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Abstract: The objective of this paper is to present the application of equivalent single layer (ESL)
approach for the ultimate strength assessment of ship hull girder in the context of numerical finite
element (FE) simulations. In the ESL approach, the stiffened panel is replaced with a single plate,
which has the equivalent stiffness of the original panel. Removal of tertiary stiffening elements
from the numerical model facilitates time-savings in pre-processing and FE analysis stage. The
applicability of ESL approach is demonstrated with two case studies, one compartment model and
full-sized double hull tanker model in intact and damaged conditions. The damage extents are
determined based on the international association of classification societies from common structural
rules (IACS-CSR) for oil tanker. Ship hull girder is exposed to distributed pressure with the sinusoidal
shape that bends the hull girder. This pressure load is applied separately to bottom and side
structures to obtain the vertical and horizontal bending moments of the hull girder, respectively.
Ultimate strength predictions obtained from ESL approach are compared to full three-dimensional
finite element method (3D FEM) and IACS incremental-iterative method. The comparison between
different methods is provided in terms of longitudinal bending moment and cross sectional stress
distribution. Overall, ESL approach yields good agreement compared to the 3D FEM results in
predicting the ultimate strength of ship hull girder while providing up to 3 times computational
efficiency and ease of modeling.

Keywords: equivalent single layer; ultimate strength; hull girder; finite element method

1. Introduction

Due to extreme and accidental loads, a ship’s hull girder can reach its ultimate load-
carrying capacity. One of the fatal consequences of structural failure is that the ship may
suffer progressive collapse due to internal and external loads during seafaring. To minimize
the risk of such accidents, rules stipulate longitudinal strength assessment for all ships [1,2].
The objective of this assessment is to determine the ultimate strength capacity of ship hull
girder when the ship is subjected to bending loads. In case of ship grounding or collision,
damaged hull section reduces the bending strength further. Therefore, the ultimate strength
assessment must be performed both in intact and damaged conditions to ensure that hull
girder has sufficient strength reserve.

Several studies have been conducted to evaluate the ultimate strength of ship hull
girder using simplified methods and are currently applied in the classification society and
commercial software. Caldwell [3] proposed an equivalent thickness approach to replace
stiffened panel and used strength reduction coefficients to consider buckling. Smith [4,5]
further refined the strength reduction coefficient method and considered that the ultimate
strength of a hull girder is dependent on the strength of individual elements reaching
their limit at different times. The Smith’s method has been adopted in the Common
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Structural Rules for Bulk Carrier and Oil Tanker, but the loading is limited to the vertical
bending moment. In parallel, Ueda and Rashed [6] proposed the idealized structural unit
method (ISUM) which considers more loading scenarios. For example, ISUM can model the
buckling response due to all possible hull girder sectional load components (i.e., vertical
bending, horizontal bending, vertical shearing force, horizontal shearing force, and torsion).
Several advanced applications of ISUM approach have been developed by Ueda et al. [7],
Masaoka et al. [8], Fujikubo et al. [9], Paik et al. [10], as well as Lindemann and Kaeding [11]
for ultimate strength analyses of stiffened panel structures in different loading conditions.

The ISUM is recognized as one of the most time efficient methods for progressive
collapse analysis of ship hull girder [12]. The method has been implemented in the
ALPS/HULL program within the MAESTRO FEM analysis code. The ISUM can deal
with interaction between local and global failures [13] for a short section of the ship struc-
ture. However, larger models offer a number of advantages. To capture the compartment
level buckling relevant for lightweight ship structures [14], a large-scale ship model should
be considered. Larger models permit inclusion of actual pressure distributions and various
load combinations. Additionally, the model length influences the post-buckling behavior,
which ultimately determines the bending moment capacity [15]. Furthermore, full ship
model are advocated in [16,17] to minimize the boundary effect which often lead to more
conservative, heavier scantlings.

The full three-dimensional finite element method (3D FEM) is an effective tool used
for performing progressive collapse analysis to obtain structural strength capacity of ship
hull girder. The analysis can reflect the local failure of structural members, e.g., local
plate buckling and stiffener tripping, if they are modeled in detail. However, the 3D FE
simulation of entire ship structure requires enormous modeling and computational effort.
To reduce these while maintaining the accuracy of 3D FEM, we propose the use of equivalent
single layer (ESL) approach. In the context of ship structures, ESL has been used for analysis
of buckling response of panels [18,19], vibration response of sandwich panels [20,21],
and ultimate strength of stiffened panels [22,23]. However, the application examples for
entire hull girder analysis are missing which this paper aims to fulfill. In the traditional FE
modeling, a stiffened panel is modeled in detail composed of longitudinal stiffeners with its
attached plating. Using ESL methodology, a stiffened panel is modeled as a plate without
the stiffeners, but with the same stiffness as the original panel. Consequently, simplification
of stiffened panels enables consideration of design alternatives without changing the FE
mesh, and thus more efficient exploration of design space. Therefore, the main benefits
of the ESL approach compared with 3D FE analysis are: (1) reduced modeling effort,
(2) reduction in degree of freedom (DOF), and (3) reduced computational effort.

