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Abstract: Propeller-induced longitudinal vibration resonance in marine propulsion shafting systems
causes great harm to the hull structure and is the primary source of shipboard noise. Integrating a
friction damper with designed parameters into thrust bearings can prevent these issues. To investigate
the performance of the damper-integrated thrust bearing in longitudinal vibration transmission
control, an experimental and theoretical study is carried out in a laboratory-assembled test rig, which
consists of components similar to the existing marine propulsion system. We developed a prototype
of a thrust bearing designed with a friction-damping generation that allows switching from two
supporting states, i.e., damper-connected and damper-disconnected states. Furthermore, a nonlinear
analysis method for friction dampers is proposed. By this method, the way in which the friction
damper changes the dynamic characteristics of the shafting system is analyzed. Based on the test
rig, the acceleration frequency response function (AFRF) of the thrust bearing with and without a
friction damper is measured. By comparison, the effectiveness of the friction damper is proved. The
experimental results show that the friction damper suppresses the shafting longitudinal vibration
response in a broadband frequency range and also confirms the stability of the damping effect, which
does not change with the shafting rotational speed or static thrust from the propeller.

Keywords: marine propulsion shafting; longitudinal vibration; friction damper; thrust bearing; test
rig; parameter identification; nonlinear system

1. Introduction

For marine vessels, the longitudinal vibration in the shafting system induced by the
oscillatory propeller thrust is one of the problems of propulsion. In particular, when the
excitation frequency is close or equal to the natural frequency of the shafting system,
resonance will occur in the longitudinal direction and cause excessive vibration [1]. It will
amplify thrust oscillations transmitted to the hull structure and potentially cause damage.

According to the objects on which the control measures are exerted, there are three
methods to reduce the hull longitudinal vibration. The first is to lessen the oscillatory part
of the propeller’s thrust, focusing on the source of the vibration. The second method is to
reduce the response of the hull under exciting forces by improving the structural design,
which focuses directly on the hull structure. The last method is to manage the vibration
excitation transmitted to the hull by developing or installing control devices on the shafting
system, which focuses on the vibration transmission path from the propeller to the hull.

For the first method, certain approaches, such as highly skewed propeller or non-
propeller propulsion systems, are used to lower the oscillatory thrust. However, these
approaches are difficult to implement due to the complexity of manufacturing and the need
to increase technological maturity. For the second method, since the hull structure is mainly
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designed to meet the requirements of structural strength and general arrangement, there are
many limits in terms of structural modification. Furthermore, the vibration response of the
hull is not only caused by the propeller; it is hard to achieve an overall vibration-oriented
design for the hull structure. Thus, applying control measures to the shafting system to
reduce longitudinal hull vibration is more acceptable in practical engineering.

The marine shafting system consists of rotational shafting and irrotational bearings. To
prevent longitudinal vibration, there are two control strategies used in practice. One control
strategy focuses on rotational shafting and has received much attention. Johnson et al. [2]
invented an electromagnetic dynamic vibration absorber (DVA) mounted on the shafting to
absorb longitudinal vibration. Baz et al. [3] developed an active pneumatic servo-controller
powered by compressed air to impose pressure on the servo-piston coupled to shafting
to resist longitudinal vibration. Xie et al. [4] proposed an active multi-strut assembly to
attenuate vibration transmission from the shafting to the hull. The other control strategy
focuses on the thrust bearing and has also been undertaken by numerous researchers. One
of the typical designs proposed by Goodwin [5,6] is the hydraulic resonance changer fitted
in a thrust bearing, of which the principle is anti-resonant vibration isolation. Another
mechanical resonance changer was invented by William [7], but the principle is traditional
vibration isolation. Other devices include magnetic thrust bearing [8,9] and thrust bearing
supported by disc springs [10]. Song et al. [11] and Liu et al. [12] conducted theoretical
studies on the periodic structure isolator and the anti-resonant isolator for thrust bearing,
but did not involve specific devices.

In the literature, it can be observed that more researchers favor the second control
strategy; thrust bearing is chosen as the primary carrier to implant the vibration control
devices. The possible reasons can be summarized in two ways. On the one hand, the thrust
bearing is the nearest component to the excitation source. Vibration control directly applied
on thrust bearing can achieve the desired effect without interference from the intermediate
parts in the transmission path from propeller to hull. Vibration control devices inserted
into the thrust bearing will not interfere with the operation of the shafting system. On the
other hand, the thrust bearing is a type of irrotational equipment; adding control devices
to the rotational shafting will create more difficulties, for example, in its arrangement
and assembly.

