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Abstract: A floating oscillating water column (OWC) wave energy converter (WEC) supported by
mooring lines can be modelled as an elastically supported OWC. The main objective of this paper
is to investigate the effects of the frequency ratio on the performance of floating OWC (oscillating
water column) devices that oscillate either vertically or horizontally at two different mass ratios
(m = 2 and 3) through two-dimensional computational fluid dynamics simulations. The frequency
ratio is the ratio of the natural frequency of the system to the wave frequency. Simulations are
conducted for nine frequency ratios in the range between 1 and 10. The hydrodynamic efficiency
achieves its maximum at the smallest frequency ratio of 1 if the OWC oscillates horizontally and
at the largest frequency ratio of 10 if the OWC oscillates vertically. The frequency ratio affects the
hydraulic efficiency of the vertical oscillating OWC significantly stronger than that of the horizontal
oscillating OWC, especially when it is small. The air pressure and the volume oscillation in OWC is
not affected much by the horizontal motion of the OWC but is significantly affected by the vertical
motion, especially at small frequency ratios.

Keywords: wave energy; oscillating water column; numerical method; vertical and horizontal motion;
hydrodynamic efficiency

1. Introduction

The consumption of energy is increasing alarmingly to meet modern needs [1,2]. Wave
energy in the ocean has a high energy density and a negligible environmental impact when
it is harvested [3–6]. Oscillating water column devices (OWC) have gained significant
theoretical interest among numerous classes of technologies proposed for wave energy
conversion [7–9]. One of the most effective wave energy devices is an oscillating water
column (OWC) [1,10–12]. OWCs are hollow structures where wave action compresses
and decompresses the trapped air, forcing airflow through a turbine that runs a generator
and generates electricity [13,14]. In a system with oscillating water columns, the turbine
rotates in the same direction regardless of the direction of airflow. Most of the research
on the OWC device has been focused on onshore or nearshore deployed devices installed
on the seabed [15–17]. This type of OWC is called a land-fixed OWC. These devices
offer advantages over offshore ones in terms of engineering deployment and maintenance
costs [18–20]. The use of offshore OWC devices can harvest more wave energy in the deep
ocean but the research on this is rare [21–25].

Land-fixed OWC devices for wave energy harvesting have been investigated analyti-
cally, experimentally, and numerically [26–28]. Rapaka et al. [29] found that for any floating
energy device operating on the oscillating column principle, the heave motion should be
enhanced while the sway motion should be reduced in order to achieve high efficiency.
Sphaier et al. [30] achieved a vertical water velocity reduction by altering the entry shape
in their experimental study. Sheng et al. [31] conducted numerical simulation to improve
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the performance of OWC by optimised design. He and Huang [32] used piles to support
the OWC structure and demonstrated the structure capacity to capture wave energy. Zhou
et al. [24] investigated the optimisation of a floating OWC. They found the mooring system
affected the hydrodynamic performance of the OWC significantly, which was also reported
by Xu et al. [33].

With the ability to simulate complicated viscous and non-linear effects of wave motion,
computational fluid dynamics (CFD) models are an efficient way to further boost the
accuracy of predictions of the hydrodynamic characteristics of OWC devices. Luo, et al. [34]
examined the hydrodynamic performance of a heave-only floating OWC device using
a two-dimensional CFD model. They discovered that the efficiency of the device was
significantly influenced by the mooring line stiffness and power take-off (PTO) dampening.
The maximum and minimum device efficiencies were discovered for fixed and free-to-
heave floating devices, respectively. The numerical results of Elhanafi et al. [35] showed
that the surging motion of an OWC device can improve the performance. A floating OWC
wave power device was numerically estimated by Hong et al. [36] using linear wave theory.
Toyota et al. [37] conducted a detailed numerical simulation to evaluate the performance
of floating wave energy converters under the influence of wave-induced movements, air
pressures in air chambers, elevations of the free surfaces in the chambers, as well as mooring
and turbine characteristics.

