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Abstract: Many incentive schemes address the selfishness issue in opportunistic networks and
show performance improvement by simulations. However, the insights of incentive schemes that
affect network performance are not clear. Network capacity analysis can reveal how factors affect
performance, which is a guideline for new designs. To analyze incentive schemes, a well-defined
mathematical model is necessary, which cannot be achieved by existing analytical models based on
empirical formulas or types of incentive schemes. First, this paper proposes such a model to show
the incentive degree with the incentive scheme, cooperation degree, energy usage, buffer usage, and
security based on a quantum game model. Verification compares the model with delivery ratios that
show impacts on selfish nodes in simulations under two typical incentive schemes. Then, network
capacity is analyzed with this model and a sparse clustering regime that has similar mobility to
opportunistic networks in order to show factors for future designs.

Keywords: opportunistic network; analytical model; incentive scheme; network capacity

1. Introduction

Mobility affects network capacity, which refers to the maximum achievable throughput
due to the dynamic cooperation of nodes. Mobile models are discussed often [1]. For
instance, sparse clustering regimes show that grouping nodes can increase the cooperation
degree, and trading throughput for delay in clusters does not decrease network capacity
as a whole [2]. While these studies usually assume nodes are rational, the cooperation
degree may decrease due to selfish nodes, especially in opportunistic networks where
end-to-end paths between sources and destinations change over time and are occasionally
even disrupted [3]. Incentive schemes force nodes to forward messages in order to avoid
long waits for the next opportunity, which increases co-operation as a way to prompt
delivery ratios and decrease end-to-end contact times. To design more efficient incentive
schemes, it is important to discuss factors affecting performance. This paper analyzes
network capacity, with incentive schemes as the goal. In addition, our study can be applied
to filter candidates for schemes that raise prediction-based, hybrid, or other networks with
opportunistic networks such as opportunistic routing based on prediction [4].

To analyze network capacity, a mathematical model of incentive schemes is necessary
for sufficient insight. Existing incentive schemes only show improvement by simulations,
and existing analyatical models are not detailed enough. For example, a framework for
multiple-criteria decision-making problem to rank protocol performance [5] lacks numerical
formulas involving parameters. Game theory has been used to state nodes’ strategies to
analyze network traffic in transmission control protocol (TCP) with selfish nodes and
peer-to-peer (P2P) networks with free-riding problem [6,7], and several analytical models
for different categories based on classical game theory have been proposed [8–10] which
do not find common characters of incentive schemes. A generic model can be built with
quantum game theory [11], as quantum game theory extends the strategy space to search
for optimal strategies in a wider range and uses the concept of entanglement to depict the
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complex interaction among nodes accurately in the decision-making process. A model with
these features can evaluate most incentive schemes and reveal their common character.
However, the above model uses an empirical utility formula and focuses on numerical
analysis, which simply places datasets into the model without other comparisons. In other
words, the model does not have enough factors to work as a guideline to design new
incentive schemes.

A well-defined formula should consider the characteristics of incentive schemes as
well as other factors that affect cooperation. A node usually spends payoff, such as
virtual money, reputation, exchanging messages, or something else, to stimulate others to
forwarding, which can obtain the necessary currency. Cost and reward can represent an
incentive scheme in a mathematical model with other properties of nodes. Several incentive
schemes take energy usage and buffer usage into account. Therefore, this paper proposes
an analytical model based on quantum game theory considering the energy usage and
buffer usage, reward, cost, and cooperation degree, which shows the incentive degree and
compares incentive degrees with the delivery ratio by simulations.

Network capacity analysis using the proposed model shows the impact of incentive
schemes on network performance. During analysis, a mobile model in opportunistic
networks is needed as well. The sparse clustering regime is similar to the mobility of op-
portunistic networks with nodes that work in groups with high cooperation possibility and
clusters that move randomly where communications in groups are stable and movement is
otherwise needed for opportunities. Furthermore, the scheduling policy is similar to the
scenario in [4] for nautical wireless ad hoc networks. Therefore, the analytical model for
incentive schemes is applied to a sparse clustering regime to analyze network capacity and
discuss various factors.

