function, then dij

2 (t) = (1 + m
′
(t))g

′
(t) can be seen

as the assemble of the spectral lines of two targets (ith and jth). Therefore, the modu-
lation spectrum structure of all targets is well preserved in d2(t).

• d3(t)
Take the Fourier transform of d3(t),

D3( f ) ∝
N

∑
i=1

Gi( f ) ∗ L( f ) ∗Mi( f ) ∝
N

∑
i=1

L
′
( f ) ∗Mi( f ) (8)

where the term irrelevant to the modulation spectrum Mi( f ) is omitted in the first
approximation and the continuous spectrum Gi( f ) can be seen as the weight of
line spectrum L( f ), where L( f ) = ∑N

i=1 Li( f ). Therefore, the spectral lines are well
preserved in d3(t)

• d4(t)
d4(t) has nothing to do with the modulation spectrum.

In conclusion, the harmonic relationship underlying the modulation spectrum is well
preserved in the square step, and the demodulation step could be carried out as usual.

2.2. Comb Filter

In a previous study [35], we employed the comb filter to enhance the harmonic
relationship in the DEMON spectrum for the fundamental frequency estimation task based
on multi-channel hydrophone data. In this paper, we further investigate its applicability in
the combined LOFAR and DEMON features for the multiple-task mission, such as object
counting and F0 estimation.

For the ideal DEMON spectrum, the power distribution of F0 and its harmonics in the
logarithm frequency domain can be written as:

Y(q) =
K

∑
k=1

bkδ(q− log(k)− log(F0)) + N(q) (9)

where q = log f , k represents the order of harmonics and K for the total harmonic number.
N(q) represents the power spectral density of the unwanted noise and bk the power of the
kth harmonic.

The comb filter can be regarded as a combination of many passbands and stopbands
arranged with specific frequency intervals. Theoretically, the accumulation of harmonics
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in Y(q) will result in a peak at F0. The corresponding ideal comb filter in the logarithm
frequency domain can be expressed as

h(q) =
K

∑
k=1

δ(q− log(k)) (10)

However, in practical engineering, the relationship between F0 and its harmonics is not
so strict that each impulse should cover a certain frequency width. As in [35], Equation (10)
then turns to

h(q) =


1

γ− cos(2πeq)
− β, log 0.5 < log q < log K + 0.5,

0 , else.
(11)

where γ represents the peak width and β is designed so that
∫

h(q)dq = 0
By removing the minus coefficients, the final comb filter could be written as

g(q) =

{
h(q), h(q) > 0,

0 , else.
(12)

Finally, the enhanced DEMON spectrum as Y
′
(q) is obtained by convolving the

DEMON spectrum with the comb filtering

Y′(q) = Y(q) ∗ g(−q) (13)

where ∗ represents the convolution operator.
In Figure 4, we display the enhanced version of the LOFAR+DEMON feature in

Figure 3 after comb filtering. Since the energy of the line spectrum is mainly distributed in
the low-frequency range, we take the logarithm of the frequency axis for easier visualization.
Compared with the primitive combination spectrum, the low-frequency line spectrum
becomes much more clear and prominent, and noisy spectral lines are suppressed in the
filtering process. To some extent, the features are purified, the true but weak spectral lines
are strengthened, while the false but strong spectral lines are filtered out.

Figure 4. The enhanced version of the combined LOFAR and DEMON spectrum in Figure 3 with
comb filtering, where the frequency (horizontal) axis is shown logarithmically for better visualization.

2.3. Convolutional Recurrent Neural Network

Following our prior work in [7] and related works in the open literature [20,37], we
treat in this paper the sound source counting and F0 estimation as a classification problem.
We denote the extracted feature of the radiated noise signal as S, we aim to find a mapping
hw(·) that maps S to the number of sources n, n ∈ Z0

+ or corresponding F0 category.
Without losing generality, the CRNN is employed to learn such a mapping. For a specific
input S, hw(S) gives (nmax + 1) posterior probability in the final full-connection layer with
a softmax function g(·). The category with the largest posterior probability corresponds to
the number of sound sources or F0.