Gubesch et al. [38] conducted experiments to study three mooring configurations—a
tension leg, a taut mooring with 45◦ tendons, and a catenary mooring with heavy chains.
The results showed that the 45◦ taut mooring performed the best, followed by the vertical
taut and catenary mooring. Rezanejad et al. [39] investigated the effectiveness of a unique
floating dual-chamber oscillating water column wave energy converter system through
experiments. Their mutual interactions between fore and rear chambers have a significant
effect on the enhancement of the overall hydrodynamic performance. By conducting
experiments on the hydrodynamics and movements of a unique dual-chamber floating
oscillating water column apparatus, Gadelho et al. [40] demonstrated that the natural
frequency of surge motion is significantly lower than the produced waves, and that in
some situations, the initial negative drift forces cause the device to move in the opposite
direction of the incident waves. The experiments by Wu et al. [23] demonstrated that the
PTO damping has an effect on the water surface elevation inside the OWC chamber but not
on the OWC WEC motion. According to Howey et al. [41], the separately moored WEC,
under harsh circumstances, suffered lower mooring stresses than the interconnected arrays,
which regularly faced snap loads.

Although research on floating, moored OWCs has been published, many research
articles only take one mooring configuration into account [35,38,42,43]. The main aim of
this paper is to investigate the effect of the stiffness of the mooring system on floating
OWCs on the hydrodynamic performance through numerical simulations of two mass
ratios (m). In the numerical simulations, the elastically supported OWC moved either
horizontally or vertically. The rest of the paper is arranged as follows. The numerical model
is described in Section 2, the numerical results are discussed in detail in Section 3, and
finally, conclusions and recommendations are summarised in Section 4.

2. Numerical Method

Figure 1a,b show the computational domain for simulating the interaction between
waves and OWC devices that oscillate in the horizontal and vertical directions, respectively.
A coordinate system is defined with its origin located at the centre of the OWC on the still
water surface level. The OWC includes a solid chamber structure and a volume of water
that oscillates in the chamber. The vertical motion of the water column in the chamber
drives the air flow through the turbine. In this study, we employed a linear turbine, where
the pressure drop is a linear function of the flow rate through the turbine. Wells turbines
are preferable turbines for harvesting wave energy through OWC devices, and it has
been shown that the pressure drop and flow rate have a nearly linear relationship for a
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given rotating speed [44,45]. In this section, the wave model and aerodynamic model are
described in Sections 2.1 and 2.2, respectively.
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Figure 1. Schematic diagram of a two-dimensional wave tank developed to simulate the hydro-
dynamic performance of (a) sway-only floating (b) heave-only floating OWC in a wave flume;
(c) computational mesh near the OWC.

2.1. Computational Fluid Dynamic and Aerodynamic Wave Model

The numerical model used in this study is the same as the one used by Mia, et al. [46].
This section will present the models briefly and the details can be found in Mia, Zhao,
Wu and Munir [46]. In the wave model, the Reynolds-Averaged Navier–Stokes (RANS)
equations are solved using the Arbitrary Lagrangian–Eulerian (ALE) method, whose
accuracy has been proved in wave simulations [47–49]. The Shear Stress Transport (SST)
k-ω turbulence model, first established by Menter [50], is used to simulate the turbulence.
This study solves the modified SST k-ω equations developed [51], which uses stress limiting
to avoid an overprediction of turbulence levels under the waves, for forecasting turbulence
viscosity. Regular waves are generated in the numerical simulation. The second order
Stokes wave theory is used to compute the incoming wave surface elevation and water
flow velocity on the inlet boundary, i.e., the left boundary in Figure 1. On the OWC
walls and the bottom and right boundaries of the domain, non-slip boundary conditions
are used. The wave surface motion equation solves the motion of the wave surface [52].
Outside the OWC chamber, the pressure on the wave surface is equal to the atmospheric
pressure. The pressure on the wave surface inside the OWC chamber is correlated with
the air volume of the OWC chamber and the air flow rate through the turbine using an
aerodynamics model that considers the compressibility of the air. For the detailed formulae
for the aerodynamics model calculating the air pressure in the chamber, please refer to [53]
and [52]. The turbulent energy k = 0 on the wave surface, and the vertical gradient of the
particular dissipation rate of turbulence is zero. Two damping layers on the left and right
boundaries of the computational domain in Figure 1 are used to absorb the reflected and
transmitted waves, respectively. In Figure 1, Ls and Xs are the length and distance from
the starting point of the damping layers, respectively. The Petrov–Galerkin Finite Element
Method (PG-FEM) code, originally developed by Zhao, et al. [54] and later extended for
modelling waves, was utilised in this investigation to solve the RANS equations [47,49].
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In two-dimensional simulations, the volume change rate of the OWC device
.

