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Abstract: Simultaneous Localization and Mapping (SLAM) is a well-known solution for mapping
and realizing autonomous navigation of an Autonomous Underwater Vehicle (AUV) in unknown
underwater environments. However, the inaccurate time-varying observation noise will cause
filtering divergence and reduce the accuracy of localization and feature estimation. In this paper,
VB-AUFastSLAM based on the unscented-FastSLAM (UFastSLAM) and the Variational Bayesian
(VB) is proposed. The UFastSLAM combines unscented particle filter (UPF) and unscented Kalman
filter (UKF) to estimate the AUV poses and features. In addition, to resist the unknown time-
varying observation noise, the method of Variational Bayesian learning is introduced into the SLAM
framework. Firstly, the VB method is used to estimate the joint posterior probability of the AUV
path and observation noise. The Inverse-Gamma distribution is used to model the observation noise
and real-time noise parameters estimation is performed to improve the AUV localization accuracy.
Secondly, VB is reused to estimate the noise parameters in the feature update stage to enhance the
performance of the feature estimation. The proposed algorithms are first validated in an open-source
simulation environment. Then, an AUV SLAM system based on the Inertial Navigation System (INS),
Doppler Velocity Log (DVL), and single-beam Sonar are also built to verify the effectiveness of the
proposed algorithms in the marine environment. The accuracy of the proposed methods can reach
0.742% and 0.776% of the range, respectively, which is much better than 1.825% and 1.397% of the
traditional methods.

Keywords: Autonomous Underwater Vehicle; navigation and localization; mapping; FastSLAM;
sonar noise adaptive; unscented Kalman filter

1. Introduction

The Autonomous Underwater Vehicle (AUV) plays a vital role in marine resource sur-
veys, security and defense, and environmental observations [1]. Underwater autonomous
navigation, as the basis for AUV to accomplish complex tasks, has also become a hot
research topic among scholars [2,3]. When AUV performs underwater missions, two things
are very important: Where is the AUV? What is around it, which is the necessary guarantee
to ensure the safety of AUV navigation [4–7]. Simultaneous Localization and Mapping
(SLAM) is a well-known solution for robot navigation [8,9]. In an unknown environment,
the robot can repeatedly observe the environmental features through the equipped detec-
tion sensors (Laser Radar, Sonar, Camera, etc.) [10–12], thus enabling the correction of
its own position and environmental feature points. Therefore, SLAM provides a feasible
solution for realizing autonomous navigation of AUV in an unknown environment [13].

The Extended Kalman Filter-SLAM (EKF-SLAM) algorithm is one of the most classic
basic frameworks [14]. Common EKF-SLAM has the problems of inconsistent filtering due
to the linearization of the nonlinear model. However, there are also some limitations in
the application, such as the quadratic complexity and sensitivity of single hypothesis data
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association. The FastSLAM algorithm based on Rao–Blackwellized Particle Filter (RBPF)
is another commonly used SLAM framework [15]. The RBPF decomposes the complete
posterior distribution into robot localization and features estimation, which reduces the
complexity of the SLAM algorithm. In the FastSLAM algorithm, each particle represents
a different robot state, and the data association problem can be performed on individual
particles. Therefore, the false data associations with lower particle weights will be discarded
in the resampling stage [16,17]. Based on FastSLAM, FastSLAM 2.0 incorporates the
observation information into the importance sampling function, which greatly improves
the accuracy of the algorithm. FastSLAM 2.0 also has some shortcomings, namely the
calculation of the Jacobian matrix and the linear approximation of nonlinear functions [18].
UFastSLAM [19] overcomes the shortcomings of FastSLAM 2.0 and combines UPF and
UKF to estimate robot path and features, respectively. In the path estimation stage, the
proposal distribution is generated by UPF to improve the path estimation accuracy. UKF
is used to update the posterior state and covariance of the features. The SLAM algorithm
based on UFastSLAM has been validated in various fields [20–22].

The traditional RBPF-SLAM algorithms(FastSLAM, UFastSLAM, etc.) also have prob-
lems that cannot be avoided in experimental applications. Inaccurate observation informa-
tion will lead to particle degradation problems. The resampling method of re-screening
and duplicating particles after too many invalid particles is proposed to solve the problem
of particle degradation, but after multiple resampling, it will lead to particle depletion,
resulting in poor particle diversity. Since the AUV pose and map history information
carried by the discarded particles are deleted, the accuracy of AUV for navigation and
features estimation decreases. Most of the current research focuses on optimizing the
resampling stage by improving resampling or replacing it with other methods. Ref. [23]
proposed a particle filter algorithm based on genetic operator. Using this strategy, the low-
mass particles are corrected to large-mass particles, which finally alleviates the problem of
particle depletion. Ref. [24] used an improved method of variance reduction to solve the
particle degradation and particle depletion, thereby reducing the impact of unknown noise
on FastSLAM. Ref. [25] presented hybrid indoor localization system using an IMU sensor
and a smartphone camera. The IMU sensor errors are reduced by smartphone camera pose
and the heading errors from camera-based localization is overcome by the IMU localiza-
tion results. Moreover, a sensor fusion framework based on Kalman filter is proposed to
enhance the results of the proposed method. Ref. [26] proposed an intelligent resampling
step to FastSLAM, which is inspired by microbat behaviors to obtain the optimized state of
the robot. Moreover, the proposed resampling only operates on small-weight particles and
thus reduce the computational burden.