The CRNN structure used in this paper is shown in Figure 5 and a summary of
parameters in each layer is detailed in Table 1. The output dimension, c, from the fc layer



J. Mar. Sci. Eng. 2022, 10, 1565 9 of 24

is adjusted according to the actual demand, such as the max target number nmax or the
number of F0 classes. All hyperparameters are selected to achieve the best accuracy on the
validation dataset. The CNN part consists of 16 convolution kernels with a size of 3× 3
and a pooling layer with a stride size of 2× 2, followed by a 1× 1 convolution. The output
of CNN (with shape 20× 256 for the input of shape 40× 512) is fed to the LSTM network,
followed by a fully connected layer, and finally passed through a softmax layer to get
the output. The LSTM time step length is 20 and the number of layers is 1. Note that
the maximum number of sources or rotation speed levels, nmax, needs to be prescribed in
advance. In the later simulation experiments, the dimension of the final output one-hot
vector is 6 and 12 in the object counting and F0 estimation tasks, which corresponds to
0− 5 targets and 12 different rotation speeds, respectively.

Figure 5. Structure of our CRNN.

Table 1. CRNN layers and hyperparameters.

Layer Filters Size Input Output

0 conv 16 3× 3/1 1× 40× 512 16× 40× 512
1 batchnorm
2 maxpool 2× 2/2 16× 40× 512 16× 20× 256
3 conv 1 1× 1/1 16× 20× 256 1× 20× 256
4 batchnorm
6 fc 1 c× 160 160 c

Layer Input Hidden Size Output

5 lstm 1× 20× 256 8 160

A large amount of labeled data is required to train a deep network, which usually
cannot be satisfied in many situations. The plan to collect underwater noise data is often
daunted by the high experiment cost, which is further aggravated by the fact that it is very
difficult for the human ear to capture gradual changes in rotation speed in the labeling
stage. Therefore, the transfer learning strategy is adopted to train the CRNN, where the
weights are firstly pre-trained by a large amount of simulation data, and then adjusted
with a small amount of data collected in the lake trial by fine-tuning. Training was carried
out on a computer with an Intel i7-10750 2.59 GHz CPU, 16 GB of RAM, and an NVIDIA
RTX2060 GPU (1,920 CUDA cores and 6 GB of RAM). We implemented a PyTorch version
of our CRNN based on pytorch-1.9.0 and python 3.6.12

3. Dataset

The dataset used in this paper includes a simulation dataset and a lake trial dataset.
The two major steps toward simulation data generation, including the sound source synthe-
sis for the ship-radiated noise and the received signal simulation with Bellhop [38] model,
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will be briefly introduced in Section 3.1. Additionally, the lake trial dataset, which is mainly
composed of ambient noise and radiation noise from tourist ships, will be introduced in
Section 3.2.

3.1. Simulation Dataset

The spectrum of ship-radiated noise is mainly composed of the continuous spectrum,
line spectrum, and modulation spectrum [39]. The time-domain waveform s(t) can be
described by [40]:

s(t) = (1 + m(t))g(t) + l(t) (14)

where g(t), m(t), and l(t) represent the continuous spectrum, modulation spectrum,
and line spectrum component, respectively. The line spectrum is usually represented
by a series of sine signals:

l(t) = ∑ Ai(n)sin(2π( fi/ fs)n + θi) (15)

where Ai(n) is the amplitude factor, fi the line spectrum frequency, and fs the sampling
frequency. The continuous spectrum is generated with the FIR filter which we have reported
in early work, please refer to [35] for details. The modulation spectrum can be modeled by
a series of normalized pulses with random amplitudes, shapes, and periods,

µξ(t) =
ξ√
2π

exp
[
−t2/

(
2σ2
) ]

(16)

where ξ represents the random perturbations in pulse amplitude and σ the pulse width.
To validate the transfer learning and approach the real noise dataset by the simu-

lation data with the same marginal probability distribution, it is preferred to model the
underwater sound propagation process when simulating the received signal, including
the average propagation loss of sound energy, the multipath interference caused by the
reflection from the seabed and the sea surface, and the additive interference of marine
environmental noise. The Bellhop toolkit, which is based on the ray acoustic theory, is
adopted to simulate propagation loss and multi-path interference. It employs Gaussian
beam tracing to compute the acoustic fields underwater in a cylindrical coordinate system.
Compared with traditional ray-tracing methods, the Gaussian beam tracing can get rid of
certain ray-tracing artifacts such as perfect shadows and infinitely high energy at caustic.
More precisely, the central ray of Gaussian beams is firstly constructed with the integration
of the usual ray equations, and then a pair of auxiliary equations governing the evolution
of the beam is integrated about the rays to generate beams, resulting in a pressure field
that falls off in a Gaussian fashion as a function of normal distance from the central ray
of the beam [38]. The hydrophone and multiple sound sources are firstly placed at the
given positions. For every single source, the unit impulse response of the transmission
channel between the source and hydrophone is calculated, which is then convolved with
the simulated noise to obtain the received signal at the hydrophone. We implemented the
Bellhop simulation with Matlab R2021a and bellhop toolkit 2020 1 The distance between
the sound source and the hydrophone is set to be 2 km, which is equal to the maximum
distance between the target ship and the receiving hydrophone in the lake trial. Further,
we add Gaussian white noises to the received signal with SNR = 43 dB.