V(t) is
calculated by integrating the vertical water velocity (v) throughout the inner chamber’s
length in the direction of wave propagation:

.
V(t) = −W

∫
B

vdx (1)

where B denotes the inner chamber length, and W denotes the width of the chamber (in
the wave crest direction), which in experimental studies corresponds to the width of the
water flume. The width of the wave flume is unit width in this study because it uses a
two-dimensional numerical simulation, or 1 m in the International System of Units (SI).
Wells turbines, which can rotate in the same direction regardless of the direction of air
flow [44,45,55–57], are the most popular type of air turbines. A linear relationship between
the pressure drop and flow rate was used in numerical studies of OWCs with Wells turbines
by Wiener, et al. [58]:

Qt(t) = −
pa(t)− pa0

Kt
(2)

where pa (t) is the air pressure in the OWC chamber, pa0 is the atmospheric pressure, and Kt
is the turbine coefficient. The instantaneous power generated by the turbine PT is:

PT(t) = Qt|pa(t)− pa0| (3)

The hydrodynamic efficiency (ε) is defined as:

ε = PT/Pw (4)

where PT is the time-averaged power harvested by the turbine, and Pw is the energy of the
incoming waves calculated using the second order Stokes wave theory [59]:

Pw =
ρgH2

i
16

ω

k

(
1 +

2kh
sinh(2kh)

)
W (5)

where Hi is the incident wave height, ω is the angular frequency of the waves, k is the wave
number, and h is the water depth.

2.2. Wave-Induced Heave and Horizontal Motion

Wave-induced motion is calculated by solving the equations of motion:

..
Y + 4πζ

.
Y + 4π f 2

nY = Fy (6)

..
X + 4πζ

.
X + 4π f 2

n X = Fx (7)

where X,
.

X,
..
X and Y,

.
Y,

..
Y are the horizontal and vertical displacement, velocity, and

acceleration of the OWC, respectively, f n is the natural frequency measured in a vacuum, ζ
is the damping ratio, and Fx, Fy are the fluid force in the horizontal and vertical direction.
The natural frequency is related to the stiffness of the mounting spring as fn = 1

2π

√
K/m,

where K and m are the stiffness of the mounting spring and the mass of the OWC structure,
respectively. The vertical fluid force includes two components: the hydraulic force on the
submerged walls of the OWC and the force on the ceiling of the OWC chamber caused by
the air pressure.

Within each computational time step, the procedure of the OWC simulation is sum-
marised as follows. The RANS equations and the SST k-ω equations are solved to obtain the
velocity and pressure in the fluid domain. Then, the aerodynamics model is implemented
to calculate the air pressure in the OWC chamber as the pressure boundary condition
on the wave surface. Then, the wave surface elevation is updated by solving the wave
surface equation and the equation of motion; Equations (6) and (7) are solved using the
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fourth-order Runge–Kutta method. Finally, the mesh is updated according to the updated
wave surface profile and the displacement of the OWC.