Damping is well known to be effective in attenuating vibration, especially in suppress-
ing resonance peaks. However, in previous studies on the control of shafting longitudinal
vibration, little attention has been paid to damping technology. One important reason is
that there are no effective means to add damping to the shafting system. In this paper,
the thrust bearing is also chosen as the carrier of a control device. The proposed passive
solution is to introduce Coulomb damping into the thrust bearing. The Coulomb damping
is a kind of non-viscous damping, and its principle of suppressing resonance is simple,
dissipating vibration energy. In practice, however, there are some technical difficulties in
engineering implementation. One problem is how to make a relative motion to generate
Coulomb damping in the interior of the thrust bearing. Currently, the marine thrust bear-
ings are the Kingsbury type. The leveling plates support the pivoted tilting pads, as shown
in Figure 1, which are a series of upper and lower levers designed to distribute the load
evenly between thrust pads. However, the leveling plates belong to the mechanical drive
type and cannot damp the longitudinal vibration. To implement Coulomb damping, it is
necessary to design a new support structure for thrust pads. The second problem is how to
quantify the Coulomb damping to obtain a certain damping effect for shafting, or is greater
Coulomb damping better? Furthermore, Coulomb damping is nonlinear; therefore, the
following question arises: how can one analyze a shafting system that involves Coulomb
damping? This paper examines these problems.
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Figure 1. Support structure of the Kingsbury thrust bearing.

The friction damper was developed as a novel support structure for a thrust pad
using hydraulic means [13]. It has the integrated advantages of producing Coulomb
damping and distributing an uneven load between each pad and is assumed to be a
potential alternative to the leveling plates. Coulomb damping has been applied in many
engineering fields. In civil and architectural engineering, applications of sliding isolation,
which involves inserting a friction surface between the foundation and the base mat of
the structure, can be found elsewhere [14]. In automotive engineering, the dry-friction
telescopic damper, as a potential substitution for traditional viscous dampers, which may
be in suspension, has been developed. Simulation and experimental studies reported that
the friction damper exhibited superior performance to the conventional damper [15]. One
of the typical characteristics of the Coulomb damping system is discontinuity. When the
external force is greater than the maximum static frictional force, the friction pair will slide
relatively. Otherwise, the friction pair remains in the sticking state. As a result, the overall
behavior of the Coulomb damping system is nonlinear. In view of the nonlinearity of the
friction damper and the complexity of the shafting system, the research in this work is
based on experiments.

The idea of applying Coulomb damping to control the longitudinal vibration of marine
propulsion shafting depends on several key points to be solved in engineering practice.
Firstly, a rational and acceptable design to insert the damping generating device into the
thrust bearing is needed. Secondly, the level of damping that can be supplied by the
damping generating device in practical operation under different conditions should be
specified through a sensitive measurement. Finally, the actual effect of the longitudinal
vibration control contributed by the Coulomb damping needs to be clarified.

These three key aspects of applying Coulomb damping to control the longitudinal
vibration are the main focal points in this paper, which is structured as follows. Firstly,
the design for integrating the friction damper into the shafting bearing is introduced, and
the operating principle is described. Secondly, the frictional force produced by the friction
damper is theoretically analyzed and then measured through experimental means. Thirdly,
a test rig assembled to simulate a marine propulsion shafting system is set up and described
with a mechanical analysis model, and some uncertain parameters are identified based on
an experiment with a particle swarm optimization algorithm. Then, a nonlinear analysis
method for a friction damper is proposed, and the way in which the friction damper
changes the dynamic behavior of the shafting system is illustrated. Finally, the effectiveness
of the friction damper employed to attenuate the transmission of longitudinal vibration in
the test rig is experimentally investigated.

2. Design of the Friction Damper Integrated into the Thrust Bearing

Conceptually, the friction damping is produced by a friction surface with normal force
pressing against it. As shown in Figure 2, the friction damper integrated into the shaft
bearing is assembled with a number of pistons and a support ring. The support ring has
a longitudinal tube shape and, around the circumference, is evenly divided into several
cylindrical cavities that are interconnected through an annular interior groove to form a
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connected space. Each piston is assembled inside one cylindrical cavity to reciprocate in
the longitudinal direction. To meet the assembling requirements of thrust bearings, the
support ring adopts a symmetrical split configuration, in which both the upper and the
lower parts are bolted and sealed on the interface. In addition, a radial seal is fitted for each
piston for the purpose of sealing all the cavities and then forming an enclosed space; on
the other hand, a friction surface is created between the pistons and the support ring. In
this way, by filling the connected and enclosed space with oil from the inlet hole, a passive
hydraulic system is set up inside the support ring; that is, the pressure of the hydraulic
oil balances the propeller’s steady thrust. The hydraulic pressure causes internal normal
force at the seal outer face against the cavity wall, and consequently, with the tendency of
relative motion between the pistons and the support ring, the frictional force is produced.
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Figure 2. Friction damper integrated into the thrust bearing.