The AUV SLAM system mainly contains system noise caused by the motion model and
observation noise generated by the sensors used for external detection. In practical applica-
tions, the characteristic of observation noise is time-varying [27,28], such as data anomalies
caused by sonar multipath effects, reverberation interference. Therefore, real-time estimation
of observation noise is a very critical step to improve the accuracy of SLAM algorithms.

In this paper, we propose a VB based AUV SLAM method to improve the estimated
accuracy of AUV position and features. Firstly, we use an Inverse-Gamma distribution to
model the observation noise. Then the VB method is used to estimate the joint posterior
probability of robot path and observation noise. Real-time sonar noise estimation was
performed for multiple observations of each particle to improve the AUV localization
accuracy. At the same time, the VB is reused to estimate the noise parameters in the feature
update stage. The main contributions of this paper are as follows:

(1) We propose a SLAM framework that fuses VB and RBPF-SLAM to address the
problem of anomalous sonar observations in AUV SLAM.

(2) Based on FastSLAM and UFastSLAM, the improved VB-AFastSLAM algorithm
and VB-AUFastSLAM algorithm are proposed. Furthermore, we elaborate the details of
VB-SLAM with the VB-AUFastSLAM algorithm as an example in Section 3.
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(3) The proposed algorithms are validated in simulation experiments and AUV sea trial
experiments. Compared with the traditional SLAM algorithms, the proposed VB-AUFast-
SLAM algorithm and VB-AFastSLAM algorithm have significantly improved effects.

The rest of this paper is organized as follows: Section 2 describes the AUV SLAM
system. Section 3 presents the proposed VB-AUFastSLAM algorithm. Section 4 is a com-
parison of the two proposed algorithms with other algorithms in a simulation environment.
Section 5 shows the experimental results in the actual sea trial environment. Section 6 is the
conclusion and future work.

2. AUV SLAM SYSTEM
2.1. Sailfish-210 AUV

The Sailfish-210 is an independently developed AUV by the Underwater Vehicle Lab
at Ocean University of China. The length of Sailfish-210 is 1.7 m, and the outer diameter of
the cabin is 0.21 m. Maximum working depth can reach 200 m. The AUV can reach speeds
of 5 knots and sail at 3 knots for over 8 h. Figure 1 shows the basic structure of Sailfish-210
and the sensors required for this experiment, and Table 1 is the technical specifications of
the sensors.

Figure 1. The Sailfish-210 AUV.

2.1.1. GPS

To accurately locate the Sailfish-210 AUV on the water surface and use it as a bench-
mark to evaluate the performance of different algorithms, the AUV is equipped with a
high-precision, high-performance Global Positioning System (GPS) receiver. At the same
time, a GPS filtering algorithm that has been proven to be effective in actual engineering
was applied to this experiment.

2.1.2. Attitude Sensor

The INS equipped in Sailfish-210 AUV is HN-100, which mainly includes an inertial
measurement unit. Through the acceleration and angular velocity obtained by the IMU,
the position, velocity and attitude angle can be calculated.

2.1.3. Velocity Sensor

The speed measurement sensor used in this experiment is Pathfinder DVL, which
works by sending sound waves to the seabed, and outputs the speed of the AUV in the
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carrier coordinate system by measuring the bottom three-axis speed and the distance to the
bottom height fusion algorithm. DVL can obtain the speed of the carrier in real time without
cumulative error. Therefore, during the experiment, the speed information measured by
DVL is used as the current speed measurement value of the AUV.

2.1.4. Detection Sensor

Sonar is an essential external detection sensor for AUV SLAM. In this experiment, we
choose Tritech small single-beam Mechanical Scanning Imaging Sonar (MSIS), which has
the advantages of large detectable angle (0◦–360◦), small size, and lightweight (324 g in the
air). Moreover, its farthest detection range can reach 100 m.

Table 1. Specifications of sensors.

Sensors Parameter Value

INS
yaw 0.3° RMS

Pitch, Roll 0.02° RMS
Update Rate 100 Hz

DVL
Operational Altitude 0.2–89 m

Sound Frequency 614.4 kHz
Accuracy ±0.2 cm/s

GPS Position Accuracy 2.5 m CEP
Update Rate 1 Hz

PS Accuracy 0.01% Range
Update Rate 1 Hz

SONAR

Frequency 675 kHz
Vertical beam width 30°

Horizontal beam width 3°
Detection distance 0.3–100 m

2.2. Auv Model Description

The AUV state vector consists of its position and yaw at time k, as shown in Equation (1),
where (xk, yk) represent the coordinates of the AUV in the geographic coordinate system. ϕk
represents the angle between the AUV direction and the geographic north direction, in the
range of [0◦, 360◦). AUV rotates clockwise to increase direction of ϕk. The map M consists
of the coordinates of feature points, for example, (mxn , myn ) represent the coordinates of the
n-th feature point in the geographic coordinate system. That is, mxn represents mxn meters
away from the origin in the horizontal direction and myn represents myn meters from the
origin in the vertical direction.

Xk = [xk yk ϕk]
T (1)

M =
[
mx1 my1 · · · mxn myn

]T (2)

The motion model of Sailfish-210 AUV can be expressed as Equation (3).