This paper presents the application of ESL approach for the ultimate strength assess-
ment of ship hull girder and one compartment models. In the ESL model, the stiffeners
are removed and shell properties are defined with equivalent stiffnesses composed of
6 × 6 membrane and bending stiffness matrices. The stiffness matrices are calculated by the
first derivative of membrane force and bending moment obtained from a unit cell under
six loading conditions. Two different ship-scale case studies are presented, first focusing
on the compartment level analysis (Benson et al. [14]) and second, the full-scale analysis
of ship hull girder including structural damage (Tabri et al. [24]). The ultimate strength of
ship hull girder is analyzed in intact and damaged conditions due to grounding or collision.
For the damage conditions, the damage extents are determined from the IACS-CSR and the
structural members located in the damage extent area are removed. The distributed pres-
sures are applied separately along the bottom and side structures of the ship to obtain the
vertical and horizontal bending moment curves, respectively. For comparative purposes,
analysis are also conducted with the incremental-iterative method from the IACS-CSR.
The ultimate strength analysis are validated with the detailed 3D FE simulations.
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2. Methods

In this paper, the ESL approach is used to predict the ultimate strength of hull girder.
The theoretical framework and assumptions used in the ESL approach are explained in the
following section.

2.1. Overview of the ESL Approach

The ESL approach employs the first-order shear deformation theory (FSDT) in which
the Kirchhoff hypothesis is relaxed by removing the assumption of transverse normal.
In the FSDT, the transverse normals do not remain perpendicular to the middle of the
surface after plate is deformed, as can be seen in Figure 1. In this manner, transverse shear
strains (γxz) are considered in the FSDT. Additionally, the rotation in the z direction is
assumed to be zero. In the deformed plates, the transverse normals are displaced by u0 and
are rotated by φx from the undeformed position. Under the assumptions and restrictions
used in the FSDT, the non-linear strains are expressed in Equation (1):

Figure 1. Undeformed and deformed geometries of an edge of a plate under the assumption of the
first-order shear deformation theory (FSDT).
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Note that the strains (εxx, εyy, γxy) are linear through the thickness, while the transverse
shear strains (γxz, γyz) are constant through the thickness based on the FSDT. The strains (ε)
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are composed of membrane (ε0) and bending (ε1) parts. Thus, the constitutive equations
for the FSDT are obtained using the following relations:

Nxx
Nyy
Nxy
Mxx
Myy
Mxy


=



A11 A12 A13 B11 B12 0
A21 A22 0 B21 B22 0
A31 0 A33 0 0 B33
C11 C12 0 D11 D12 0
C21 C22 0 D21 D22 0
0 0 C33 0 0 D33
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where Nxx, Nyy are the membrane forces, Nxy is the shear force, Mxx, Myy are the bending
moments, Mxy is the torsion, ε0

xx, ε0
yy, γ0

xy are the membrane strains, and ε1
xx, ε1

yy, γ1
xy are

the curvatures. The ABCD stiffness matrices are obtained from the first derivative of
membrane forces and bending moments of the unit cell (UC) simulations under six loading
conditions, as can be seen in Figure 2. Compared to full 3D FEM, the generation of stiffness
matrices requires an additional modeling and computational effort, which however can be
made fairly automatic using programming.

Figure 2. Six different unit cell (UC) configurations with boundary conditions needed for ABCD
stiffness matrix definition. Forces and moments shown with arrows are associated with respective
stiffness components. Boundary conditions for edges with the same color are identical.

The assumed UC is a periodic constituent of the full panel, thus periodic boundary
conditions are imposed on UC, see Figure 2. The details of performing UC simulations
are given in the previous papers by the authors [22,23]. Essentially, the same procedure
was applied for each of the stiffened panel in case study analyses. Representative unit cell
model was created for each panel with different topology (plate thickness and stiffener
type) and 3D FE analyses were performed to obtain ABCD stiffness matrices. Compartment
model (first case study) consisted only 1 stiffened panel configuration that was replaced by
ESL. In a full ship hull (second case study), there were 45 different panel configurations,
giving total of 270 (6 × 45) UC simulations. The entire procedure of UC analysis (pre-
and post-processing) was made automatic using python scripts, which read the structural
details from text file, prepare the models, and extract ABCD stiffness matrices.

Additionally, transverse shear strains are assumed to be constant based on the FSDT.
The transverse shear force resultants (Qx,Qy) are calculated by multiplying the transverse
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shear stiffnesses (DQx ,DQy ) and transverse shear strains (γxz,γyz), as expressed in the
following equation: {

Qx
Qy

}
=

[
DQx 0

0 DQy

]{
γxz
γyz

}
(5)

DQx = kxz

(
Gptp + Gwhw + G f h f

)
(6)

DQy = kyzGptp (7)

where kxz is the longitudinal shear correction factor calculated by dividing the average
shear stress (τxz(avg)) to the maximum shear stress (τxz(max)), kyz is the transverse shear
correction factor as 5/6 . The shear moduli of the web (Gw) and flange (G f ) are the function
of plate (Gp), web thickness (tw), flange width (b f ), and stiffener spacing (s):

Gw = Gp(tw/s ) (8)