When the propeller rotates and supplies thrust, the steady part of the thrust squeezes
oil in the support ring through the pistons, and correspondingly, the oil generates hydraulic
pressure. Meanwhile, the oscillation part of the thrust excites the pistons to vibrate relative
to the support ring. Under these conditions, the frictional force arises in the friction damper.
Apparently, only when the oscillatory thrust exceeds the maximum static frictional force
will the relative motion between the pistons and the support ring occur. Therefore, the
exciting force transmitted to the thrust bearing is generally less than the maximum static
frictional force.

From an experimental point of view, the piston of the friction damper is designed as
a convex shape, and more specifically, the diameter of the piston head is larger than that
of the piston rod. The piston head is positioned in the middle of the thrust pad and the
support ring, with an allowable stroke of 2.5 mm. When there is no hydraulic pressure
inside the support ring, for example, the oil outlet hole is open, the piston head is in contact
with the support ring under the propeller thrust, and the shafting longitudinal vibration is
directly transmitted through the support ring. Thus, the friction damper is short-circuited
and does not work. There is, however, hydraulic pressure that balances the propeller
thrust, and the piston head is separated from the support ring, while the friction damper is
inserted into the shafting longitudinal vibration transmission path to play a damping role.
For clarity, the state in which the piston is supported by the support ring is called the ‘rigid
support state’, as shown in Figure 3a, while the state in which the piston is supported by
hydraulic oil is called the ‘hydraulic support state’, as shown in Figure 3b. By switching
the support states, the response of the thrust bearing with or without the friction damper
can be compared; thus, the effectiveness of the friction damper can be judged.
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3. Analysis and Test of Frictional Force
3.1. Analysis of Frictional Force

According to Coulomb’s theory, the frictional force of a friction damper is

f = µFn (1)

where µ is the coefficient of friction, and Fn is the normal force at the piston seal outer face
against the cavity.

The piston friction depends on the seal design. Taking, for instance, the sliding seal,
a polytetrafluoroethylene (PTFE)-based ring pre-loaded by an O-ring, the normal force
arises from two aspects. One is the contact stress due to the O-ring pre-compression being
exerted on the sealing ring; the other is the pressure stress applied by the hydraulic oil being
exerted on the sealing ring through the O-ring. The superposition principle is applicable
for these two types of compressive stresses [16], so the normal force Fn can be expressed
approximately as

Fn =
πεoEo + 4µo(1 + µo)p

4(1− µ2
o)

s (2)

where εo, µo, Eo denote the O-ring pre-compression, Poisson’s ratio, and elastic modulus,
respectively; p is the hydraulic pressure; s is the seal outer surface area.

The coefficient of friction µ in Equation (1) is related to the sealing material, surface
roughness, lubrication state, relative velocity, and so on, which does not yet have a precise
mathematical formulation. Since the coefficient of friction µ is unknown, it is difficult to
calculate the frictional force of the friction damper accurately. However, the conclusion
can be drawn from Equation (2) that the frictional force has a positive relationship with
hydraulic pressure.

3.2. Test and Determination of Frictional Force

In order to determine the actual frictional force, a test device is designed, as shown
in Figure 4. The friction damper is connected to a hydraulic circuit composed of an
accumulator, valve, pressure transmitter, and hand pump. The oil is pumped slowly to
push the piston head to move up to a certain distance from the support ring and then the
central retaining nut can be sufficiently hand-tightened. A load plate, which is used to
carry a mass block, is placed on one of the pistons. Meanwhile, a dial indicator, which
measures the movement, is mounted to contact the load plate. Upon installation, a number
of mass blocks are placed on the load plate step by step. Once instantaneous, continuous
displacement is observed by the dial indicator and the pressure gauge data and the weight
of mass blocks are recorded. The single piston frictional force is equal to the difference in
the weight and hydraulic pressure. By changing the initial pressure of hydraulic oil, the
frictional force for various pressures can be tested.
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The tests on two types of piston seals were conducted including the O-ring and the
sliding seal ring. Figure 5 provides the tested frictional force. It shows that the frictional
forces of the O-ring and sliding seal ring are all positively correlated with the hydraulic
pressure, which is consistent with the theoretical conclusion. As the hydraulic pressure
increases, the frictional force of the O-ring increases linearly, while the frictional force
of the sliding seal ring increases in two stages. When the pressure is below 2 MPa, the
frictional force of the sliding seal ring increases sharply. Once the pressure exceeds 2 MPa,
the increase in frictional force becomes less steep. With the same hydraulic pressure, the
frictional force of the sliding seal ring is much less than that of the O-ring, and with the
increase in hydraulic pressure, a greater difference in frictional force between the two types
of seals is obtained.
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Essentially, the friction damper dissipates energy under the relative motion of the
piston and the support ring. Thus, the maximum static frictional force should not be so
large that the relative motion cannot occur. Since the friction coefficient of the material
PTFE is much lower than that of the O-ring, the sliding seal is beneficial to improve friction
performance and is applied as the seal of the friction damper.