Xk =

 xk
yk
ϕk

 =

 xk−1 + Vx · ∆T · cos(ϕk−1)−Vy · ∆T · sin(ϕk−1)
yk−1 + Vx · ∆T · sin(ϕk−1) + Vy · ∆T · cos(ϕk−1)

ϕk−1 + W · ∆T

+ δk (3)

where ∆T represents the sampling interval, Vx and Vy represent the forward and starboard
velocity of AUV respectively, ϕk denotes the yaw at the current moment and W represents
the angular acceleration. δk represents system noise, and δk ∼ N(0, Qk), Qk represents its
covariance matrix.
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The observation model of AUV can be expressed as:

Zk,i =

[
rk,i
θk,i

]
=

 √
(mxi − xk)

2 +
(
myi − yk

)2

arc tan
myi−yk
mxi−xk

− ϕk

+ εk (4)

where rk,i and θk,i represent that the i-th feature point at time k is located r meters away
from the AUV and rotated θ ◦ clockwise from the AUV direction. εk represents observation
noise, and satisfies εk ∼ N(0, Rk), Rk represents its covariance matrix. The navigation
coordinate system of Sailfish-210 AUV can be represented by Figure 2.
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Figure 2. Navigation coordinate system of Sailfish AUV.

3. Improved AUV SLAM Algorithm

We take the VB-AUFastSLAM as an example to introduce our proposed algorithm.
VB-UPF is used to estimate the posterior probability p

(
Sk|zk, uk, nk

)
of the AUV pose, and

VB-UKF is used to estimate and update the features. We describe the algorithm with the
model (Equations (3) and (4)) used by the Sailfish-210 AUV in this paper.

3.1. Vb-Based Sampling the New AUV Pose

For each particle, according to the UKF method, the state vector of the i-th particle is
augmented with a control input. Assuming that the mean of the control noise is zero, the
augmented state is formulated as:

Xaugment[i]
k−1 =

[
X[i]

k−1
0

]
=


x[i]k−1

y[i]k−1

ϕ
[i]
k−1
0

 ∈ R6 (5)
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Paugment[i]
k−1 =

[
P[i]

k−1 0
0 Qk

]
∈ R6×6 (6)

here, Xaugment[i]
k−1 is the augmented vector for the state, X[i]

k−1 and P[i]
k−1 denote the previous

state and covariance. Qk denotes the process noise. x[i]k−1,y[i]k−1, ϕ
[i]
k−1 respectively represent

the X-axis position, Y-axis position and yaw of the AUV.
VB-AUFastSLAM extracts sigma points from the Gaussian and passes these points

through the nonlinear function. A symmetric set of 2n + 1 sigma points χ
augment[i]
k−1|k−1,j for the

augmented state vector can be given by:

χ
augment[i]
k−1|k−1,0 = Xaugment[i]

k−1

χ
augment[i]
k−1|k−1,j = Xaugment[i]

k−1 +

(√
(n + λ)Paugment[i]

k−1

)
j

, j = 1, 2, ..., n

χ
augment[i]
k−1|k−1,j = Xaugment[i]

k−1 −
(√

(n + λ)Paugment[i]
k−1

)
j

, j = n + 1, ..., 2n

, χ
augment[i]
k−1|k−1 ∈ R6×(2n+1) (7)

where the λ is computed by λ = α2(n + κ)− n . α is a small number to avoid sampling
nonlocal effects (α = 0.002 is appropriate). κ(κ > 0) is used to determine the distance
between the sigma points and the mean which is not critical though, so a good default

choice is κ = 0 . j represents the j-th column of matrix
√
(n + λ)Paugment[i]

k−1 . Each χ
augment[i]
k−1|k−1

contains the state and control noise components given by:

χ
augment[i]
k−1|k−1 =

[
χ
[i]
k−1|k−1

χ
u[i]
k

]
∈ R6×(2n+1) (8)

The weights corresponding to the state and the covariance can be calculated as:

ω0
m = λ

/
n + λ

ω0
c = λ

/
n + λ +

(
1− α2 + β

)
wj

m = ω
j
c = 1

/
2(n + λ) , j = 1, 2, ..., 2n

(9)

β is the parameter used to introduce higher-order information items of the posterior
probability distribution. For the Gaussian prior, the optimal choice is β = 2.

The set of sigma points are transformed by the motion model characterized by a
nonlinear function as follows:

χ
[i]
k|k−1 = f

(
χ
[i]
k−1|k−1, χ

u[i]
k + uk

)
=


χ

x,[i]
k|k−1

χ
y,[i]
k|k−1

χ
ϕ,[i]
k|k−1

 ∈ R3 (10)

χ
[i]
k|k−1 is the transformed sigma point of the AUV state. The prediction state and the predic-

tion state covariance matrix are calculated based on the weights as:

X[i]
k|k−1 =

2n

∑
j=0

ω
j
m×χ

[i]
k|k−1,j , X[i]

k|k−1 ∈ R3 (11)

P[i]
k|k−1 =

2n

∑
j=0

ω
j
c

(
χ
[i]
k|k−1,j − X[i]

k|k−1

)(
χ
[i]
k|k−1,j − X[i]

k|k−1

)T
, P[i]

k|k−1 ∈ R3×3 (12)
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When external observations are available, the statistical characteristic of the time-
varying observations noise covariance are estimated to improve the performance of al-
gorithm. Since the Inverse-Gamma distribution is the conjugate prior distribution of the
variance of the Gaussian distribution, in Bayesian analysis, the Inverse-Gamma model is
usually chosen to model the variance of the Gaussian distribution [29]. η and ξ represent
the hyper-parameters of Inverse-Gamma distribution, respectively. The Inverse-Gamma
distribution is shown as Equation (13).