3. Numerical Results

The performance of single chamber OWC devices was simulated with vertical and
horizontal motion using the following parameters. In our previous study [52], we used the
same parameters and the numerical model has been validated. The water depth (h) = 0.4 m,
the wave height (Hi) = 0.04 m, the thickness of the OWC walls = 0.01 m, the draught of
the front and rear walls is d = 0.1 m, i.e., d/h = 0.25, and the chamber length B = 0.18 m
for both the vertical and horizontal motion of the OWC device. For a two-dimensional
simulation, the width of the chambers is unit width, i.e., W = 1 m. The turbine coefficient
is Kt = 3000 Pa·m−3·s except in Figure 2, where a series of turbine coefficients are studied.
The computational mesh used in this study has the same density as the one used by Mia
et al. [52], who conducted a systematic mesh dependency study to prove that the mesh was
sufficiently dense for converged results. Figure 1c shows the computational mesh near the
OWC. The mesh is refined near the water surface and the surface of the OWC walls. The
mesh dependency study will not be repeated here.
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Figure 2. Effects of the turbine coefficient for fixed OWC device at (d/h = 0.25) on efficiency with B/L
for different turbine coefficient.

In addition of the turbine coefficient Kt, the chamber width to wavelength ratio (B/L)
has a significant impact on the performance of the OWC, where L is the wavelength. To
determine the best Kt and B/L for the highest power, a stationary OWC device, with-
out any motion, is first simulated, with a draught height d = 0.1 m, B/L in the range of
0.095 ≤ B

L ≤ 0.318, and 15 turbine coefficients. Figure 2 shows that, for all turbine coeffi-
cients, there is a consistent pattern in the variation of the efficiency with B/L. For all Kt
values, the efficiency increases with an increase in B/L until they reach its maximum value.
Further increase in the B/L results in a decrease in the efficiency. The maximum efficiency
over the whole range of the B/L is defined as the best efficiency (εbest) for a particular
turbine coefficient, as illustrated in Figure 2. (B/L)best is the value of B/L at which the best
efficiency occurs. The best efficiency εbest is 0.215, and the best (B/L)best is 0.16 at the lowest
Kt = 1000 Pa·m−3·s. The best efficiency εbest is 0.069, and (B/L)best is reduced to 0.095, when
the turbine coefficient is increased to 36,000 Pa·m−3·s. By using a trial-and-error method, it
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was discovered that the turbine coefficient Kt = 3000 Pa·m−3·s has a maximum εbest, that
occurs at B/L = 0.16.

When an elastically supported OWC is investigated, the frequency ratio is defined as
the ratio of the natural frequency of the system to the wave frequency, i.e., R f = fn/ fw,
where fw is the wave frequency. The OWC is allowed to move in one-degree-of-freedom in
either the horizontal or vertical direction. Simulations are conducted for natural frequencies
ratio (R f ) in the range between 1 and 10. An elastically mounted OWC device is simulated
for turbine coefficients: Kt = 3000 Pa·m−3·s and d/h = 0.25 for the horizontal and vertical
motion of the OWC chamber at m = 2 and 3. Kt = 3000 Pa·m−3·s has the best performance
for a fixed OWC as discussed in above.

Figure 3 shows the variation of the energy extraction efficiency versus B/L for nine
various frequency ratios (R f ). Figure 3a,b show the variation of the efficiency ε with the
B/L for m = 2 for the horizontal and vertical motion OWCs, respectively, and Figure 3c,d
show the corresponding cases for m = 3. The numerical outcomes demonstrate a consistent
pattern of the variation of efficiency with B/L for both mass ratios m = 2 and 3, although
the frequency ratio has a considerable impact on εbest. The best efficiency for m = 2 at the
horizontal motion is found at B/L = 0.159 and R f = 1, and the best efficiency for m = 2 at the
vertical motion is found at B/L = 0.159 and R f = 10. In Figure 3a, the maximum hydraulic
efficiency of the horizontal motion at m = 2 is 0.291 found at B/L = 0.159 and R f = 1, and in
Figure 3b, the maximum hydraulic efficiency of vertical (m = 2) is 0.270, found at B/L = 0.159
and R f = 10, and which is 7.52% greater than that in the case of horizontal motion (m = 2).
The maximum efficiency occurs at the lowest frequency ratio of R f = 1 for the horizontal
motion but at the highest frequency ratio of R f = 10 for the vertical motion. In Figure 3c,
the maximum hydraulic efficiency of the horizontal motion at m = 3 is 0.292 found at
B/L = 0.159 and R f = 1, and in Figure 3d, the maximum hydraulic efficiency of the vertical
motion (m = 3) is 0.266 found at B/L = 0.143 and R f = 10. The maximum efficiency at m = 3
for the horizontal motion is 9.77% greater than that in the case of the vertical motion.