4. Nonlinear Analysis Method of Frictional Force

Because of the existence of frictional force, the friction damper is a nonlinear system.
For simplicity, the nonlinear analysis method of the frictional force is explained with a
two-degree-of-freedom model, as shown in Figure 6, for which the notations employed are
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defined as follows. F(t) is the oscillatory thrust, and f (t) is the induced frictional force;
both F(t) and f (t) vary over time t. Mp denotes the total mass of forward-thrust pads and
pistons, Kh denotes the longitudinal stiffness of oil in a friction damper, and Mt and Kt
denote the effective mass and resultant stiffness of the supporting ring, respectively. When
the friction damper is integrated into the thrust bearing, Mt and Kt denote the effective
mass and resultant stiffness of the thrust bearing block, respectively. The frictional force
f (t) has a link with Mp and Mt. In the analysis, the loss factor of the structure has also
been taken into account, which is denoted as ηt.
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Referring to Figure 6, with the excitation of oscillatory thrust F(t), the dynamic
equilibrium equation of longitudinal vibration can be written as

M
..
x(t) + C

.
x(t) + Kx(t) = L1F(t) + L2 f (t) (3)

where the vector x(t) =
{

xp(t) xt(t)
}T denotes the displacement responses in the thrust

pads and the supporting ring, and the vectors L1 =
{

1 0
}T and L2 =

{
1 −1

}T denote
the distribution of F(t) and f(t), respectively; the mass matrix M, damping matrix C, and
stiffness matrix K in Equation (3) are defined as

M =

[
Mp

Mt

]
(4)

C =

[
0

Ktηt
ω

]
(5)

K =

[
Kh −Kh
−Kh Kh + Kt

]
(6)

In Equation (3), the structural damping is transformed into equivalent viscous damp-
ing. Moreover, the frictional force f(t) is moved to the right-hand side.

The motion of the friction damper consists of two different states, the sticking state
and the sliding state. At any instant, the friction damper only belongs to one of the two
states. The following conditions that correspond to the two states must be satisfied:

(1) In the sticking state, { .
xp(t) =

.
xt(t)

| f (t)| < fmax
(7)

where fmax is the maximum static frictional force.
(2) In the sliding state,{ .

xp(t) 6=
.
xt(t)

f (t) = −sgn
( .
xp(t)−

.
xt(t)

)
fmax

(8)

where sgn( ) is the sign function. For simplicity, no distinction will be made between the
kinetic and the maximum static frictional force.

In the sticking state, the frictional force f(t) is less than the maximum static frictional
force fmax but remains unknown. In the sliding state, however, the frictional force is
constant and equal to the maximum frictional force, but with an opposite direction to
the relative velocity between the thrust pads and the thrust bearings. Since Equation (3)
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must hold in the two states, the overall behavior of the friction damper is nonlinear. For
a numerical solution, Equation (3) can be further written in the form of state space, as
shown below.

.
z(t) = Az(t) + BF(t) + E f (t) (9)

where z(t) =
{ .

x(t) x(t)
}T is the state vector, and the matrixes A, B, E in Equation (9) are

defined as

A =

[
−M−1C −M−1K

I2×2 02×2

]
(10)

B =

[
M−1L1

02×1

]
, (11)

E =

[
M−1L2

02×1

]
(12)

The analytical solution of Equation (9) is

z(t) = eA(t−t0)z(t0) +

t∫
t0

eA(t−τ)[BF(τ) + E f (τ)]dτ (13)

By employing the discrete time state space formula and assuming that both F(t)
and f (t) vary linearly within every time interval, the solution (13) can be written in the
following incremental form:

z(k + 1) = eA∆tz(k) + B0[BF(k) + E f (k)] + B1[BF(k + 1) + E f (k + 1)] (14)

where k, k + 1 denote the kth and (k + 1)th time step, respectively. The coefficient matrixes

are defined as eA∆t =
∞
∑

i=0

∆ti

i! Ai, B0 =
∞
∑

i=0

∆ti+1

i!(i+2)Ai, B1 =
∞
∑

i=0

∆ti+1

(i+1)! A
i −

∞
∑

i=0

∆ti+1

i!(i+2)Ai, where

∆t is the time interval.
It is noted that on the right-hand side of Equation (14), the frictional force f (k + 1)

is only unknown at the kth time step. Before the state response z(k + 1) is evaluated,
f (k + 1) must be determined. Unfortunately, the motion of the friction damper has two
possible states at any time step. The same problem was encountered in the application of
friction pendulum bearings for seismic isolation of the bridge in the reference [17], which
presented an important assumption that the isolated bridge was in the sticking state at any
instant, initially. Based on the same assumption, the motion of the friction damper at the
(k + 1)th time step is in the sticking state at first, for which the velocity condition given in
Equation (7) must be satisfied as

.
xp(k + 1)− .

xt(k + 1) = Dz(k + 1) = 0 (15)

where D =
[
1 −1 0 0

]
.