An example of the sound eigenray diagram of a single source during simulation
is shown in Figure 6. Since the radiated noise of a ship is mainly from the propeller,
the sound source depth here is set to approximate the real ship’s propeller depth, dS = 1.0 m.
The hydrophone is deployed below the water surface with a depth of dH = 2.0 m, the water
depth is 50 m, the bottom condition is assumed to be approximately flat, and the sound
speed is constant at 1500 m·s−1.
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Figure 6. Eigenray trace of sound propagation during simulation with the Bellhop toolkit. The rays
are plotted using different colors depending on whether the ray hits one or both boundaries, red for
direct, green for the surface, blue for the bottom, and black for both. The multi-path effect is clearly
shown above.

For the target counting task, the simulation parameters setting is as follows: the
radiated noise of a single source follows the distribution depicted in Equation (14) and
lasts for 1 s. When there are multiple sources, the received signals for each source are
simulated individually and summed up as the final output. In the simulation, target
number N ∈ [0, 5], blade number Nblades ∈ {3, 4, 5, 7}, the rotation speed of propeller lies
between 480 and 1500 r·min−1, and the sampling frequency is Fs = 10 kHz. In total, 2 h of
simulation noise is generated to train the network for object counting.

For the F0 estimation task, only a single source with different rotation speeds is
simulated to generate the dataset. Note that, again, source separation is needed in the
case of multiple sources [6], and it is not discussed in this paper. The depth of the sound
source and hydrophone is the same as that in target counting. Simulation dataset for F0
estimation consists of synthesized noise radiated from a single source, where the rotation
speed Rp ∈ {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} and the number of blades is chosen
randomly from {3, 4, 5, 7}. For each selected rotation speed and blade number, 200 noises
data samples with length 1 s are generated, and the final F0 estimation dataset has a total
time length of about 3 h.

Figure 7 compares the spectrum of the simulated ship noise signal before and after the
Bellhop simulation. The overall transmission loss is about 70 dB, which is clearly shown on
the spectrum. Additionally, as stated in Figure 7, part of the line spectrum (line spectrum at
30 Hz) is distorted during the sound propagation.

Frequency/Hz

P
o
w

er
/d

B

before bellhop

after bellhop

30Hz line spectrum before bellhop

30Hz line spectrum after bellhop

Figure 7. Spectrum of 1 s radiated noise before and after the Bellhop simulation.
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3.2. Lake Trial Dataset

To test the algorithm, we conducted a lake trial in Songhua Lake, Jilin City, Jilin
Province in November 2021. During the experiment, a hydrophone was deployed on
an anchored mother ship, and the target ship moved at a uniform speed in front of the
mother ship along a planned line trajectory, from left to right, back and forth. The sound
source level for the target ship was about 130 dB, while that of in-site ambient noise was
about 102 dB. The targets include three four-blade tourist ships and a three-blade yacht.
The basic information about ships used in the experiment is listed in Table 2. For data
collection, two types of hydrophones were employed during the lake trial. The first one
is an omnidirectional hydrophone with a sensitivity of −172 dBV re µPa connected to a
data acquisition board integrated with an amplifier (×100 or ×1000) and a band-pass filter
whose pass-band lies in 100 Hz∼20 kHz. The sampling rate is 10kHz. An Ethernet link is
established to transfer the data from the board to the laptop. The second one is a smart
hydrophone of the icListen series modeled SC2-X2 and manufactured by Ocean Sonic,
working with a sample rate of 48 kHz.

Table 2. Information of ships in the lake trial.

Notation Tonnage (t) Nblades Rotation (×103 r·min−1)

Wanbang 81 4 {1.0, 1.2, 1.4}
Hailangdao 39 4 {1.0, 1.2, 1.4}

Tuolun 21 4 {0.7, 0.8, 0.9, 1.0, 1.1}
Motorboat <1 3 {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}

The geographic environment and the motion trajectory are shown in Figure 8. When
collecting the noise data of a single target, the mother ship that carries the hydrophone
is anchored. The hydrophone depth is about 2 m from the water surface. The target
ship moves along the marked trajectory (solid black line) back and forth at different
speeds, however, the velocity is fixed for each voyage. When collecting the noise of two
targets, the mother ship also acts as a noise source and moves along a trajectory that is
approximately parallel to the trajectory of the first target, however, with a different speed.