G f = Gp

(
b f /s

)
(9)

2.2. Implementation of ESL in Abaqus

In ESL approach, stiffened panels are replaced by a single plate. An example is shown
in Figure 3, where ship hull girder composed of stiffened panels is modeled using ESL
approach. ESL properties are composed of 6 × 6 matrix considering membrane and bending
stiffness components. In Abaqus software these ESL properties are given to elements by
using shell general section option. This option allows reference to external Fortran-based
VUGENS subroutine where the non-linear stiffness of ESL is calculated specific to loading
stage. VUGENS subroutine is available starting from Abaqus 2022 and suitable for explicit
analysis. To the best of authors knowledge, the analyses reported here are the first attempt
to use VUGENS subroutine since in earlier versions of Abaqus only implicit version of
shell general section definition could be used (UGENS). Note that in combination with
explicit integration scheme the ESL approach could be potentially used in ship collision
or grounding analysis. In non-ESL elements (frames, bracket, and other plates), standard
isotropic properties are used by defining Young’s modulus, Poisson’s ratio, and material
stress–strain curve.

Figure 3. Application of ESL in a ship’s hull girder.



J. Mar. Sci. Eng. 2022, 10, 1530 6 of 20

3. Case Study of One Compartment Aluminium Box Girder

This paper examines the application of ESL to analysis of compartment level collapse,
for details see Benson et al. [14]. The ultimate strength of one compartment box girder was
analyzed and characterized by the bending moment versus curvature curve. The analyses
were performed using the detailed 3D FEM and ESL approach. The detailed 3D FE
analysis utilizes conventional modeling techniques with explicit modeling of stiffened
plates further strengthened with larger transverse webframes with all parts given isotropic
material properties. In the ESL model, longitudinally stiffened panels were represented
with equivalent single layer plates having the same stiffness as the original plate with
stiffeners while webframes were still explicitly modeled.

Modeled box girder with a 8.4 m length had a square cross section, stiffened on each
side by 20 longitudinals spaced 400 mm apart. The panel configuration M1 was selected
for analyses, see [14]. The longitudinal T-stiffeners had the web and flange dimensions of
120 × 55 mm and 55 × 7.7 mm, respectively. The transverse webframes were flat bars with the
size of 180 × 10 mm spaced 1200 mm apart. There were six webframes between transverse
bulkheads, which is sufficient to demonstrate buckling characteristics at the compartment
level. To maintain the straightness of the compartment ends during bending, the bulkheads
were modeled with a very large thickness. The mesh size used was 50 × 50 mm, which was
determined by Benson et al. [14] through the mesh convergence analysis. The mesh size
sensitivity study of ESL was performed using element sizes of 50 × 50 mm, 300 × 300 mm and
600 × 600 mm which are consisted of 24, 4 and 2 elements between webframes, respectively.
The box girder was given aluminium 5083 properties with an elastic modulus of 70 GPa
and a yield stress of 302 MPa. The non-linear stress–strain response of this material was
characterized by the Ramberg–Osgood relationship, as expressed in the following equation:

ε =
σ

E
+ 0.002

(
σ

σ0.2

)n
(10)

where ε is the strain, σ is the applied stress, E is the elastic modulus, σ0.2 is the 0.2% offset
proof stress, n is the exponent.

Boundary conditions applied in the box girder are explained in Figure 4. At the
reference point, a moment to the z-axis was applied resulting in compression on the top
panel and tension on the bottom panel. This reference point was connected to the nodes at
the boundary using kinematic coupling so that the section remained flat during rotation.
At the opposite section, the clamped boundary condition was imposed. Only half of the
girder was modeled by imposing symmetry on the center line.

The response of the box girder is compared in terms of bending moment vs. curvature
curves and overall deformations obtained at the maximum bending moment, see Figure 5.
Current 3D FE analysis gives slightly softer response compared with 3D FE results from
Benson et al. [14]. Curvature in current study was determined by tracking the rotation at
the reference point. The way curvature was obtained in analysis of Benson was not detailed,
which possibly explains the slightly softer response obtained with current 3D FE analysis,
while the overall behavior is well captured. Proceeding to analyze differences between
current 3D FEM and ESL we also note close agreement in maximum bending moment.
Even the coarsest (and stiffest) ESL model of 600 × 600 mm shows the difference of mere
4.57% compared with 3D FEM result. All studied element sizes can capture accurately
compartment level (overall) buckling behavior and for overall efficiency we advocate to use
the largest mesh of 600 × 600 mm or two elements between webframes. However, the ESL
accuracy decreases if the stiffened panel is subjected to local buckling of the stiffener web
or plate [22,23]. Therefore, further investigation should be performed what is the suitable
element size for such simulations. In the post-ultimate stage, there is a sudden decrease in
bending moment due to transition from interframe to overall buckling mode. ESL model
cannot accurately trace this structural response at the post-ultimate stage.
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Figure 4. Boundary condition applied in 3D FEM and ESL of box girder.