By substituting z(k + 1) in Equation (14) into Equation (15), the estimated frictional
force at the (k + 1)th time step is solved as

f (k + 1) = −(DB1E)−1D
{

eA∆tz(k) + B0[BF(k) + E f (k)] + B1BF(k + 1)
}

(16)

where f (k + 1) with an overbar emphasizes that the frictional force is an estimated value,
obtained by assuming the friction damper to be in the sticking state, which may not be the
actual state, and the sign of f (k + 1) indicates the direction of frictional force produced by
the friction damper.



J. Mar. Sci. Eng. 2022, 10, 1555 9 of 22

The validity of the above assumption can be verified by the frictional force condition
given in Equation (7). If | f (k + 1)| < fmax holds, the friction damper is in the sticking state,
and the actual frictional force is

f (k + 1) = f (k + 1) (17)

Otherwise, if | f (k + 1)| ≥ fmax, the friction damper is in the sliding state, and the
actual frictional force is

f (k + 1) = sgn
(

f (k + 1)
)

fmax (18)

Since the sign of f (k + 1) indicates the direction of frictional force at the (k + 1)th
time step, the replacement of the term −sgn

( .
xp(t)−

.
xt(t)

)
in Equation (8) by the term

sgn
(

f (k + 1)
)

in Equation (18) is justified. Once the actual frictional force f (k + 1) is
determined by Equation (17) or Equation (18), the state response z(k + 1) at the (k + 1)th
time step can be solved by substituting f (k + 1) into Equation (14).

For harmonic excitation with amplitude F and circular frequency ω, the response
z(t) in the time domain can be computed with the method proposed above. However,
the numerical solution is the discrete time state space response z(k) that corresponds to
a series of discrete time steps, which is similar to the sample signals of the response in
the vibration test. The discrete response z(k) is processed by fast Fourier transform (FFT);
then, the response amplitude z(ω) that corresponds to the excited circular frequency ω
can be extracted. It should be noted that the nonlinearity introduced by the frictional force
results in the occurrence of subharmonic responses, but these amplitudes are all less than
z(ω). The frequency response is defined as the ratio of z(ω)/F. By sweeping the excited
frequency ω in an incremental frequency interval, the acceleration frequency response
function (AFRF) of the friction damper can be predicted.

The computational flowchart for the nonlinear analysis method of the frictional force
is given in Figure 7.
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5. Design and Characterization of Shafting Test Rig
5.1. Design of Shafting Test Rig

A designed test rig with a reduced scale, which is depicted in Figure 8, has been assem-
bled to simulate the marine propulsion shafting system [18] and is taken as the benchmark
to assess the effectiveness of the friction damper experimentally. The components of the test
rig include a motor, flexible coupling, thrust bearing, stern shafting, intermediate journal
bearing, stern journal bearing, weight block, ball spring device, air spring device, excitation
rod, bracket, etc. The total length of the shafting is 5 m, and the basic diameter is 105 mm.
The thrust bearing integrates the friction damper, and the flexible coupling isolates the
motor side from the shafting side. The whole test rig is fixed on the base, which is welded
on thick steel plates. In order to further eliminate the disturbance of motor excitation on the
thrust bearing, the motor is independently installed on one base, while other test rigs are
installed on another base. Furthermore, the electrical control console, hydraulic lubrication
system, and air supply system are also configured to meet the use requirements.
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Figure 8. The designed test rig with a reduced scale in the laboratory: (a) schematic diagram;
(b) photograph.

The test rig adopts the method of combining the static load and dynamic excitation
at the same time to simulate the propeller propulsion. An air spring device of maximum
thrust (55 kN) is fitted in the background of the test rig and is used to apply a static load
onto the stern shafting to represent propeller steady thrust. This static load can be easily
adjusted by changing the pressure of the air spring. An impact hammer acts as the dynamic
source to simulate the excitation of the propeller. The hammer exerts dynamic force in the
axial direction on an irrotational excitation rod, which is also fitted at the end of the test rig
in combination with the air spring device, to generate shafting longitudinal vibration. For
transmitting the static thrust and dynamic force to the shafting simultaneously, a conical
ball bearing is sandwiched between the stern shafting and the air spring device. This
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arrangement is appropriate to solve the problem of connecting the rotational shafting with
the irrotational excitation rod.

5.2. Mathematical Model of the Designed Test Rig

The test rig is modeled as a mass-spring damping discrete system, as shown in Figure 9,
and the parameters of the components are listed in Table 1. This model covers the range
from the air spring device to the flexible coupling and does not contain the friction damper,
which is used for analyzing the dynamic characteristics of the shafting system without
any control measures applied. While the air spring device imposes static thrust onto the
shafting, it also constitutes the elastic boundary and is simplified as a single-degree-of-
freedom system.
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Table 1. Parameters used in the mathematical model.