Figure 8. Environment and settings for lake trial, see the text for details.

4. Experiment

Four experiments were designed to evaluate the feasibility of the proposed feature
combination strategy and comb filtering in object counting and F0 estimation tasks.

1. Object counting: Evaluate and compare the performance of different features on
the simulation dataset when feeding into the CRNN, including STFT, GST, LOFAR,
DEMON, MFCCs, and the proposed LOFAR+DEMON;

2. F0 estimation: The experiment setting is the same as in exp. 1, except with a different
output layer;
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3. Comb filtering: Apply the comb filtering to the features extracted in exp. 1 and retrain
the classification network for object counting and F0 estimation. Then, compare the
prediction accuracy of each feature before and after the comb filtering;

4. Lake trial: Feed the features of real noise data collected in the lake trial into the CRNN
and test their performance in practical object counting and F0 estimation tasks.

4.1. Metrics for Evaluation

In this paper, the object counting and recognition are treated as classification tasks.
Therefore, evaluation metrics in multi-classification tasks are selected, including accuracy,
precision, recall, and F1 score. Among them, the accuracy describes the performance of
the algorithm on the total dataset, while the precision, recall, and F1 score are used to
evaluate the actual performance of the algorithm in a certain category. Metrics are defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 =
2

Precision−1 + Recall−1 = 2× Precision× Recall
Precision + Recall

(20)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and
false negative, respectively.

4.2. Object Counting

Precise target number estimation is the premise of subsequent semantic analysis, such
as sound source separation, target recognition, and so on. This experiment is mainly
devoted to comparing the performance of each feature (comb filtering excluded) in the
target counting task on the simulation dataset.

In extracting the time-frequency features, the window length is set to be winlen = 5000,
and two neighboring frames have a hop length of 125 samples. With STFT, GST, LOFAR,
and DEMON, only the spectrum over f ∈ [0, 1024) Hz is reserved, since the high-frequency
part contains less information, leading to a feature matrix with dimensions of 40× 512.
With MFCCs, the full spectrum is used to calculate the cepstrum coefficients and the final
feature matrix is in shape 40× 39.

For the object counting task in the simulation condition, the output dimension of our
network is c = 6, since we have nmax = 5. About 80% of the dataset is for training, while
the remaining is for validation. The initial learning rate is lr = 3× 10−4, the mini-batch size
is set to be 16, and the SGD optimizer is adopted to optimize the parameters in the network.

In Table 3, we list the performance of each feature in the object counting task on
the simulation dataset. Several conclusions can be drawn: (1) STFT and the proposed
LOFAR+DEMON feature have the highest estimation accuracy, which is consistent with
the finding in [20] that the STFT feature achieves the minimum MAE in speaker count.
(2) LOFAR or DEMON alone have moderate performance in the counting task, while
GST has a slightly better estimation accuracy. Since LOFAR is a simple variant of STFT,
it demonstrates that the removing tendency in STFT is prone to cause information loss.
(3) MFCCs feature has relatively poor results compared with the other features, which
also supports the conclusion in [41] that MFCCs showed poor performance when feeding
into the CNNs.
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Table 3. Performance of each feature when feeding into the CRNN for object counting on the
simulation dataset (COMB excluded).

Features Accuracy

MFCCs 37%
LOFAR 79%

DEMON 80%
GST 84%
STFT 87%

LOFAR+DEMON (Ours) 87%

4.3. F0 Estimation

The ultimate goal of target detection is object recognition and parameter estimation.
If the features extracted for counting could be shared by later-stage F0 estimation, it will
save large amounts of computational resources.

When there are multiple sources, the mixture noises should be separated into compo-
nents. In [6], we have successfully separated two noises using the U-Net network. Inspired
by [42], we are trying to extend it to more complex cases using deep-clustering, which will
be present in a future report. In this paper, only the efficiency of the feature is concentrated,
and we directly extract features from each single source signal and feed them into the
CRNN for F0 estimation. The experiment settings for F0 estimation is the same as that in
Section 4.2 except that the dimension of final output is 12, refer to Section 3.1 for details of
simulation dataset.

The training curve for each feature in the F0 estimation task on the simulation dataset
is shown in Figure 9, and the final prediction accuracy of different features is listed in
Table 4.
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Figure 9. Training process with different features on simulation dataset for the F0 estimation task,
L+D is short for LOFAR+DEMON. The upper panel shows the loss and accuracy on the training
dataset while the lower panel for validation dataset.