In addition to providing a high level of accuracy with coarse elements of 600 × 600 mm,
ESL approach also provides shorter computation times than 3D FEM. With ESL mesh of
600 × 600 mm the computation time is only 27.7% of full 3D model, see Figure 6. All
simulations were ran with processor type of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90 GHz,
4 cores, 4 domains, and RAM of 24.0 GB.
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Figure 5. Bending moment–curvature curves and deformation shapes obtained from Benson et al. [14],
3D FEM and ESL models. U is in mm.
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Figure 6. Computational time for 3D FEM and ESL with several mesh sizes.

4. Case Study of Full-Scale Steel Ship Structure

Ultimate strength analyses of ship hull girder in intact and damaged conditions were
performed using the ESL approach, full 3D FEM, and incremental-iterative method from the
IACS-CSR. A traditional ship hull can be considered as a light-weight thin-walled structure
composed of an outer shell that is stiffened with framing members. In other words, ship
hull girder is built from stiffened panels. From a design perspective, a detailed modeling
of stiffened panel composed of plates and stiffeners is required for 3D FEM. However,
ESL simplifies the modeling process as the plate elements are given stiffness properties
representative of stiffened panels rendering explicit modeling of stiffeners unnecessary.
In the IACS-CSR, ultimate strength is calculated based on a cross-section of hull girder
between two adjacent transverse webframes. In Section 2, the theory and implementation
of ESL approach was explained. In this section, the full 3D FEM and incremental-iterative
method are described.

4.1. Ship Particulars

The case study structure is a chemical product tanker that was previously analyzed in
Tabri et al. [24]. The midship section and bulkhead arrangement are given in Figure 7 and
the main particulars in Table 1. The ship is designed from high strength steel (AH36) with
Young’s modulus of E = 210 GPa, Poisson ratio of v = 0.3, and yield stress of σy = 355 MPa.

Table 1. Main particulars of the chemical tanker.

Parameter Symbol Unit Value

Overall length LOA m 182.2
Length between perpendiculars LPP m 175.3

Moulded breadth B m 32.2
Depth H m 15.0

Design draught B m 11.1
Displacement ∇ t 52,298

Double bottom height HDB m 2.21

4.2. Loading and Boundary Conditions

Being a flexible thin-walled beam, the hull girder of the ship flexes globally when
exposed to loads. The load components that act on the ship hull girder are the weight
of the ship, its cargo, and the hydrostatic and hydrodynamic pressures (external load).
The resultant of these load components can be treated with longitudinally distributed load
applied on the hull girder, which can increase only by the external pressure due to waves.
Therefore, global bending of the ship hull was achieved with longitudinally distributed
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pressure, which amplitude was gradually increased until ultimate strength was reached.
The distributed pressure was applied either on ship bottom or side, depending on whether
vertical or horizontal bending moment was determined, respectively. The sinusoidal shape
of distributed pressure was kept unchanged during loading, as shown in Figure 8b. Al-
though, in realistic situations, the distribution of load can play an important role, here only
the simplified sinusoidal shape was considered. The direction of bending was controlled
by the sign of the pressure amplitude (A), see the Equation in Figure 8b. This resulted
in sagging/hogging in vertical bending and starboard/portside bending in horizontal
bending. In damaged condition, the pressure was not applied in the damage opening.
In Abaqus, the VDLOAD subroutine was invoked to apply the distributed pressure.

Figure 7. Design of hull structure for case study: midship section (left) and side view and top
view (right).

A simply supported boundary condition was imposed on the ship at the mid nodes
marked with •, see Figure 8a. The aft of the ship was pin constrained with all translations
fixed while rotations were free. In the fore part, the constraints were the same except trans-
lation in longitudinal direction which was free to avoid an excessive stress concentration
during deflection. Furthermore, rigid beams were modeled through the constraint nodes to
keep the ends of the beam straight under increasing load and, thus, prevent local buckling.
The surfaces where pressure was applied were specified with rectangles ABCD (for vertical
bending moment) and EFGH (for horizontal bending moment), see Figure 8a. The reaction
forces on the support is assumed to be very small since the distributed pressures produce
the resultant forces of zero.
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Figure 8. (a) Boundary condition applied in the tanker under vertical and horizontal bending
moments. (b) Distributed pressure applied on the surface.

4.3. Damage Scenario

For post-accidental strength assessment of ship structure, both grounding and collision
scenarios were considered. The extent of damage was determined based on the definition
provided by the IACS-CSR. The damage was modeled by removing the plates, stiffeners,
and frames that fall within the specified damage extent. The selected length of damage
was 10 m with its center in the middle of the ship. This position was chosen since it
significantly reduces the longitudinal bending strength of the ship. In case of collision
damage, the transverse damage extent was equal to B/16 where B is the breadth of the ship.
Therefore, respective structural elements in the parts of inner and outer skin and main deck
were removed. The vertical damage extent was taken as 0.6D measured from the main
deck, where D is the depth of the ship.

In case of grounding damage, the transverse damage extent was taken as 0.6B, which
is symmetric with respect to the centerline. The damage penetration height was equal to
the depth of the double bottom (HDB). Figure 9 shows the damage extents of the double
hull oil tanker for grounding and collision scenario.
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Figure 9. Assumed grounding and collision damage extents in tanker.