Inverse− Gamma
(

σ2|η, ξ
)
=

ξη
(
σ2)−(η+1)

Γ(η)
exp

(
− ξ

σ2

)
(13)

We introduce the VB method to approximate the observation noise. Based on VB, the
joint posterior estimation of the system state X[i]

k|k and the observation noise covariance R[i]
k|k

can be expressed as:

f (xk, Rk|zk) = Qx(xk)QR(Rk) (14)

where Qx(xk) and QR(Rk) are the approximate probability distributions of the state vector
and observation noise parameters, respectively. The VB approximation can be formed by
minimizing the Kullback–Leibler (KL) divergence between the true distribution and the
approximation:

KL
[

QX(xk)QR(Rk)|| f
(

xk|k, Rk|zk

)]
=
∫

QX(xk)QR(Rk) log
QX(xk)QR(Rk)

f
(

xk|k, Rk|k|zk

)dxk|kdRk|k
(15)

When minimizing the KL divergence, fixing QX(xk) or QR(Rk) respectively, the fol-
lowing can be obtained:

QX(xk) ∝ exp
(∫

QR(Rk) log f (xk, zk, Rk|z1:k−1)dRk

)
QR(Rk) ∝ exp

(∫
QX(xk) log f (xk, zk, Rk|z1:k−1)dxk

) (16)

As the above equations are coupled, it cannot be solved directly, after computing the
expectations separately, we can obtain:∫

QR(Rk) log f (xk, zk, Rk|z1:k−1)dRk

= −1
2
(zk − h(xk))

T
〈

R−1
k

〉
(zk − h(xk))

−1
2

(
xk − xk|k−1

)T(
Pk|k−1

)−1(
xk − xk|k−1

)
+ c1

(17)

where 〈·〉 =
∫

QR(Rk)(·)dRk denotes the expected value with respect to the approximating
distribution QR(Rk). As a function of xk, this is a quadratic implying that QX(xk) is a Gaus-
sian distribution, both the mean and variance can be obtained by standard matrix operations.

Similarly, the expectation of QR(Rk) can be calculated as follows:∫
QX(xk) log f (xk, zk, Rk|z1:k−1)dxk

= −
d

∑
i=1

(
3

/
2 + ηk,i

)
ln
(

σ2
k,i

)
−

d

∑
i=1

ξk,i

σ2
k,i

−1
2 ∑

1
σ2

k,i

〈
(zk − h(xk))

2
〉
+ c2

(18)
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where 〈·〉 =
∫

QX(xk)(·)dxk. From the above equation, it can be seen that QR(Rk) is the
product of the Inverse-Gamma distribution. If we assume that Rk is d-dimensional, then
Rk can be expressed as:

Rk = diag

(
ξk,1

/
ηk,1, ..., ξk,d

/
ηk,d

)
∈ Rd×d (19)

To ensure that the joint predicted probability distribution of Rk at time k keeps the
same form as the posterior probability distribution at time k− 1, a forgetting factor ρ ε (0, 1)
is introduced to reflect the degree of fluctuation of the noise. The prior of the observation
noise parameters can be expressed as:

ηk|k−1,j = ρηk−1|k−1,j (20)

ξk|k−1,j = ρξk−1|k−1,j (21)

The exact observation noise posterior distribution is obtained cyclically and iteratively
during the observation update. It should be emphasized that the loop iteration of the
observation noise using the VB method is performed on the covariance matrix, so the
observation noise still satisfies the Gaussian white noise distribution, i.e., R∗k|k ∼ N(0, Rk).

As feature points are observed and matched with existing features after data associa-
tion, the following stage will be employed to iterative update the X[i]

k|k and the covariance

P[i]
k|k of the robot. From the observation model, the predicted observation of the sigma points

can be calculated as:

z̄[i]k|k−1,j = h
(

χ
[i]
k|k−1,j

)
, z̄[i]k|k−1,j ∈ R2 (22)

The predicted observation and cross-covariance matrix can be obtained as:

Z[i]
k|k−1 =

2n

∑
j=0

ω
j
m×z̄[i]k|k−1,j , Z[i]

k|k−1 ∈ R2 (23)

P[i]
xz,k|k−1 =

2n

∑
j=0

wj
c

(
χ
[i]
k|k−1,j − X[i]

k|k−1

)(
z̄[i]k|k−1,j − Z[i]

k|k−1

)T
, P[i]

xz,k|k−1 ∈ R3×2 (24)

The mean and covariance of the state vector are calculated as:

S[i]
k =

2n

∑
j=0

wj
c

(
z̄[i]k|k−1 − Z[i]

k|k−1

)(
z̄[i]k|k−1 − Z[i]

k|k−1

)T
, S[i]

k ∈ R2×2 (25)

P[i]
zz,k|k = S[i]

k + R∗k|k , P[i]
zz,k|k ∈ R2×2 (26)

K[i]
k = P[i]

xz,k|k−1

(
P[i]

zz,k|k

)−1
, K[i]

k ∈ R3×2 (27)

X[i]
k|k = X[i]

k|k−1 + K[i]
k

(
Zk − Z[i]

k|k−1

)
(28)

P[i]
k|k = P[i]

k|k−1 − K[i]
k

[
S[i]

k + R∗k|k
]−1(

K[i]
k|k

)T
(29)

What needs to be noted here that the observation noise R∗k|k at this time has been
modeled as an Inverse-Gamma distribution. Furthermore R∗k|k denotes the temporary
value during the filtering loop, when the loop ends, save the final estimated noise of this
observation:
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R[i][j]
k|k = R∗k|k (30)

where i represents the i-th particle and j represents the observed noise for the j-th feature.
The noise of each observed feature is estimated and R[i][j]

k|k will be used in the subsequent
mapping stage. Moreover, the update of the noise hyper-parameters can be expressed as:

η
[i]
k|k = η

[i]
k|k−1 +

(
1

/
2, ..., 1

/
2

)
, η

[i]
k|k ∈ R2 (31)