Parameter Symbol Value

Shafting mass Ms 360 kg
Shafting stiffness Ks 5.0 × 108 N/m

Total mass of air spring device and half of shafting Ma /
Resultant stiffness of air spring device Ka 1.0 × 108 N/m

Loss factor of air spring device ηa
Total mass of flexible coupling and half of shafting Mc 200 kg

Damping of lubricating oil film Co /
Stiffness of lubricating oil film Ko /

Effective mass of thrust bearing Mt /
Resultant stiffness of thrust bearing Kt 3.4 × 108 N/m

Loss factor of thrust bearing ηt /
Effective mass of foundation M f /

Resultant stiffness of foundation K f 1.1 × 109 N/m
Loss factor of foundation η f /

The AFRF of thrust bearing is chosen as the dynamic character of shafting longitudinal
vibration transmission for analysis. The consideration is that the shafting longitudinal
vibration is transmitted to the hull through the thrust bearing. More importantly, the
AFRF of the thrust bearing is capable of being measured and calculated so as to ensure the
consistency of the assessment index.

The transfer matrix method is used to formulate the AFRF of the thrust bearing. The
transfer matrix equation of the test rig is expressed as{

Ur
f

Fr
f

}
=

[
T1

11 T1
12

T1
21 T1

22

]{
Ul

a
Fl

a

}
(19)

where U, F denote the displacement and force, respectively, the superscript l, r denote the
left end and right end, respectively, the subscript f, a denote the thrust bearing base, and air
spring device, respectively; T1

11, T1
12, T1

21, T1
22 are frequency-dependent complex variables.

According to the rigid boundary condition Ur
f = 0, the displacement of the air spring

device is determined from Equation (19).
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Ul
a = −

T1
12

T1
11

Fl
a (20)

The transfer matrix equation of the subsystem, ranging from the air spring device to
the thrust bearing, is given by {

Ur
t

Fr
t

}
=

[
T2

11 T2
12

T2
21 T2

22

]{
Ul

a
Fl

a

}
(21)

where T2
11, T2

12, T2
21, T2

22 are also frequency-dependent complex variables.
By substituting Equation (20) into Equation (21), the AFRF H(ω) of the thrust bearing yields

H(ω) = ω2 Ur
t

Fl
a
= ω2

(
−

T1
12

T1
11

T2
11 + T2

12

)
(22)

5.3. Longitudinal Vibration Experiments and Parameter Identification

The test rig is excited in the axial direction with the impact hammer, and the impact
force is superimposed onto a static thrust provided by the air spring device. Two accelerom-
eters are attached to the thrust bearing casing for measuring the acceleration response.
Another two accelerometers are diagonally attached to both sides of the thrust bearing
seating. It is assumed that the frequency range of interest is between 25 Hz and 300 Hz;
thus, the sampling frequency 1280 Hz is used. To minimize the response variation due to
random disturbances, test results from five measurements are averaged.

The experiments are conducted in the rigid support state. When the shafting rotational
speed is 60 rpm, and the applied static thrust is 30 kN, the measured AFRF of the thrust
bearing is as shown in Figure 10. It is observed that the curves of AFRF measured at
two points of the thrust bearing casing are almost coincidental, indicating that the casing
vibrates globally. A similar situation occurs at the thrust bearing seating. Except for the
amplitude, the AFRF measured at the casing and at the seating has the same variation
curve. The maximum resonance peak, of which the resonant frequency is 237 Hz, is caused
by the global resonance of the test rig, while the other resonance peaks are mainly governed
by local resonances.
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For analyzing the dynamic characteristics of the designed test rig in theory, all the
quantifiable parameters must be known. In Table 1, Ms, Ks can be computed accurately, and
Ka, Kt, Kf can be obtained based on the results of the thrust-deformation tests. Figure 11
presents the deformations under the action of different thrusts. The thrust is loaded from
5 kN to 55 kN in increments of 5 kN, and the measurements at thrust 5 kN are provided
as a reference. It is evident that the stiffnesses are the slope of the fitting lines. Ma, Mt,
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Mf are not equal to the physical mass since the air spring device, thrust bearing, and
foundation are assemblies. Co, Ko are difficult to calculate accurately and can only be
measured indirectly [19,20]. ηa, ηt, ηf are uncertain. These parameters need to be identified
based on the experimentally measured AFRF of the thrust bearing.
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Parameter identification is, in fact, a type of optimization for the identified parameter,
and the method used, in general, is residual function optimization. Here, the residual
function refers to the difference between the theoretical and experimental AFRF of the thrust
bearing. The optimization problem of the shafting parameter identification is described as
follows.