As a summary, the contributions of this paper are as follows: (1) An analytical model
based on quantum game theory considering the energy usage, buffer usage, reward, cost
and cooperation degree is proposed. It is verified by a comparison between the incentive
degree and delivery ratios according to simulations. (2) Network capacity is analyzed
with the above model to show how incentive schemes affect network performance. The
factors can be used as a guideline for designing efficient incentive schemes by considering
these relations.

The rest of this paper is organized as follows. The mathematical model is detailed
in Section 2. Verification with simulations is described in Section 3. Network capacity
is analyzed with the model and sparse clustering regime in Section 4. The factors are
discussed in Section 5. Finally, we conclude the paper in Section 6.

2. Mathematical Model for Incentive Schemes
2.1. Typical Incentive Schemes

Before detailing the mathematical model, we briefly touch on typical incentive schemes
to see what can be taken into account. Most existing incentive schemes are reputation-based
or credit-based [10]. They use currency-like metrics to reveal the participation degree for
nodes forwarding messages [12].

In credit-based schemes, relay nodes can obtain credits by forwarding messages, then
send their own messages with these additional credits. The better design and calculation of
reward and price remains a challenge. Payoff according to the time-to-live of a message has
been proposed in [12], which is direct to price difference. A Markov chain can be used to
calculate price according to the society degree, selfish degree, and cooperation degree with
buffer, energy, and interaction to stimulate nodes with high possibility [13]. The clearance
credit center rewards relay nodes with extra credits to avoid nodes being unable to obtain
enough credits to send messages due to selfish nodes who hold most credits and are not
willing to forward messages. Therefore, attackers are not considered in our model or in
other similar proposals, such as [8,10].

Other incentive schemes, such as reputation-based ones, usually replace credits with
internal bounds for the same purpose. Punishment is used to restrain free-riding nodes
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in peer-to-peer (P2P) networks via game theory [7]. Grouping nodes by bilinear pairing
and cooperation probability prediction has been proposed in [14]. Evolutionary game
theory replaces the classical theory for more precise cooperation evaluation [15]. With the
exception of node behaviour under different policies, these bounds, such as cooperation
probability, are similar to credits both in usage and principle. Thanks to the extended
strategy space in quantum game theory, it is possible to simply consider increasing bounds
as rewards and decreasing bounds as costs.

An environment involving movement path, link quality, and others can affect commu-
nications as a main domain. However, these do not affect incentive schemes directly, which
is shown simply by a scenario argument without detailed considerations in the following
analysis.

To sum up, for an analytical model, the cost and reward function can represent an
incentive scheme. Other parameters such as buffer and energy can be considered as a part
of cost, as they may reduce the cooperation degree. A simple argument briefly summarizes
the impact of the environment. Furthermore, interactions among nodes must be considered,
which can be solved by a quantum game model and Nash equilibrium.

2.2. Quantum Game Model

The proposed model has two parts, as shown in Figure 1. The quantum game model
depicts how an incentive scheme motivates cooperation, and the utility formula $m de-
scribes how a node is served. The utility formula $m, including the energy usage, buffer
usage, and degree of security, accepts an incentive policy IP and entanglement λ as argu-
ments. In both the quantum game model and the utility formula, λ communicates with a
quantum game model to describe incentive processes. Therefore, the optimal value $∗ is
computed by the quantum game model with Nash equilibrium.

$m(λm, IP) Quantum game model

q∗mx∗m $∗m

Nash equilibrium

Figure 1. Model construction.