ξ
[i]
k|k = ξ

[i]
k|k−1 +

(
Zk − Z[i]

k|k−1

)2
+ diag

(
S[i]

k

/
2

)
, S[i]

k ∈ R2 (32)

3.2. Feature State Estimation by VB-UKF

Based on X[i]
k|k known in Section 3.1, feature state estimation in VB-AUFastSLAM can

be divided into two parts: the feature update stage and feature augmentation stage.
(1) Feature augmentation
Since the path at time k is known, the observation noise can be used as the initial

feature covariance matrix, so that in the mapping stage of the VB-AUFastSLAM, current
observation Zk and the observation noise covariance matrix are chosen as the initial inputs,
we can obtain the sigma point of the observation as:

Γ
[i]
k−1|k−1,0 = Zk

Γ
[i]
k−1|k−1,j, = Zk +

(√
(n + λ)Rk|k

)
j = 1, ..., l

Γ
[i]
k−1|k−1,j, = Zk −

(√
(n + λ)Rk|k

)
j = l + 1, ..., 2l

, Γ
[i]
k−1|k−1 ∈ R2×(2l+1) (33)

where λ = α2(n + κ)− n, in the feature update stage, it is usually set α = 0.001, κ = 0. After
nonlinear transformation, the mean and covariance of the new features can be obtained
as follows:

Y[i]
k|k−1,j = h−1

(
Γ
[i]
k−1|k−1,j, X[i]

k|k

)
j = 0, ..., 2l , Y[i]

k|k−1,j ∈ R2 (34)

X f ,[i]
k|k−1 =

2l

∑
j=0

wj
mY[i]

k|k−1,j , X f ,[i]
k|k−1 ∈ R2 (35)

P f ,[i]
k|k−1 =

2l

∑
j=0

wj
c

(
Y[i]

k|k−1,j − X f ,[i]
k|k−1

)(
Y[i]

k|k−1,j − X f ,[i]
k|k−1

)T
, P f ,[i]

k|k−1 ∈ R2×2 (36)

(2) Feature update
Feature points will be updated after feature matching is completed. We convert the

feature points position to sigma points as:
χ

f ,[i]
k|k−1,0 = X f ,[i]

k|k−1

χ
f ,[i]
k|k−1,j = X f ,[i]

k|k−1 +

(√
(n + λ)P f ,[i]

k|k−1

)
j = 1, ..., n

χ
f ,[i]
k|k−1,j = X f ,[i]

k|k−1 −
(√

(n + λ)P f ,[i]
k|k−1

)
j = n + 1, ..., 2n

(37)

According to the X[i]
k|k at time k and the nonlinear observation model h(·), the predicted

observations can be obtained:

z̄ f ,[i]
k|k−1,j = h

(
χ

f ,[i]
k|k−1,j, X[i]

k|k

)
j = 1, ..., 2n, z̄ f ,[i]

k|k−1,j ∈ R2 (38)
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Z f ,[i]
k|k−1 =

2n

∑
j=0

ω
j
m×z̄ f ,[i]

k|k−1,j , Z f ,[i]
k|k−1 ∈ R2 (39)

P f ,[i]
xz,k|k−1 =

2n

∑
j=0

wj
c

(
χ

f ,[i]
k|k−1,j − X f ,[i]

k|k−1,j

)(
z̄ f ,[i]

k|k−1,j − Z f ,[i]
k|k−1

)T
(40)

P[i]
xz,k|k−1 ∈ R2×2 is the cross-covariance between state and observation in the feature update

stage, which is used to compute the Kalman gain K[i]
k :

S f ,[i]
k =

2n

∑
j=0

wj
c

(
z̄ f ,[i]

k|k−1,j − Z f ,[i]
k|k−1

)(
z̄ f ,[i]

k|k−1,j − Z f ,[i]
k|k−1

)T
, S f ,[i]

k ∈ R2×2 (41)

P f ,[i]
zz,k|k = S f ,[i]

k + R[i][j]
k|k , P f ,[i]

zz,k|k ∈ R2×2 (42)

K f ,[i]
k = P f ,[i]

xz,k|k−1

(
P f ,[i]

zz,k|k

)−1
, K f ,[i]

k ∈ R2×2 (43)

Similar to the path estimation stage, when calculating the innovation covariance P[i]
zz,k|k,

the observation noise Rk|k needs to be estimated by the VB method. The difference is that the

initial observation noise R[i][j]
k|k in the feature update stage is already obtained from the path

estimation stage, so the observation noise requires fewer cycles than the path estimation
stage. After loop iteration, the position and covariance of the feature can be obtained:

X f ,[i]
k|k = X f ,[i]

k|k−1 + K f ,[i]
k

(
Zk − Z f ,[i]

k|k−1

)
(44)

P f ,[i]
k|k = P f ,[i]

k|k−1 − K f ,[i]
k

[
S f ,[i]

k + Rk|k

]−1(
K f ,[i]

k

)T
(45)

3.3. Calculating Importance Weights and Resampling

Considering the latest observations in the proposed distribution, the weight calculation
can be expressed by Equations (46) and (47):

W [i]
k =

∣∣∣2πL[i]
k

∣∣∣− 1
2 ∗ exp

{
−1

2

(
Zk − Z[i]

k|k−1

)T(
L[i]

k

)−1(
Zk − Z[i]

k|k−1

)}
(46)

L[i]
k =

(
P[i]

xz,k|k−1

)T
P[i]

k|k

(
P[i]

xz,k|k−1

)
+ P f ,[i]

zz,k|k (47)

The particles with high weights are replicated, and the ones with low weights are
thrown away. However, excessive resampling will lead to a reduction in particle diversity,
resulting in particle depletion. To avoid redundant resampling steps, the effective number
of particles (Ne f f ) is utilized as a criterion:

Ne f f =
1

∑N
i=1

(
W [i]

k

) (48)

where N is the number of particles. Ne f f is set to 75% of the total number of particles in
simulation tests and marine environment tests. If the effective particles are less than 75% of
the total number of particles, resampling will be performed.