(1) Variables: x =
{

Ma, ηa, Ko, Co, Mt, ηt, Mf, ηf
}

.
(2) Constraints: Ma ∈ [0.5, 2]× 215.8 + 0.5Ms,ηa ∈ [0.01, 0.35], Ko ∈ [0.1, 10]× 108,

Co ∈ [0.1, 10]× 105, Mt ∈ [0.5, 2]× 516.4, ηt ∈ [0.01, 0.35], Mf ∈
[
0.5, 5

]
× 386.7, ηf ∈ [0.01, 0.35].

(3) Objective function: the optimization objective is to minimize the variance in the
residual function, which is defined as

f (x) = min
n

∑
i=1

[|H(ω)| − |H∗(ω)|]2 (23)

where H∗(ω) is the experimental AFRF of the thrust bearing.
The particle swarm optimization algorithm, which is one of the intelligent evolution-

ary optimization technologies, is adopted to solve the above optimization problem [21].
Taking the AFRF measured at the thrust bearing casing as a representation of the thrust
bearing dynamic characteristic, the parameters are identified as Ma = 332 kg, ηa = 0.2,
Ko = 6.3× 108 N/m, Co = 1.1× 104 Ns/m, Mt = 284 kg, ηt = 0.15, Mf = 348 kg, and
ηf = 0.1. With these identified parameters, the comparison of theoretical and experimental
AFRF of the thrust bearing is as shown in Figure 12. It can be observed that the calculated
values from the mathematical model coincide with the experimental results very well, and
it can be concluded that the model can feasibly simulate the actual longitudinal vibration
of the test rig below about 300 Hz.
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6. Damping Characteristics of Friction Damper

The mathematical model of the test rig with the friction damper is established, as
shown in Figure 13.
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In Figure 13, Mp = 24 kg, Kh = 1.85× 108 N/m, and the other dynamic parameters are
all identified. The longitudinal vibration of shafting with a friction damper can be written as
Equation (3), where the response vector x(t) =

{
xa(t) xc(t) xp(t) xt(t) xf(t)

}T, the

distribution vectors of F(t) and f(t) are L1 =
{

1 0 0 0 0
}T, L2 =

{
0 0 1 −1 0

}T,
respectively, and the mass matrix M, damping matrix C, and stiffness matrix K are
defined as

M =


Ma

Mc
Mp

Mt
M f

 (24)

C =


Kaηa

ω
Co −Co
−Co Co

Ktηt
ω −Ktηt

ω

−Ktηt
ω

Ktηt
ω +

K f η f
ω

 (25)

K =


Ka + Ks −Ks
−Ks Ks + Ko −Ko

−Ko Ko + Kh −Kh
−Kh Kh + Kt −Kt

−Kt Kt + K f

. (26)

By defining the friction damping ratio as ξ = fmax/F, the theoretical AFRF of the thrust
bearing with a friction damper for various values of ξ is plotted in Figure 14. Compared
with the AFRF of the thrust bearing without control, the use of a friction damper can
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effectively suppress the frequency response, especially at the frequency of the resonance
peaks. An increase in resonance peaks with the increase in ξ is observed. It means that the
decrease in ξ benefits the damping effect of the friction damper.
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Figure 14. Theoretical AFRF of thrust bearing with friction damper for various values of ξ.

To understand the mechanism of the friction damper used for vibration control, the
hysteresis loops of the friction damper for ξ = 0.7, 1.4, 3.5 are further presented in Figure 15.
It is worth considering the case when the exciting frequency is 237 Hz, which coincides with
the natural frequency of the test rig without control, and the static thrust is 30 kN, which
corresponds to the maximum frictional force of 3500 N. The points in Figure 11 denote the
correspondence between frictional force and relative displacement at discrete times. The
area of the hysteresis loop is equal to the energy dissipated by the friction damper. As ξ
increases, the area of the hysteresis loop increases, and the energy dissipation is larger.
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According to the established friction force nonlinear analysis method, we theoretically
predict that the larger the friction damping ratio ξ, the larger the peak FRF, which is not
conducive to Coulomb damping. Under the same excitation force, the test results show
that the higher the static thrust force, the higher the corresponding peak FRF, which is
consistent with the theoretical prediction. Therefore, from the engineering application
point, ξ should be designed as small as possible. We suggest that ξ should be less than 1;
that is, the maximum static friction should be less than the excitation force amplitude.