It can be seen that all the features except MFCCs have achieved satisfactory results
in the F0 estimation task. In terms of accuracy, the proposed LOFAR+DEMON feature is
comparable to STFT and LOFAR. The convergence speed of the GST feature and DEMON
feature is relatively slow, and the accuracy of the DEMON feature is slightly lower than
that of the GST feature.



J. Mar. Sci. Eng. 2022, 10, 1565 15 of 24

Table 4. Performance of each feature when feeding into the CRNN for F0 estimation on the simulation
dataset (COMB excluded).

Features Accuracy

MFCCs 10%
DEMON 92%

GST 98%
STFT 99%

LOFAR 99%
LOFAR+DEMON (Ours) 100%

To further explore the factors that affect the prediction performance of the DEMON
spectrum, the confusion matrix for all fundamental frequencies is presented in Figure 10a,
with the two classes with the largest errors annotated by a red circle. Theoretically, the DE-
MON spectrum of a signal generated by a three-blade propeller rotating with a speed of
15r · s−1 is very similar to that of the signal generated by a five-blade propeller rotating with
a speed of 9r · s−1. Equal blade frequency brings a great challenge for the DEMON-based
algorithm, see Figure 10b for reference. Other estimation errors could be explained similarly.
Note that MFCCs fail in the recognition task since no fundamental frequency information
can be directly derived from an MFCC feature map.

(a)

rotation : 15r · s−1,Nblades = 3

rotation : 9r · s−1,Nblades = 5

(b)

Figure 10. Feature spectrum of noises with the same blade frequency leading to classification errors.
The confusion matrix for all fundamental frequencies is presented in (a). The red circle marks the
largest classification errors, and the corresponding DEMON spectrum of one category is displayed
in (b).

4.4. Comb Filtering

It is assumed in Section 3.2 that, theoretically, the comb filter is helpful for enhancing
the harmonicity between F0 and its harmonics. To test this hypothesis, we apply it to the
extracted time-frequency spectrum in Sections 4.2 and 4.3, and feed the filtered feature
into the CRNN. Except for the addition of a comb filtering block, all the other experiment
settings are kept the same as before. Note that no harmonicity can be found in MFCCs,
therefore, comb filtering is not applied to MFCCs.

4.4.1. Target Counting

The prediction accuracy for target counting is presented in Table 5. Compared with
Table 3, it is astonishing to find that the prediction accuracy of the CRNN when the comb
filter is applied to the time-frequency spectrum turns out to have deteriorated, which is fully
contrary to our expectation. To explore the reasons underlying these curious phenomena,
we compare the feature spectrum before and after comb filtering, and find that the spectral
lines become much denser in the case of multiple objects, however, the gaps between closing
spectral lines become blurred and indistinct after filtering due to the broadband effects
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from comb filtering. Therefore, it could be concluded that comb filtering is inappropriate
for underwater noise target counting tasks.

Table 5. Performance of each feature when feeding into CRNN for object counting on the simulation
dataset (COMB included).

Features Accuracy

LOFAR+COMB 65%
DEMON+COMB 68%

STFT+COMB 70%
GST+COMB 77%

LOFAR+DEMON+COMB (Ours) 72%

4.4.2. F0 Estimation

The prediction accuracy, in addition to the convergence speed (epochs needed to
achieve 95% accuracy), for F0 estimation is listed in Table 6. For easier understanding,
the training process is displayed in Figure 11. Several conclusions may be drawn: (1) the
prediction accuracy is almost unchanged after the employment of comb filtering, partly due
to the fact that the SNR of spectral lines is already very high in the simulation dataset that
comb filtering is unable to further improve the prediction performance. (2) The convergence
speed is significantly accelerated for DEMON, GST, and LOFAR+DEMON features, which
indirectly indicates that comb filtering is beneficial for feature enhancement, facilitating
the deep learning network quickly capturing the harmonics underlying the time-frequency
spectrum during the training process.
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Figure 11. Training process with different features, L+D+COMB is an abbreviation for LOFAR+
DEMON+COMB. The upper panel shows the loss and accuracy on the training dataset while the
lower panel for validation dataset.