4. Simulations and Result Discussion

We first evaluate the effectiveness of the proposed algorithms in the simulation en-
vironment. We built a simulation map in Figure 3 based on the open-source simulation
environment [30] presented by Tim. The robot trajectory path is specified by 20 waypoints
with 127 landmarks and starts off at (0,0).
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Figure 3. Simulation Environment.

We additionally propose the VB-AFastSLAM algorithm based on FastSLAM, which has
the same idea as VB-AUFastSLAM in Section 3, and compare the two proposed algorithms
with FastSLAM and UFastSLAM. The initial observation noise covariance R0 during the
simulation is set to R0 = diag[0.001, 0.001], other parameters are shown in Table 2. To
simulate dynamic noise, we modify the observation noise covariance as Table 3.

Table 2. Parameters and initial values of the experiments.

Parameter Value/Initial Value

ρ 0.99

ξ 5

η 50

Table 3. Add dynamic observation noise.

For each observation noise
If rand (1) < p

R = nR0
end

end

Where p represents the probability of abnormal noise, n represents the degree of
abnormal noise mutation. Changing p and n respectively to simulate the degree of the
fluctuation of observed noise during the simulation. For each case, we have performed
30 Monte Carlo simulation experiments.

The n is set to fixed and p is varying to simulate the frequency of anomalous obser-
vation noise, and the simulation results are shown in Table 4. Where Path denotes the
position error, Path-x, Path-y represent the northward and eastward error of the position
respectively, and Feature displays the error of mapping. It can be seen from the Table 4
that the performance of VB-AFastSLAM and VB-AUFastSLAM are far better than tradi-
tional methods, of which VB-AUFastSLAM performs the best, and VB-AFastSLAM is the
second. As the frequency of anomalous noise increases, the performance of the traditional
algorithms deteriorates, in contrast, the error of our proposed algorithms remain stable.
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Table 4. n is constant, p increases.

Comparison of RMSE of Each Algorithm (m)

FastSLAM UFastSLAM VB-AFastSLAM VB-AUFastSLAM

n = 2; p = 0.1

Path 2.770478 3.19563 1.625358 2.054199

Path-X 0.855839 0.90384 1.132222 0.709995

Path-Y 2.603047 3.05317 1.100274 1.847457

Feature 9.279883 10.697 6.331278 6.836124

n = 2; p = 0.2

Path 5.669323 5.41272 2.833715 2.058928

Path-X 1.522571 1.45913 1.204661 0.751841

Path-Y 5.454597 5.21 2.431579 2.023639

Feature 18.99598 18.1438 9.548879 6.838111

n = 2; p = 0.3

Path 8.76245 8.147479 3.158763 2.102712

Path-X 2.33123 2.152331 1.443748 0.666417

Path-Y 8.4435 7.856657 2.754322 1.719888

Feature 29.3846 27.32396 10.19954 6.18904

n = 2; p = 0.4

Path 11.2517 10.77547 2.966079 2.064112

Path-X 2.9615 2.816575 1.320611 0.794151

Path-Y 10.8513 10.39766 2.507738 2.017267

Feature 37.7403 36.13094 9.735261 7.237978

n = 2; p = 0.5

Path 13.7324 12.8347 2.895683 2.166283

Path-X 3.57152 3.358806 1.268361 0.693661

Path-Y 13.2565 12.38438 2.483241 1.718042

Feature 46.0479 43.03384 9.572176 7.156179

Keeping p constant and at a low probability, n is varied to simulate the stability of
each algorithm for abrupt observed noise, and the comparison results are shown in Table 5.
In this case, we can arrive at the same conclusion. Especially when the noise is extremely
abnormal, such as n = 6; p = 0.2, both VB-AFastSLAM and VB-AUFastSLAM show excellent
noise adaptability. Figure 4 shows the performance comparison of the four algorithms with
less anomalous noise and fewer occurrences (n = 2; p = 0.3), where the blue trajectory is
obtained by the algorithm and the red points represent the estimated features. Figure 5 is
the error comparison diagram of the whole process.

Too many invalid particles are the main cause of particle depletion. The number of
effective particles is another important criterion for judging RBPF-SLAM. Figure 6 shows
the comparison of effective particle numbers of the four algorithms. Ne f f is calculated
according to Equation (48), and the Ne f f of each algorithm under each type of noise is the
average of 30 simulation results. As the noise gradually increases, the average effective
particles of VB-AUFastSLAM and VB-AFastSLAM are higher and remain stable, showing
good adaptiveness to dynamic noise. The traditional algorithms have fewer effective
particles than the proposed algorithms when there are no anomalous noise. As the random
abnormal noise increases, the number of effective particles decreases gradually, and the
error increases accordingly.
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Figure 4. Dynamic observation noise is set to n = 3; p = 0.2.
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Figure 5. n = 2; p = 0.3, algorithms error comparison.
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Figure 6. Comparison of Neff with different observation noise.

Table 5. p is constant, n increases.