4.4. Full 3D Finite Element (3D FE) Model

Non-linear finite element method (NLFEM) is a sophisticated tool to solve the solid
mechanics problem of complex engineering structures. Using NLFEM, the effect of material
and geometrical non-linearities during progressive collapse of hull girder can be taken into
account. A chemical tanker was modeled using Abaqus/Explicit software. All models
were meshed using four-node shell elements (S4R), including plates, stiffener webs, frames,
and girders. Stiffening was achieved with HP bulb profiles where the flanges were modeled
using beam elements (B21). Stiffener webs were modeled using shell elements to capture
the collapse mode, e.g., local buckling of stiffener web or stiffener tripping, expected during
the progressive collapse of the hull girder. The mesh convergence study was conducted
by Tabri et al. [24] to obtain the balance between numerical accuracy and simulation cost.
Thus, the mesh density in the one compartment is illustrated in Figure 10 and can be
summarized as follows: (1) plates between longitudinal stiffeners, 4 × 16 shells; (2) stiffener
web plates, 1 × 16 (web height < 300 mm) shells and 2 × 16 (web height > 300 mm) shells;
(3) side stringers and girders, 12 × 16 shells; and (4) corrugated bulkhead plates, 6 × 40 and
5 × 60 shells. The 3D FE model consisted of 3,160,000 nodes and 2,800,000 elements from
which 2.5 M were shell and 0.3 M were beam elements. In the ESL model, stiffeners (shell
elements related to web and beam element for flange) were removed so the total number of
elements was reduced by 25% to 2,120,000 compared with the full 3D FE model.

4.5. Incremental-Iterative Method

The IACS-CSR provides the incremental-iterative method to calculate the ultimate
strength of hull girder. Details of the method are given in CSR, which are briefly summa-
rized here for entirety. The assumption is that hull girder collapse occurs in between two
adjacent transverse webs. Accordingly, two-dimensional (2D) cross-section of the ship hull
structure is divided into a series of structural elements, such as stiffeners, plates, and hard
corners. The response of each of those elements is described with load-end-shortening
curve compliant with prevalent collapse mode. Under compression, the stiffener element
may experience the specific collapse mode, such as beam-column buckling, torsional buck-
ling, or web buckling. For the plating element, the collapse mode of plate buckling may
occur. Other element types under compression or tension may experience idealized elastic-
plastic failure. Accordingly, the load-end-shortening curves for each structural element
were obtained.

The calculation procedure of ultimate strength starts with estimation of neutral axis
(NA) position. The iterative approach involves increasing the assumed curvature of the hull
girder and calculating the new position of NA based on the moment equilibrium. Bending
moment is obtained by integrating the load over the cross-section, while the load for each
element is obtained from the load-end-shortening curves used as input. Once the updated
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location of the NA is obtained, the curvature is further increased and procedure is repeated
until the maximum bending moment is achieved.

Figure 10. Mesh of the one compartment in the FE-model of chemical tanker.

5. Ultimate Strength Analysis

Ultimate strength of a chemical tanker was analyzed under vertical and horizontal
bending moments. The results obtained from the ESL approach, 3D FEM, and incremental-
iterative method are presented.

5.1. Vertical Bending Moment

Figure 11 shows the vertical deflection of intact chemical tanker along its length under
hogging and sagging conditions. The horizontal bending moment is discussed in the next
section. The deflections at the aft and fore are zero since the vertical translation of those
parts is constrained. The maximum deflection occurs in the middle of the ship where the
distributed pressure has maximum amplitude. In general, ESL deflection correlates well
with the 3D FEM results.

The bending moment–deflection curves for 3D FEM, ESL, and incremental-iterative
approach (hereinafter referred to as CSR method) for intact ship are presented in Figure 12a.
The entire curve until maximum bending moment is accurately predicted by both, ESL
and CSR method. Therefore, benefits of performing computationally more demanding ESL
analyses are missing until more detailed information is desired. For instance, Figure 12b
shows the longitudinal stress in vertical coordinate at the ship midsection under hogging



J. Mar. Sci. Eng. 2022, 10, 1530 14 of 20

condition. The constant tensile stresses in the upper decks (above side stringer S2) indicate
to fully plastic condition. In the compressive side below the NA (slightly above side stringer
S1) stress distribution is more complex due to non-linear buckling of structural elements.
The stress provided by ESL approach has better agreement with the 3D FEM than CSR
method. Furthermore, with 3D FE model available, similar stress distributions could be
obtained in different cross-sections along the length, which is not possible with CSR.

Figure 11. Deflection of ship’s hull along its length at the ultimate stage under vertical and horizontal
bending moments.

In the case of ship grounding, the bending moment–deflection curve is presented in
Figure 13a. The initial stiffness is the same for all three curves. The bending moment in-
creases linearly until gradual buckling of structural elements. The moment reduction under
hogging condition is more significant since compressive loads are carried by damaged
double bottom structure. The comparison of longitudinal stress distributions in Figure 13b
shows that while ESL accuracy decreases compared with intact analyses, the stresses are
still more accurately predicted compared with CSR.