It can be seen in Figure 3a,c that in the range of 2 ≤ R f ≤ 10, the variation trend
of energy with the B/L does not significantly change with the change of R f , with the
best performance of the OWC being achieved at the smallest frequency ratio of 1. The
effect of R f on the efficiency of the vertically oscillatory OWC is very small, in the range
of 3 ≤ R f ≤ 10. Figure 3b,d show a similar trend for the heave motion as was found
in [34]. However, the efficiency reduces with the decrease of R f , with a big rate as R f < 3.
Increasing the mass ratio from 2 to 3 does not result in a significant change in efficiency.
The variations of ε with B/L at m = 2 in Figure 3a,b at every R f are very similar to those at
m = 3 in Figure 3c,d, respectively.

When 0.095 ≤ B/L ≤ 0.16, the best efficiency εbest increases with the increase of B/L
by a very big rate. When B/L > 0.16, the efficiency decreases with an increase of B/L by a
very big rate as seen in Figure 3a–d. The best efficiency at R f = 1 is 12% greater than that
at R f = 10 for m = 2 if the OWC oscillates horizontally. However, if the OWC oscillates
vertically, the best efficiency at R f = 1 is significantly reduced by 74% of the best efficiency
at R f =10 for m = 2. From the above discussion, it is concluded that at both mass ratios,
with R f = 1 and 1.5, the horizontal motion of OWCs improves the efficiency slightly but
that the vertical motion reduces the efficiency significantly.

Figure 4a–d display the variation of the air pressure amplitude in the OWC chamber,
with B/L for Kt = 3000 Pa·m−3·s. Figure 5a–d show the variations of the amplitude of
the oscillatory air volume of the OWC chamber with B/L for the same cases for Figure 4.
The non-dimensional amplitude of air pressure is defined as p∗ = (pmax − pmin)/ρgHi,
where pmax and pmin are the maximum and minimum air pressure in the OWC chamber
within one wave period, respectively. The amplitude of the air volume is defined as
V∗ = (Vmax −Vmin)/BWHi, where Vmax and Vmin are the maximum and minimum air
volume in the OWC chamber within one wave period, respectively. It can be seen from
Figure 4a,c that the horizontal motion does not affect the variation of the amplitude of air
pressure with B/L much. On the other hand, as shown in Figure 4b,d, the vertical motion of
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the OWC has a huge impact on the air pressure at the frequency ratios R f = 1 and 1.5, and
the pressure is increased with an increase of the frequency ratio for the vertical motion.
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Figure 3. Variation of the floating OWC device efficiency ε with B/L under nine different frequency
ratios (R f ) at d/h= 0.25, Kt = 3000 Pa·m−3·s.

For vertical motion, with R f ≤ 1 and m = 2 and 3, both p∗ and V∗ increase with the
increase of R f and reach their maximum values at very similar values of B/L. When the
R f is greater than 1 for the vertical motion, both p∗ and V∗ continue increasing with the
increase of R f in Figure 4, so does the efficiency, as shown in Figure 3. It can be seen
in Figures 3–5 that for a specific R f , the maximum efficiency, the maximum p∗, and the
maximum V∗ do not occur at a same value of B/L.

Figure 6a–d show the variation of the non-dimensional oscillatory amplitude for
the horizontal (AX/Ai) and vertical motion (AY/Ai) of OWCs, where AX, AY and Ai are
the oscillatory amplitudes in the x- and y-directions, respectively, and Ai = Hi/2 is the
incoming wave amplitude. It is shown that at the highest frequency ratio (R f = 10), the
non-dimensional oscillatory amplitude is almost zero. For both the horizontal and vertical
OWC oscillation, the non-dimensional oscillatory amplitude increases with the reduction
of R f . Figure 7a–d show the variation of the non-dimensional water surface elevation
at the centre of the OWC chamber for both the horizonal and vertical oscillation. The
non-dimensional wave surface in the centre of a chamber is defined as η∗ = ηmax−ηmin