Quantum game theory is more suitable for analyzing incentive schemes because of the
concept of entanglement and the extended strategy space, as discussed in Section 1. First,
we briefly describe quantum game theory based on [11], shown in Figure 2. The actions
of players in a quantum game ae based on a specific set of strategies. The state of node
m is represented by |vacm〉, a state vector in a Hilbert space. The whole system state is
|H〉 = |H1〉 ⊗ |H2〉 · · · ⊗ |Hn〉.

· · ·|vac1〉 |vacn〉

Ĵ(λ)

· · ·D̂1 D̂n

Ĵ(λ)†

Measurement

Figure 2. Quantum game model.
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If players are dependent, entanglement must be used to express the system state in the
above product. Entangling gate Ĵ(λ) with operation parameter xm defines how to combine
the strategies of each node. This expresses how players affect others, such as encounters
due to moving paths and selfish policies, especially in opportunistic networks; in our study,
entanglement is considered as the cooperation degree. The model includes the following
three stages:

1. The initial quantum state of the system is ψinit = Ĵ(λ)|vac〉, achieved by entangling
all nodes togather.

2. Node m operates on its state using unitary operator D̂m with the feature D̂mD̂†
m = 1.

3. With disentangling gate Ĵ(λ)† on the system, the final state is
∣∣∣ψ f in

〉
= |J〉(λ)†(D̂1 ⊗

D̂2 · · · D̂n) Ĵ(λ)|vac〉.

Each definition and proof are detailed in [11]. After forwarding
∣∣∣ψ f in

〉
to measurement,

node m can quantize the relayed data to others as follows:

qm =
xm

n

[
e(n−1)λ + (n− 1)e−λ

]
+

n

∑
j=1,j 6=m

xj

n

[
e(n−1)λ − e−λ

]
. (1)

The optimal value x∗m can be computed by a utility formula with the Nash equilibrium
for impacts on nodes. The Nash equilibrium is defined as follows:

∂$1

∂x1
=

∂$2

∂x2
= · · · = ∂$n

∂xn
= 0

∂2$m

∂x2
m

< 0 , m ∈ {1, 2, · · · , n} .
(2)

Then, the optimal strategy q∗m and optimal utility $∗m can be calculated with x∗m ac-
cording to (1) and (3). The calculation depends on the utility formula, with the input
incentive scheme to be discussed later. Then, we obtain a mathematical equation between
an incentive scheme and $∗, which can be used for evaluatation and reveal the insight if
the utility formula depicts factors correctly. Moreover, $∗ is called the incentive degree in
this study.

2.3. Utility Formula

The utility formula describes the incentive degree of a node with entanglement λm,
reward function r(qm), cost function c(qm), and constant cost c′, as follows:

$m = λmqm − r(qm)− c(qm)− c′ , (3)

where r(qm) is represented as the incentive scheme. According to the introduction of
incentive schemes in Section 2.1, an incentive scheme consists of a reward function R(qm)
and a price function P(qm). The incentive degree is more dependent on their relation than
each individual calculation, and the calculation makes the incentive process more rational
and balanced. Therefore, in the utility formula, only the relationship between R(qm) and
P(qm) is considered, as follows:

r(qm) = qm
R(qm)

P(qm)
. (4)

We show the correction with simulations in Section 3. Entanglement λm means the coopera-
tion degree determined by the scenario, such as selfish degrees, social groups, movement
paths, etc., which can be avoided by fixing the entanglement in the model during analyses.

The cost constant c′ is for each transmission, such as the fixed energy consumption [16].
The cost function c(qm) describes what relay nodes have to pay for when transmissions
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succeed, which is made up of an energy cost E(qm), buffer cost B(qm), and security cost
S(qm), as follows:

c(qm) = E(qm) + B(qm) + S(qm) . (5)

The security cost is simple:
S(qm) = sq2

m , (6)

where s is the willingness to forward messages, determined by reasons such as security.
Unlike entanglement λ, s is a node’s own attribute and is not affected by other nodes.