This paper uses the particle swarm optimization algorithm to identify the unknown
dynamic parameters of the test rig based on the experimental FRF (Section 5.3). Therefore,
consistency is the combined result of all the model’s dynamic parameters, and each param-
eter’s variations have different influences on FRF. We use the univariate analysis method
to change the identification values of the above dynamic parameters one by one, such as
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increasing them by 10%. The comparison is shown in the Figure 16. It can be observed
that, with the accurate identification of the dynamic parameters, changing only one of the
dynamic parameter values will not cause a significant deviation between the theoretical
FRF and the experimental FRF, which indicates that the established shafting model has
good robustness and provides a more accurate model for analyzing the damping effect of
friction dampers.
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7. Experimental Investigation of Friction Damper
7.1. Damping Effect on Longitudinal Vibration

Following the same test procedure, the AFRF of the thrust bearing with a friction
damper was measured. By considering the case that the shafting rotational speed is at
60 rpm and the applied static thrust is 30 kN, the comparison of experimental AFRF of the
thrust bearing with and without a friction damper is plotted in Figure 17. It is observed
that the response of the thrust bearing is effectively suppressed by the friction damper
in a broadband frequency range, which shows the effectiveness of the friction damper
in reducing longitudinal vibration transmission in the shafting system. In particular, the
attenuation of resonance peaks is very significant, with a maximum reduction of about
75.5%. The straightforward explanation is that the friction damper increases the damping
of the thrust bearing, and the friction damping dissipates energy.

Furthermore, the AFRF of the thrust bearing with a friction damper is also predicted
by employing the proposed nonlinear analysis method, which is indicated by the dotted
line in Figure 17. In the calculation, the value of excitation force F(t) is the same as the
sample signals of the hammer impact force in the experiments. As can be observed, the
predicted AFRF is close to the measured experimental result in general, except that there is
some difference in the maximum resonance peak. This difference may be introduced by
other nonlinear factors, such as the assembly clearance that exists in the air spring device
and thrust bearing. Generally, the proposed nonlinear analysis method can accurately
predict the damping effect of the friction damper and design.
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7.2. Stability of Damping Effect

In order to ensure the stability of the damping effect of the friction damper, a series of
tests are carried out for various static thrusts and rotational speeds. The effects of these
two variables are studied by means of a single factor test.

Firstly, the influence of rotational speed is investigated in the condition of the same
static thrust. The range of rotational speed covers from 60 rpm to 160 rpm, of which the
increment 20 rpm is used. Figure 18 shows the comparisons of the AFRF of the thrust
bearing with and without a friction damper at different rotational speeds. By comparison,
when the static thrust is constant, the resonance peaks of the thrust bearing with a friction
damper are always significantly less than those without a friction damper for various
rotational speeds. The experimental results indicate that the rotational speed does not
affect the damping performance of the friction damper, and the longitudinal vibration
characteristics of the shafting system are unrelated to the rotational speed.
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The influence of static thrust is investigated under the condition of the same rotational
speed. The range of static thrust covers from 10 kN to 50 kN, of which the increment
20 kN is used. Figure 19 presents a comparison of AFRF of the thrust bearing under
different static thrusts. Compared with the measurements without control, the AFRFs of
thrust bearings with friction dampers under various thrusts are all greatly suppressed in
the broadband frequency range, and the attenuation of the maximum resonance peak is
particularly significant. It means that the variation in static thrust also has little influence
on the performance of the friction damper.
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Figure 19. Comparisons of AFRF of thrust bearing under different static thrusts: (a) static thrust is
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One observation is that the resonance peak of AFRF of the thrust bearing with a
friction damper increases with the static thrust. Such a variation in resonance is related to
the increase in frictional force, which results in an increase in the friction damping ratio.
As predicted in theory, the resonance peak increases with the friction damping ratio. The
experiments verify the theoretical conclusion.
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8. Conclusions

In this work, a friction damper integrated into the thrust bearing was presented to
tackle the problem of shafting longitudinal vibration. The choice of using friction damping
as a vibration control measure in marine applications is non-conventional; this work
conducts an exploratory study in this field.

A test rig was assembled to simulate a marine propulsion shafting system. A prototype
of a novel thrust bearing, which provides two operation states for the friction damper
device, was also developed. Compared with the traditional thrust bearing, of which
the support structure includes upper and lower levers, the invented thrust bearing used
hydraulic means. Based on the test rig, the AFRF of the thrust bearing with and without a
friction damper was tested. By taking the measurements carried out without control as the
benchmark, the effectiveness of the friction damper was assessed. In theory, a nonlinear
analysis method for friction dampers was proposed.

The experimental and theoretical results show that the shafting longitudinal vibration
response that is normally transmitted through thrust bearings is effectively suppressed
by the friction damper in a broadband frequency range. For the test rig, the maximum
resonance peak reduction reaches 75.5%, and the damping effect of the friction damper is
considerably stable and does not change much with rotational speed and static thrust. The
friction damping ratio is the critical parameter that affects the damping effect; a decrease
in the friction damping ratio can improve the damping effect. In engineering, the friction
damper should be designed according to propeller oscillatory thrust to avoid a redundant
piston seal.
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