Comparison of RMSE of Each Algorithm (m)

FastSLAM UFastSLAM VB-AFastSLAM VB-AUFastSLAM

n = 2; p = 0.2

Path 5.669323 5.41272 2.833715 2.058928

Path-X 1.522571 1.45913 1.204661 0.751841

Path-Y 5.454579 5.21 2.431579 2.023639

Feature 18.99598 18.1438 9.548879 6.838111

n = 3; p = 0.2

Path 8.57249 7.840694 2.556053 2.149585

Path-X 2.26609 2.187815 1.266831 0.6415

Path-Y 8.26531 7.522545 2.100756 1.707999

Feature 28.7391 26.30187 8.405979 6.906663

n = 4; p = 0.2

Path 12.26886 11.3883 2.734613 2.019741

Path-X 3.18036 3.05627 1.175704 0.673702

Path-Y 11.847 10.9659 2.318934 1.672129

Feature 41.14187 38.2046 9.484266 6.615162

n = 5; p = 0.2

Path 15.42614 16.1654 2.797301 2.14828

Path-X 4.047595 4.21373 1.273138 0.705636

Path-Y 14.88411 15.6039 2.345235 1.512899

Feature 51.73779 54.2395 10.15373 6.941755

n = 6; p = 0.2

Path 18.62159 18.0894 2.797817 2.102595

Path-X 4.893386 4.85773 1.275668 0.737804

Path-Y 17.96376 17.4199 2.395613 1.746299

Feature 62.4486 60.6946 10.03549 6.681115

The above dynamic noise experiments show that the proposed two algorithms are
significantly better than the traditional ones. We also verify the performance of the pro-
posed algorithms under large initialization errors. As shown in Table 6, it represents the
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corresponding performance when η and ξ are initialized to different parameters. The initial
observation noise covariance (obtained by Equation (19)) is in the range of 0.2 to 1, which is
much higher than the basic R = diag[0.001, 0.001]. By setting different initialization parame-
ters and conducting experiments under the condition that the observation noise is n = 2,
p = 0.3, it can be found from Table 6 that the performance of the two proposed algorithms
decreases with the increase of the initialization error, but still within the normal range.

Remark 1. According to Equations (20) and (21), ρ represents the degree of fluctuation of the
observation noise, with a larger ρ representing a smaller degree of noise fluctuation. According to
Equation (19), η and ξ are two variables that directly affect the initialization of observation noise.
According to Equation (31), η increases by a fixed amount during the iteration process. We have
found in many experiments that a larger value of η will achieve relatively good results, and ξ should
be set much smaller than η. If ξ and η are similar, then will lead to an increase in filtering error.

Table 6. RMSE comparison with large error initialization (m).

Dynamic Observation Noise Is Set to n = 2; p = 0.3

η = 50, ξ = 10 η = 50, ξ = 20 η = 50, ξ = 30 η = 50, ξ = 40 η = 50, ξ = 50

VB-AFastSLAM

Path 3.221525 3.223039 3.406439 3.470573 3.472635

Path-X 1.446131 1.317321 1.446759 1.259249 1.310155

Path-Y 2.775732 2.758277 2.947062 3.171144 3.125832

Feature 10.5447 11.20574 11.2116 11.24503 11.47512

VB-AUFastSLAM

Path 2.122799 2.579016 2.789813 2.794172 2.863803

Path-X 0.994603 1.0425 1.064196 0.960737 1.030024

Path-Y 1.896949 2.39992 2.546568 2.529119 2.578043

Feature 7.021528 8.131228 9.188775 9.227863 9.734567

The running time of the SLAM algorithm is also an important index. Table 7 shows
running time comparison of four algorithms. It can be seen from Table 7 that due to
the use of the UKF-based method, VB-AUFastSLAM performs a large number of UT
transformations, resulting in a large increase in running time compared to VB-AFastSLAM.
Compared with their respective basic algorithms, VB-AFastSLAM and VB-AUFastSLAM
increase the running time by 19.91% and 22.36%. Compared with UFastSLAM, the running
time of VB-AFastSLAM is reduced by 11.19%. Therefore, the amount of time to perform
calculations has increased a little. That can be ignored against the high accuracy obtained.

Table 7. Running time comparison.

FastSLAM UFastSLAM VB-AFastSLAM VB-AUFastSLAM

Running time (s) 76.8727 103.7898 92.1792 126.9096

5. Sea Trial Results and Analysis

In this section, we compare the two proposed algorithms with traditional algorithms
on the Sailfish-210 AUV platform.

5.1. Experiment Description

The experimental area is around 36.05° N, 120.29° E, Tuandao, Qingdao and the
experimental site is shown in Figure 7. The red line represents the trajectory of the AUV.
The AUV first sailed along the coastline, then sailed along the bridge shown in the figure,
and finally passed through the bridge hole to continue sailing on the east side of the bridge.
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In order to distinguish clearly, we name the path along the coastline as path 1 and the
path along the bridge as path 2. During the whole experiment, by reducing the buoyancy,
the rest of the AUV was immersed in the water except the antenna and the rudder. The
scanning sonar is located about 25 cm below the water surface. The advantage of this is
that it does not affect the normal operation of the sonar. Accurate GPS data will also be
obtained. The GPS data are only used to verify the accuracy of the algorithms and will not
be applied to AUV navigation. The sailfish-210 during the experiment is shown in Figure 8.

We use Nearest Neighbor (NN) to achieve data association in this experiment. First,
set an association gate according to the predicted position of the feature to be associated
to limit the number of potential observation decisions, and the candidate observations
are preliminarily screened out by the association gate. Then, calculate the Mahalanobis
distance between the observation and each feature according to Equation (49).