It is worth noting that the performance of LOFAR+COMB is inferior to LOFAR in F0
estimation. In Table 7, we provide the precision, recall, and F1 score of the LOFAR+COMB
feature on various rotation speeds on the test dataset. It can be seen that the algorithm de-
grades when one category is the integral multiplication of another one, as shown in Table 7
(in bold format). For example, when the comb filtering is employed, the LOFAR+COMB
spectrums corresponding to the situations when the rotation speed is 8 r·s−1 or 16 r·s−1 are
very similar to each other, leading to estimation failures.
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Table 6. Prediction accuracy and convergence speed of each feature when comb filtering is included
or not, based on features before and after enhancement, L+D is the abbr. of LOFAR+DEMON.
Changes in accuracy and convergence speed are highlighted in bold format.

Features Accuracy Epochs to Converge

DEMON 92% 80
DEMON+COMB 92% 60 (↓)

GST 98% 140
GST+COMB 99% (↑) 20 (↓)

LOFAR 99% 10
LOFAR+COMB 96% (↓) 10

STFT 99% 15
STFT+COMB 99% 15
L+D (Ours) 100% 40

L+D+COMB (Ours) 100% 20 (↓)

Table 7. Evaluation metrics for LOFAR+COMB when feeding into the CRNN for F0 estimation on
the simulation dataset, two pairs of rotations with integral multiplication relationship are highlighted
in bold format.

Rotation (r·s−1) Precision Recall F1 Score

08 95% 92% 94%
09 92% 89% 91%
10 100% 96% 98%
11 100% 100% 99%
12 100% 92% 96%
13 100% 100% 100%
14 100% 100% 100%
15 94% 100% 97%
16 94% 98% 96%
17 100% 97% 99%
18 88% 91% 89%
19 95% 100% 97%

4.5. Performance on the Lake Trial Dataset

It can be concluded from the above experiments in Sections 4.2–4.4 that with the
simulation dataset, LOFAR+DEMON achieves the highest counting accuracy, while LO-
FAR+DEMON+COMB has the best performance in F0 estimation. However, no matter the
target noise model or the sound transmission channel, the practical underwater environ-
ment is far more complex than the simulation settings.

Therefore, it is necessary to check if the conclusions hold true in real underwater
environments. The experiment settings for lake trial noise data collection have already been
described in Section 3.2. Target counting datasets include environmental noise, single-target
noise data, and two-target mixed noise. The F0 estimation dataset is from single-target radiated
noise data with rotational speeds including {700, 800, 900, 1000, 1100, 1200, 1400} r·min−1.

4.5.1. Target Counting

The lake trial dataset used for target counting has a total of 5224 noise signal segments
with a length of 1 s. On the basis of network weights in Section 4.2, we use a small
proportion of lake trial data, about 10%, to fine-tune the network parameters after replacing
the final fully connected (FC) layer, and test its classification accuracy on the remaining
target counting dataset. The prediction accuracy is listed in Table 8. Since the number
of targets is not more than two, the proposed LOFAR+DEMON spectrum achieved an
accuracy of 100% by no accident. Furthermore, it is superior to all the other features, which
is consistent with the simulation dataset.
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Table 8. Performance of the algorithm based on different features on the lake trial dataset in object
counting task (COMB excluded).

Features Accuracy

STFT 87%
GST 89%

LOFAR 96%
DEMON 97%

LOFAR+DEMON (Ours) 100%

Compared with the results on the simulation dataset, the counting accuracy of LOFAR
or DEMON alone is slightly inferior to that of the combined LOFAR+DEMON spectrum,
however, STFT and GST dropped sharply. The reason that either LOFAR or DEMON has a
better performance in the real dataset is that the target number is far less than that in the
simulation dataset. Part data samples are collected with a hydrophone with strong electrical
noises, which introduces pseudo-lines that are very similar to the spectral lines into the
feature spectrum. Refer to Figure 12a,c for an example. The confusion matrix when STFT
or GST is employed is shown in Figure 12b,d, respectively, which demonstrates, again, that
the prediction error is mainly from the confusion in electrical noise and single-target noise.
LOFAR can cope with the disturbance brought in by the strong electrical noise to a certain
extent, mainly owing to the frame power normalization. For DEMON, no modulation
occurs when there is no target, while in a single target condition, the demodulation is
effective when the target is sailing with a high speed, enabling the successful classification
of zero target and single-target condition.
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Figure 12. Confusion between spectral lines and electrical noises-induced pseudo-lines. (a,c) cor-
respond to the STFT and GST feature of background noise (target absent); (b,d) give the confusion
matrix of STFT and GST.