Hi
,

where ηmax and ηmin are the maximum and minimum values of the surface elevation of the
chamber, respectively. In Figure 7a,c, the frequency ratio R f does not have much effect on
the surface elevation at the OWC chamber for all frequency ratios (R f ) for the horizontal
motions of OWCs at two different mass ratios (m). It is noted that the gauge may not be
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fixed at the OWC chamber, as the OWC moves horizontally. Figure 7b,d show that R f has
a significant effect on the wave surface elevation for the vertical oscillation of the OWC.
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Figure 4. Variation of the amplitude of air pressures oscillatory of the floating OWC chamber with
B/L for Kt = 3000 Pa·m−3·s and various frequency ratios at d/h = 0.25.

If the OWC oscillates vertically, the phase difference between the vertical motions of
the OWC and the water surface motion, which is defined as ϕ, affects the volume change
and the efficiency. Figure 8 shows the variation of the phase difference ϕ with B/L for
Kt = 3000 Pa·m−3·s for the vertical motion of the OWC device. The value of ϕ is found to
continuously increase with the increase of R f until R f = 10 for the vertical motion of OWC
device. Both AY and η* increase if R f decreases, but the largest amplitudes of oscillation
and wave surface elevation at R f = 0 produce the smallest power, as shown in Figure 3,
because the very small phase ϕ difference between them creates a very small change in
the OWC volume or air flow rate. With the increase of R f , the increase in ϕ is in favour of
power generation, but the decreases in AY and η* cause the reduction in power generation.
The combination effects of ϕ, AY, and η* make the maximum best efficiency occurring at
R f = 10, Kt = 3000 Pa·m−3·s, and d/h = 0.25.
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Figure 5. Variation of the amplitude of oscillatory air volume of the floating OWC chamber with B/L
for Kt = 3000 Pa·m−3·s and various frequency ratios at d/h = 0.25.

From the explanation above, it is further established that a mounting system’s natural
frequency must be sufficiently high to provide high efficiency for the vertical motion. When
the OWC moves vertically with a very soft mounting system, the OWC motion and wave
surface elevation have big amplitudes, but the efficiency is low. However, the horizontal
motion shows opposite results, and a soft mounting system (small R f ) provides a slightly
higher efficiency as shown in Figure 3a,c.

The performance of the OWC is significantly impacted by the water’s viscosity [26,60–64].
Vortices that are generated as water flows past the vertical walls’ edges contribute to the
loss of energy. Figure 9 shows the contours of vorticity and streamlines at four instants for
Kt = 3000 Pa·m−3·s, R f = 1, and B/L = 0.159 at the horizontal motion of the OWC device.
The vorticity ωz is defined as ωz = ∂v/∂x− ∂u/∂y. Near the bottom of each wall, two
vortices with opposing directions are generated by water flowing both into and out of the
OWC chamber at the highest velocities in Figure 9. The vortices are found to be in pairs,
and pairs near the positive x-side wall are stronger than those near the negative x-side
wall. A new pair of vortices forms when each pair of vortices moves away and dissipates.
Figure 10 shows the contours of vorticity for the vertical motion of the OWC device under
the same parameters for Figure 9, except R f = 10. By observation, the vortices in Figure 10
appear to have stronger vortices than that in Figure 9.
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Figure 6. Variation of the amplitude of the oscillatory horizontal and vertical motion of the floating
OWC chamber for Kt = 3000 Pa·m−3·s and d/h = 0.25.
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Figure 7. Variation of the amplitude of the waver surface elevation of the floating OWC chamber
B/L for Kt = 3000 Pa·m−3·s and d/h = 0.25.
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Figure 8. The phase between the floating OWC displacement and surface elevation at the centre of
the OWC for Kt = 3000 Pa·m−3·s and vertical motion at m = 2.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 9. Flow near the OWC represented by streamlines and vorticity contours at horizontal mo-

tion, m = 2, B/L = 0.159. 