Figure 12. Response of intact ship under vertical bending moment. (a) Bending moment–deflection
curves. (b) Longitudinal stress distribution to vertical coordinate at the midship under hogging
condition.
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Figure 13. Response of ship grounding under vertical bending moment. (a) Bending moment–
deflection curves. The maximum bending moments are used in calculating the histogram of moment
reduction ratio. (b) Longitudinal stress distribution to vertical coordinate at the midship under
hogging condition.

In the case of collision damage, the relationship between bending moment and de-
flection under sagging/hogging conditions is presented in Figure 14a. The longitudinal
structure, especially the deck-side corner, greatly contributes to longitudinal strength. By re-
moving the damaged side and deck structure, the ultimate bending moment decreases
more than in case of grounding damage. However, this decrease in maximum bending
moment is well captured by the ESL method which shows improved predictions compared
with CSR. The reduced accuracy of CSR is explained by the effect of the removed deck-side
corner. With respect to the longitudinal stresses in Figure 14b, the ESL method has similar
accuracy as in grounding case, while maintaining the advantage over CSR.

Figure 14. Response of ship collision under vertical bending moment. (a) The bending moment–
deflection curves. The maximum bending moments are used in calculating the histogram of moment
reduction ratio. (b) The longitudinal stress distribution to vertical coordinate at the midship under
hogging condition.
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The ESL approach captures the bending moment until ultimate stage with very good
accuracy. In the post-ultimate stage bending moment is captured accurately under sagging,
but not under hogging. Under hogging condition ESL fails to capture the local stiffener web
buckling collapse in bottom structure as shown in Figure 15. It was also shown in analysis
of [22,23] that beyond certain threshold slenderness (β = 1.96) the collapse mode becomes local
which is not captured by ESL. In current analysis the plate slenderness in bottom structure is
2.12, while in deck structure slenderness is 1.55. In contrast, the slenderness of deck plates is
much lower circumventing the local collapse under sagging condition, which ultimately leads
to very good accuracy also in post-ultimate bending moment prediction, see Figure 14a.

The bending moment reduction with respect to intact condition obtained with each
method (3D FEM, ESL, and CSR) are summarized in Figure 16. This reduction is calculated
by dividing the maximum bending moment at damaged condition with the corresponding
maximum from intact condition for each method concerned. Furthermore, the error in
moment reduction obtained with ESL and CSR is calculated with respect to 3D FEM results
and shown in the figure. The overall accuracy of ESL is excellent remaining in 5% in all
cases. The compromise between accuracy and overall analyses cost favor CSR over ESL in
grounding analyses, while accuracy of CSR reduces in collision analyses.

Figure 15. Collapse mode in double bottom and main deck structures under hogging and sagging
conditions in post-ultimate stage, respectively. Deformation scaling factor is 5×.

Figure 16. The moment reduction ratio under grounding and collision damage in the hogging and
sagging conditions using the 3D FEM, ESL, and CSR methods.
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5.2. Horizontal Bending Moment

The horizontal bending moment–deflection at midship curves are presented in
Figure 17a–d for intact and damaged ship. Overall, a close agreement exists between
the bending moment resulted by the ESL and 3D FEM until the ultimate stage. Since hull
girder has greater depth than breadth, the ultimate horizontal bending moment is greater
than vertical bending moment. For intact and grounding model, the cross-section of the
ship is symmetric to the centerline so that the bending moment is independent whether the
loading comes from port or starboard side. However, for collision model, the bending mo-
ment is dependent on the loading direction. For these cases, the ESL model can accurately
capture the reduction in bending moment until the ultimate condition.

The moment reduction ratio under horizontal bending moment for the three methods
are shown in Figure 18. The error percentage represents the difference between the analyzed
method and 3D FEM. In all cases, the ESL results are consistently close to the 3D FEM.

Figure 17. Horizontal bending moment-deflection relationships of tanker in the condition of (a) intact,
(b) grounding, (c) collision with damage in compression, and (d) collision with damage in tension.
The maximum bending moments are used in calculating the histogram in Figure 18.
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Figure 18. The moment reduction ratio of horizontal bending moment in grounding and collision
cases for the 3D FEM, ESL, and CSR methods.

6. Conclusions

The ultimate strength analyses are carried out using the one compartment and full-
scale ship models. The one compartment model is analyzed under vertical bending moment.
The full-scale ship model in intact and damaged conditions is analyzed under vertical and
horizontal bending moments. The analyses are performed with three methods, namely 3D
FEM, ESL, and CSR. Overall, the ultimate strength predicted by the ESL approach give the
results close to 3D FEM for all cases.

The ESL approach provides a more time-efficient way to analyze the ultimate strength
compared to the detailed 3D FEM. In the ESL approach, plate with stiffeners is represented
with an equivalent plate with equal stiffness so that stiffeners are not explicitly modeled.
This reduces modeling effort as well as computational time and, thus, could be potentially
used with great efficiency in structural optimization, which has seen increased popularity
due to the advancements in computing power. Current analysis showed that in case of one
compartment model, the analysis time was up to 3 times shorter when using the coarsest
possible mesh. Moreover, the computational efficiency does not compromise the accuracy
as the ultimate bending moment was captured with less than 5% error compared with 3D
FEM in all analyzed cases. In contrast, the CSR results overestimate the collapse moment by
up to 14.2% in collision damage scenario under hogging. This overestimation of bending
moment obtained with CSR method is consistent with analysis in literature, see [25,26].