4.5.2. F0 Estimation

The lake trial dataset used for F0 estimation has a total of 1665 noise segments with
lengths of 1 s. On the basis of Section 4.3, we also use 10% of the lake trial data to fine-tune
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the network weights after the replacement of the classification head, and test its classifica-
tion accuracy on the remaining data samples. With respect to the moderate performance of
MFCCs on the simulated dataset, it is abandoned in analyzing the real dataset. The predic-
tion accuracy is listed in Table 9. The proposed LOFAR+DEMON+COMB strategy achieves
98% accuracy (Figure 13d), and is superior to other features, which is consistent with
the conclusions drawn from the simulation dataset. It should be mentioned that the lake
trial dataset has been filtered by a band-pass filter whose passband lies in 100–20,000 Hz.
Therefore, the estimation accuracy of STFT, GST, and LOFAR combined with comb filter
drops to different extents, as illustrated in Table 9.

Table 9. Performance of algorithm based on different features on the lake trial dataset in F0 estimation
task (COMB included).

Features Accuracy

GST+COMB 74%
STFT+COMB 74%

LOFAR+COMB 83%
DEMON+COMB 94%

LOFAR+DEMON+COMB (Ours) 98%

700 800 900 1000 1100 1200 1400
r̂(r ·min−1)

700

800

900

1000

1100

1200

1400

r(
r·

m
in

−1
)

LOFAR+COMB

0.0

0.2

0.4

0.6

0.8

(a)

700 800 900 1000 1100 1200 1400
r̂(r ·min−1)

700

800

900

1000

1100

1200

1400

r(
r·

m
in

−1
)

DEMON+COMB

0.0

0.2

0.4

0.6

0.8

1.0

(b)

700 800 900 1000 1100 1200 1400
r̂(r ·min−1)

700

800

900

1000

1100

1200

1400

r(
r·

m
in

−1
)

STFT+COMB

0.0

0.2

0.4

0.6

0.8

(c)

700 800 900 1000 1100 1200 1400
r̂(r ·min−1)

700

800

900

1000

1100

1200

1400

r(
r·

m
in

−1
)

LOFAR+DEMON+COMB

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 13. The confusion matrix of different features for F0 estimation on the lake trial dataset (COMB
included). The GST is neglected since it has the same overall accuracy as STFT (c). (a,b,d) represent
the cofusion matrix when LOFAR, DEMON and LOFAR+DEMON are employed for classification,
respectively.

The confusion matrices for STFT+COMB, LOFAR+COMB, DEMON+COMB, and LO-
FAR+DEMON+COMB are presented in Figure 13. LOFAR is different from STFT by the
addition of TPSW filtering, where the removal of the trend term highlights the spectral lines,
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improving the discriminability of the feature spectrum (Figure 13a,c). However, it is some-
what difficult to infer rotation speed from the LOFAR+COMB spectrum. Comparatively,
DEMON has relatively better performance in all categories (Figure 13b).

5. Conclusions and Discussion

There are several tasks included in a typical underwater multi-target detection mission,
such as object counting, source separation, motion parameter estimation, object recognition,
and so on. In these multi-task situations, it is hoped to extract reusable features as much as
possible and feed them into classifiers with the same structure to complete different tasks.
In this paper, we consider two typical tasks, target counting and F0 estimation, and propose
the combined LOFAR+DEMON spectrum and the comb filtering strategy to extract the
feature in the framework of deep learning, with a standard CRNN adopted as the classifier.
The feasibility of the proposed fusion feature is verified through simulation and lake trial
experiments. Conclusions are as follows: (1) the combined feature LOFAR+DEMON has
the best prediction accuracy in both target counting and F0 estimation tasks. (2) Comb
filtering is beneficial for F0 estimation; however, it is not suitable for target counting. (3) The
inclusion of comb filtering largely accelerates the convergence speed for the training process
in the F0 estimation task.

The performance of an underwater acoustic target detection system not only is de-
termined by the speed, working condition, and mechanical characteristics of the target,
but is also dependent on the hydrological environment, and the relative position between
the sound source and target. The underwater acoustic channel propagation characteristics
and time-varying sound field will have huge impacts on the radiation noise, especially
when the hydrophone lies in the shadow area, which is, however, beyond the scope of
this research. Therefore, in this paper, there is a basic assumption: the hydrophone can
receive the radiation noise from the target. On this basis, the relationship between working
conditions and radiation noise, as well as the extraction of a general time-frequency feature
are investigated.