D =
(

Zk − Z f ,[i]
k|k−1

)T
S f ,[i]

k

(
Zk − Z f ,[i]

k|k−1

)
(49)

where S f ,[i]
k can be obtained by Equation (41). The observation with the smallest Ma-

halanobis distance is regarded as the observation generated by the feature. The most
significant advantage of using this method is the low computational complexity of only
O(M), where M is the number of features contained in the state. Furthermore, this method
has been successfully applied in the field of AUV SLAM.

Figure 7. AUV trajectory.

Figure 8. Sailfish-210 during the mission.
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5.2. Results and Analysis

In this experiment, the sailing distance is 361.5643 m. Figure 9a is a comparison of
the paths of the four algorithms, where the black line represents the GPS trajectory after
wild value filtering as the true value, and the comparison shows that the trajectories of VB-
AUFastSLAM and VB-AFastSLAM fit the GPS trajectory better. After calculating the error
of each algorithm and GPS trajectory separately, we obtain Figure 9b. “steps” represents the
sampling period, in this experiment, our data was recorded at a frequency of 10 Hz, where
data points 1 to 1800 and 3600 to the end indicate that the AUV sails along the coastline,
i.e., path 1 in Figure 7, and data points 1800 to 3600 indicate that the AUV sails along the
bridge, i.e., path 2 in Figure 7. During the movement of the AUV in path 1, the sonar can
always detect the wall along the coast. Since the sonar is affected by dynamic ocean noise
and self-noise, the wrong external observation leads to a larger AUV positioning error. For
example, in Figure 9b, the error growth rate of the traditional algorithms during this period
is larger than that of the proposed new algorithms, and with the same other settings, it
can be inferred that the proposed algorithms can dynamically adjust the observation noise
and thus improve the positioning accuracy. During the movement of the AUV in path 2,
due to the existence of many bridge holes, only bridge piers can be detected, so the sonar
observations at this time is far less than that in the process of path 1. From Figure 9b, it
can be found that during path 2, the error difference between the four algorithms increases
slowly and stays in a more stable range. It should also be noted that the presence of a
reference with obvious structural features such as bridge piers in path 2 is beneficial to
improve the success rate of feature matching and increase the localization accuracy. The
data points 1800 to 2800 and 3200 to 3600 in Figure 9b are the corresponding data when
the AUV moves on the west and east sides of the bridge, respectively, which verifies our
above point. However, during the process of AUV passing through the bridge hole (data
points 2800 to 3200), we found that there are a large number of uneven reefs on both sides
of the bridge hole, the observed features increase, and the difficulty of feature correlation
increases. Corresponding to Figure 9b, the localization error increases here, but the error of
the proposed algorithms grows less rapidly than the conventional algorithms.

Table 8 shows the RMSE of different algorithms, and we evaluate the accuracy of naviga-
tion according to Equation (50). For path estimation, the accuracy of traditional FastSLAM
and UFastSLAM algorithms are 1.825% and 1.397%, respectively, while the accuracy of
VB-AUFastSLAM is 0.742%, which is slightly better than the 0.776% of VB-AFastSLAM.

Accuracy =
RMSE

Distance
× 100 (50)

Table 8. The respective RMSE for each algorithm (m).

FastSLAM UFastSLAM VB-AFastSLAM VB-AUFastSLAM

Path 6.5999 5.05028 2.80573 2.68190
Path-North 5.49650 4.72167 2.19031 2.05031
Path-East 3.65339 1.79197 1.75347 1.72882

Since the true location of the features are not available, it cannot be quantitatively ana-
lyzed. Figure 10a,b are the feature prediction maps of VB-AFastSLAM and VB-AUFastSLAM,
respectively. The eastward error (data points 2800 to 3200) of VB-AUFastSLAM in Figure 9b
is smaller than that of VB-AFastSLAM. There is some deviation in the map constructed
using the VB-AFastSLAM algorithm in Figure 10b. Nevertheless, the maps constructed by
the two proposed algorithms generally fit the environmental characteristics.
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Figure 9. Comparison chart of sea trial trajectory and error comparison of four algorithms.
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Figure 10. The results of the proposed two algorithms for building the map.
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6. Conclusions and Future Work

This paper proposes the AUV SLAM algorithms that combine the VB method and
RBPF-SLAM. The dynamic noise of the sonar is estimated in real-time to improve the accu-
racy of the algorithm. Based on FastSLAM and UFastSLAM, we propose VB-AFastSLAM
and VB-AUFastSLAM, respectively, and verify them in the simulation environment and
the real sea trial environment, respectively. In the simulation verification stage, we demon-
strated the adaptive ability of the proposed two algorithms to the observation noise by
adding time-varying observation noise. At the same time, the large initialization error
is verified, and the results show that, as the initialization error gradually increases, the
positioning accuracy and feature estimation accuracy both decrease but are still within a
reasonable range. Compared with their traditional algorithms, the running time of the two
algorithms has increased to a certain extent, but they can meet the real-time performance.
In addition, we verified the algorithms in the marine environment with the Sailfish-210
AUV. The Sonar, INS, and DVL data obtained below the water surface are used to locate
the robot and map the coastline. The experimental results show that the proposed two
algorithms have better localization results than the traditional algorithms, and the map
construction is consistent with the actual coastline features.

There are still some challenges in the follow-up work of this paper. First of all, this
paper considers the observation noise as white noise and has not solved the problem of
colored noise for the time being. In addition, the filter’s performance is somewhat degraded
due to the rejection of higher-order components in the linearization of the nonlinear model.
Finally, when AUV faces the coastline environment with a single structure and sparse
features for a long time, the use of more accurate feature matching techniques is also a key
content that needs to be studied.
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