In addition to accurately visualizing the full-scale ship deflection, ESL model can
capture the load-response of a ship structure until ultimate bending moment with very
good accuracy. However, due to the interaction of structural members, the ESL approach
cannot accurately account the local stiffener web buckling collapse in the post-ultimate
stage. Furthermore, with ESL methodology one cannot visualize stresses in the post-
processing stage. Both aspects need to be addressed in future investigations.

Author Contributions: Conceptualization, T.P., M.K. and K.T.; methodology, T.P. and M.K.; software,
T.P.; validation, T.P.; formal analysis, T.P. and M.K.; investigation, T.P.; resources, T.P.; data curation,
T.P.; writing—original draft preparation, T.P.; writing—review and editing, T.P., M.K. and K.T.;
visualization, T.P.; supervision, M.K.; project administration, M.K. and K.T.; funding acquisition, M.K.
and K.T. All authors have read and agreed to the published version of the manuscript.

Funding: The first author was financially supported by the European Regional Development Fund
through the DORA scholarship for the doctoral students. The work has also been financially sup-
ported by the Estonian Research Council via grant PRG83 (Numerical simulation of the FSI for
the dynamic loads and response of ships) and grant PSG754 (Coupled simulation model for ship
crashworthiness assessment). These funding mechanisms are gratefully acknowledged.



J. Mar. Sci. Eng. 2022, 10, 1530 19 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Det Norske Veritas, G.L. Rules for classification: Ships. Ships Navig. Ice Det Nor. 2016, 3, 351–354.
2. IACS. Background Document—Section 9/1, Design Verification, Hull Girder Ultimate Strength. IACS Common Structural Rules

for Double Hull Oil Tankers, January 2006. pp. 321–368. Available online: https://www.classnk.or.jp/hp/pdf/activities/csr/
ECSR-T-TB002.pdf (accessed on 20 September 2022).

3. Caldwell, J. Ultimate Longitudinal Strength. Trans. RINA 1965, 10, 411–430.
4. Smith, C.S. Influence of local compressive failure on ultimate longitudinal strength of a ship’s hull. Trans. PRADS 1977, 10, 73–79.
5. Tatsumi, A.; Iijima, K.; Fujikubo, M. A Study on Progressive Collapse Analysis of a Hull Girder Using Smith’s Method—Uncertainty

in the Ultimate Strength Prediction. Practical Design of Ships and Other Floating Structures, Singapore, 2021. Available online:
https://www.sciencegate.app/document/10.1007/978-981-15-4672-3_7 (accessed on 20 September 2022).

6. Yukio, U.; Rashed, S.M.H. The idealized structural unit method and its application to deep girder structures. Comput. Struct.
1984, 18, 277–293. [CrossRef]

7. Ueda, Y.; Rashed, S.M.H.; Abdel-Nasser, Y. An improved ISUM rectangular plate element taking account of post-ultimate strength
behavior. Mar. Struct. 1994, 7, 139–172. [CrossRef]

8. Masaoka, K.; Okada, H.; Ueda, Y. A rectangular plate element for ultimate strength analysis. In Proceedings of the 2nd
International Conference on Thin-Walled Structures, Singapore, 2–4 December, 1998.

9. Fujikubo, M.; Kaeding, P.; Olaru, D.; Pei, Z. Development of ISUM Plate Element Considering Lateral Pressure Effects and Its
Application to Stiffened Plate. Transactions of The West-Japan Society of Naval Architects The 109th West-Japan Society of Naval
Architects Meeting (Joint Autumn Meeting of Three Societies of Naval Architects in Japan, 2004) (Transactions of The West-Japan
Society of Naval Architects No. 109, Japan, 2005. Available online: https://www.jstage.jst.go.jp/article/jjasnaoe/3/0/3_0_285/
_article (accessed on 20 September 2022).

10. Paik, J.K.; Seo, J.K.; Kim, D.M. Idealized structural unit method and its application to progressive hull girder collapse analysis of
ships. Ships Offshore Struct. 2006, 1, 235–247. [CrossRef]

11. Lindemann, T.; Kaeding, P. Application of the idealized structural unit method for ultimate strength analyses of stiffened plate
structures. Ship Technol. Res. 2017, 1, 15–29. [CrossRef]

12. Paik, J.K.; Thayamballi, A.K. Ship-Shaped Offshore Installations: Design, Building, and Operation; Cambridge University Press:
Cambridge, UK, 2007.