(b) 1= max(a) 1= 0

(d) 1= min(c) 1= 0

unit: s-1

Figure 9. Flow near the OWC represented by streamlines and vorticity contours at horizontal motion,
m = 2, B/L = 0.159.



J. Mar. Sci. Eng. 2022, 10, 1551 13 of 16
J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 10. Flow near the OWC represented by streamlines and vorticity contours at vertical motion, 

m = 2, B/L = 0.159. 

4. Conclusions 

The impacts of the natural frequency of an elastically supported floating OWC device 

on its hydrodynamic efficiency are numerically evaluated using two-dimensional simula-

tions. We examined floating OWC devices with natural-to-wave frequency ratios between 

𝑅𝑓 = 1 and 10. The simulations were conducted for h = 0.4 m, Hi = 0.04 m, B = 0.18 m, Kt = 

3000 Pa·m−3·s, d/h = 0.25, and two mass ratios (m = 2 and 3). A wide range of B/L values 

were simulated for each value of the frequency ratio (𝑅𝑓), and the best efficiency and the 

B/L where the highest efficiency occurs were defined. First, 15 values of Kt in the range of 

1000 Pa·m−3·s to 36,000 Pa·m−3·s were simulated for a fixed OWC, and it was found that the 

Kt = 3000 Pa·m−3·s had the greatest performance. 

• It was found that the frequency ratio affects the OWC with the vertical motion much 

more than that the OWC with the horizontal motion. The maximum efficiencies for 

the vertical motion and horizontal motion OWCs occur at the largest and smallest 

frequency ratios, respectively. At m = 2, the maximum hydraulic efficiency of hori-

zontal motion was 0.291, found at B/L = 0.159 and 𝑅𝑓 = 1 and that of vertical motion 

was 0.270, found at B/L = 0.159 and 𝑅𝑓 = 10. 

(b) 1= max(a) 1= 0

(d) 1= min
(c) 1= 0

unit: s-1

Figure 10. Flow near the OWC represented by streamlines and vorticity contours at vertical motion,
m = 2, B/L = 0.159.

4. Conclusions

The impacts of the natural frequency of an elastically supported floating OWC device
on its hydrodynamic efficiency are numerically evaluated using two-dimensional simula-
tions. We examined floating OWC devices with natural-to-wave frequency ratios between
R f = 1 and 10. The simulations were conducted for h = 0.4 m, Hi = 0.04 m, B = 0.18 m,
Kt = 3000 Pa·m−3·s, d/h = 0.25, and two mass ratios (m = 2 and 3). A wide range of B/L
values were simulated for each value of the frequency ratio (R f ), and the best efficiency
and the B/L where the highest efficiency occurs were defined. First, 15 values of Kt in the
range of 1000 Pa·m−3·s to 36,000 Pa·m−3·s were simulated for a fixed OWC, and it was
found that the Kt = 3000 Pa·m−3·s had the greatest performance.

• It was found that the frequency ratio affects the OWC with the vertical motion much
more than that the OWC with the horizontal motion. The maximum efficiencies for
the vertical motion and horizontal motion OWCs occur at the largest and smallest fre-
quency ratios, respectively. At m = 2, the maximum hydraulic efficiency of horizontal
motion was 0.291, found at B/L = 0.159 and R f = 1 and that of vertical motion was
0.270, found at B/L = 0.159 and R f = 10.

• The strong vertical motion of the water and OWC at small frequency ratios in the
vertical motion case does not create a lot of energy, because the phase difference
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between the water surface motion and the OWC motion is very small, creating a very
small relative motion between them.

• A mounting system’s natural frequency must be sufficiently high to provide high effi-
ciency if the OWC oscillates vertically. However, when the OWC oscillates horizontally,
the effect of its natural frequency is very weak.

• When water flows in and out of the OWC chamber, a pair of vortices with opposing
directions are created near the bottom end of each OWC wall. The vortices for a horizontal
motion OWC with the maximum energy occurring at R f = 1 are weaker than the vortices
for a vertical motion OWC with the maximum energy occurring at R f = 10.
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