The target type, such as surface or underwater target, the target size, and the target
speed will have a great impact on the sound level of radiation noise. For example, the sound
level of a large surface ship even exceeds 200 dB, while that of some submarines has been
lower than 100 dB. In the lake trial carried out in this paper, the sound source level is
about 130 dB when the ship traveled at 8 knots. It demonstrates that different targets have
completely different radiation noise characteristics, which requires the detection system
to have a good generalization ability. Different from the sound intensity, which strongly
depends on the target size, the line spectrum is mainly determined by the velocity and
has been widely adopted to detect underwater acoustic targets. The feature extraction
strategies in this paper also belong to this framework, with a focus on how to extract a
relatively universal feature in different working conditions.

During the propagation of radiation noise, the signal attenuation and scattering as
well as the superposition of ambient noise will reduce the SNR of the source signal, greatly
challenging the target detection and recognition missions. Specifically, the spectral lines
implied in LOFAR and DEMON spectrums will become more and more ambiguous, which
largely discounts the traditional classifiers that strongly depend on the feature structures.
To better evaluate features and reduce the coupling between features and classifiers as much
as possible, we employ the CRNN, whose generalization performance has been widely
appreciated in speech or noise analysis, as the common classifier. It should be noted that
whether model-driven or data-driven, a trained classifier will be faced with environmental
adaptability problems when applied to actual platforms or projects, no less when talking
about the time-varying marine environment. Therefore, it is necessary to accumulate a
large amount of hydrological data and improve the feasibility of simulation data through
data modeling, on the one hand, and collect as much practical data as possible to improve
the generalization ability and reliability of the detection system on the other hand.
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The target number, implemented by the target counting network could be used to
guide the late-stage source separation. Currently, we are trying to separate multiple sources
when the target number exceeds two. Therefore, in the near future, we will combine
the source separation algorithm with the target counting network and the F0 estimation
network developed in this paper into an integrated system. On the other hand, we will try
to share the network weights between the target counting network and the F0 estimation
network, so that the memory and computation cost could be largely reduced. Moreover,
it is noticeable that the classifier with meta-heuristic optimizer is getting more and more
attention in the open literature [43,44] due to the local minima avoidance ability, which
might be an alternative for our CRNN.

Author Contributions: Conceptualization, L.L. and S.S.; methodology, L.L. and S.S.; software, L.L.
and S.S.; validation, L.L., S.S. and X.F.; resources, S.S.; data curation, L.L. and S.S.; writing—original
draft preparation, L.L. and S.S.; writing—review and editing, L.L., S.S. and X.F.; supervision, S.S. and
X.F.; project administration, S.S.; funding acquisition, S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was funded in part by the Natural Science Foundation of China under Grant
61973297, in part by the Strategic Priority Program of the Chinese Academy of Sciences under Grant
No. XDC03060105, in part by the State Key Laboratory of Robotics of China under Grant 2017-Z010,
and in part by the Youth Innovation Promotion Association of the Chinese Academy of Sciences
under Grant 2020209.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data for this study are not publicly available since another work is
being conducted based on this dataset.

Acknowledgments: The authors thank Guofu Pang, Yan Jing, Li Wang, Lei Ye, and Ziliang Ji for help
in carrying out the lake trial in Songhua lake.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

HQ Hannan Quinn
DOA Direction Of Arrival
GST Generalized S Transform
SNR Signal-to-Noise Ratio
LSTM Long Short-Term Memory
PSD Power Spectral Density
BSS Blind Source Separation
GCD Greatest Common Divisor
MDL Minimum Description Length
STFT Short-Time Fourier Transform
AIC Akaike Information Criterion
CNN Convolutional Neural Network
AUV Autonomous Underwater Vehicle
MUSIC Multiple Signal Classification
CSEA Cyclic Spectral Entropy Algorithm
MFCCs Mel Frequency Cepstrum Coefficients
LOFAR Low-Frequency Analysis and Recording
CRNN Convolutional Recurrent Neural Network
DEMON Demodulation on Envelop Modulation On Noise
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Mathematical Notations
M sensor (hydrophone) number
N target number
F0 rotation speed of main shaft
s(t) ship radiated noise in time domain
m(t) modulation spectrum component
g(t) continuous spectrum component
l(t) line spectrum component
ξ random perturbations in pulse amplitude
τ period of Gaussian pulses in modulation component
σ pulse width
Y(q) power distribution of ideal DEMON spectrum in log-frequency domain
bk power of kth harmonic in DEMON spectrum
δ(·) Dirichlet function
S feature extracted from noise signal
dS depth of sound sources (propeller)
dH depth of hydrophone
TP true positive
TN true negative
FP false positive
FN false negative

Notes
1 http://oalib.hlsresearch.com/AcousticsToolbox/, access date: 13 October 2022.
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