13. Kim, D.K.; Kim, H.B.; Mohd, M.H.; Paik, J.K. Comparison of residual strength-grounding damage index diagrams for tankers
produced by the ALPS/HULL ISFEM and design formula method. Int. J. Nav. Archit. Ocean Eng. 2013, 5, 47–61. [CrossRef]

14. Benson, S.; Downes, J.; Dow, R.S. Compartment level progressive collapse analysis of lightweight ship structures. Mar. Struct.
2013, 31, 44–62. [CrossRef]

15. Tekgoz, M.; Garbatov, Y.; Soares, C.G. Strength assessment of an intact and damaged container ship subjected to asymmetrical
bending loadings. Mar. Struct. 2018, 58, 172–198. [CrossRef]

16. Yoshikawa, T.; Bayatfar, A.; Kim, B.J.; Chen, C.P.; Wang, D.; Boulares, J.; Gordo, J.M.; Josefson, L.; Smith, M.; Kaeding, P. Report of
ISSC 2015 Committee III. 1 Ultimate Strength. In Proceedings of the 19th International Ship and Offshore Structures Congress,
Lisbon, Portugal, 7–10 September 2015.

17. Mohammed, E.A.; Benson, S.D.; Hirdaris, S.E.; Dow, R.S. Design safety margin of a 10,000 TEU container ship through ultimate
hull girder load combination analysis. Mar. Struct. 2016, 46, 78–101. [CrossRef]

18. Nordstrand, T. On buckling loads for edge-loaded orthotropic plates including transverse shear. Compos. Struct. 2004, 46, 1–6.
[CrossRef]

19. Jelovica, J.; Romanoff, J.; Ehlers, S.; Varsta, P. Influence of weld stiffness on buckling strength of laser-welded web-core sandwich
plates. J. Constr. Steel Res. 2012, 77, 12–18. [CrossRef]

20. Lok, T.S.; Cheng, Q.H. Free vibration of clamped orthotropic sandwich panel. J. Sound Vib. 2000, 229, 311–327. [CrossRef]
21. Jelovica, J.; Romanoff, J.; Klein, R. Eigenfrequency analyses of laser-welded web-core sandwich panels. Thin-Walled Struct. 2016,

101, 120–128. [CrossRef]
22. Putranto, T.; Kõrgesaar, M.; Jelovica, J.; Tabri, K.; Naar, H. Ultimate strength assessment of stiffened panel under uni-axial

compression with non-linear equivalent single layer approach. Mar. Struct. 2021, 78, 103004. [CrossRef]
23. Putranto, T.; Kõrgesaar, M.; Jelovica, J. Ultimate strength assessment of stiffened panels using Equivalent Single Layer approach

under combined in-plane compression and shear. Thin-Walled Struct. 2022, 180, 109943. [CrossRef]
24. Tabri, K.; Naar, H.; Kõrgesaar, M. Ultimate strength of ship hull girder with grounding damage. Ships Offshore Struct. 2020, 15,

161–175. [CrossRef]

https://www.classnk.or.jp/hp/pdf/activities/csr/ECSR-T-TB002.pdf
https://www.classnk.or.jp/hp/pdf/activities/csr/ECSR-T-TB002.pdf
https://www.sciencegate.app/document/10.1007/978-981-15-4672-3_7
http://doi.org/10.1016/0045-7949(84)90126-3
http://dx.doi.org/10.1016/0951-8339(94)90022-1
https://www.jstage.jst.go.jp/article/jjasnaoe/3/0/3_0_285/_article
https://www.jstage.jst.go.jp/article/jjasnaoe/3/0/3_0_285/_article
http://dx.doi.org/10.1533/saos.2006.0129
http://dx.doi.org/10.1080/09377255.2017.1282086
http://dx.doi.org/10.2478/IJNAOE-2013-0117
http://dx.doi.org/10.1016/j.marstruc.2013.01.001
http://dx.doi.org/10.1016/j.marstruc.2017.11.006
http://dx.doi.org/10.1016/j.marstruc.2015.12.003
http://dx.doi.org/10.1016/S0263-8223(03)00154-5
http://dx.doi.org/10.1016/j.jcsr.2012.05.001
http://dx.doi.org/10.1006/jsvi.1999.2485
http://dx.doi.org/10.1016/j.tws.2016.01.002
http://dx.doi.org/10.1016/j.marstruc.2021.103004
http://dx.doi.org/10.1016/j.tws.2022.109943
http://dx.doi.org/10.1080/17445302.2020.1827631


J. Mar. Sci. Eng. 2022, 10, 1530 20 of 20

25. Shen, L.; Kyun, D.K. A comparison of numerical methods for damage index based residual ultimate limit state assessment of
grounded ship hulls. Thin-Walled Struct. 2022, 172, 108854.

26. Paik, J.K.; Kim, D.K.; Park, D.H.; Kim, H.B.; Mansour, A.E.; Caldwell, J.B. Modified Paik-Mansour formula for ultimate strength
calculations of ship hulls. Ships Offshore Struct. 2013, 8, 245–260. [CrossRef]

http://dx.doi.org/10.1080/17445302.2012.676247

	Introduction
	Methods
	Overview of the ESL Approach
	Implementation of ESL in Abaqus

	Case Study of One Compartment Aluminium Box Girder
	Case Study of Full-Scale Steel Ship Structure
	Ship Particulars
	Loading and Boundary Conditions
	Damage Scenario
	Full 3D Finite Element (3D FE) Model
	Incremental-Iterative Method

	Ultimate Strength Analysis
	Vertical Bending Moment
	Horizontal Bending Moment

	Conclusions
	References