The incentive degree does not continue to increase with larger buffer size and energy
capacity, as it is limited by the cooperation between nodes. For instance, a node can only
forward messages to parts of others, even if it has infinite buffer and energy. Therefore,
they should have asymptotic values. Furthermore, the slope change for the buffer is slower
than that for energy, as the energy capacity grants a node the basic ability to participate in
forwarding, instead of enough resources, such as buffer and the cooperation degree. To
sum up, they are defined as follows:

E(qm) =

(
Ec

Es

)5
r(qm) and B(qm) =

(
Bc

Bs

)3
r(qm) , (7)

where Ec is the energy cost per message, Es is the energy capacity, Bc is the buffer cost per
message, and Bs is the buffer size.

2.4. Model With Incentive Scheme

To obtain a model for a special incentive scheme, P(qm) and R(qm) should be defined
in the utility formula, and the Nash equilibrium then applied to the qunatum game model
with the utility formula.

Most incentive schemes are made up of a price function Z and reward function R. The
two functions are usually independent on qm and λm, especially in credit-based schemes.
In these cases, P(qm) and R(qm) are linear functions of qm, which can be defined as

P(qm) = Zqm and R(qm) = Rqm . (8)

Now, we can calculate the analytical model. According to (8), the utility formula is
expanded as follows:

$m = λmqm −
R
Z

qm −
(

Es

Es

)5 R
Z

qm −
(

Bc

Bs

)3 R
Z

qm − sq2
m − c′ . (9)

Then, we apply (2) to obtain

∂$m

∂xm
=

∂$1

∂x1
=

∂$2

∂x2
= · · · = ∂$n

∂xn

=
∂qm

∂xm

{
λ− 2sqm −

R
Z

[(
Ec

Es

)5
+

(
Bc

Bs

)3
+ 1

]}
= 0 ,

(10)

where

∂qm

∂xm
=

e(n−1)λ + (n− 1)e−λ

n
. (11)
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Because optimal strategies are the same under Nash equilibrium, represented as
x∗1 = x∗2 = · · · = x∗n, we can obtaun x∗ with the above results as follows:

∂$m

∂xm
= λ− 2sx∗e(n−1)λ −

[(
Ec

Es

)5
+

(
Bc

Bs

)3
+ 1

]
= 0

(12)

and

x∗ =
λ−

[(
Ec
Es

)5
+
(

Bc
Bs

)3
+ 1
]

R
Z

2se(n−1)λ
. (13)

Substituting x∗ in q∗ yields

q∗ = x∗e(n−1)λ

=
λ− R

Z
Ec
Es
− R

Z
Bc
Bs
− R

Z

2s
.

(14)

Then, $∗ can be computed by (3), which shows the incentive degree’s relation with a special
incentive scheme.

3. Verification of the Model with Simulations

The verification compares incentive degrees and delivery ratios with two typical
incentive schemes, namely, the incentive and privacy-aware data dissemination scheme
(IPAD) [12] and the probabilistic routing scheme based on game theory (PRGT) [13]. The
two credit-based schemes use different calculation parameters. IPAD uses time-to-live for
prices and degree of selfishness for rewards. PRGT evalutes social degrees and transmission
history with a Markov chain to calculate prices and message importance for rewards. The
following simulations are conducted by OMNet++ (https://omnetpp.org (accessed on
20 August 2022)) with the OPS framework (https://github.com/ComNets-Bremen/OPS
(accessed on 20 August 2022)). The parameter setting is listed in Table 1 for maritime
environments where communications are over long ranges, which is associated with sparse
density of node points. Random movement is selected because it is the part of mobile
model in the latter network capacity analysis used to show the average theoretically. Nodes’
selfish behavior is partly cooperative [17] in our simulations. Certain parameters, such as
movement and the type of selfish behavior, are reflected by λm indirectly.

Table 1. Simulation parameters.

Parameter Value

Simulation time 8 hours
Area size 5× 5 km2

Transmission range 300 m
Transmission speed 1 Mbps
Node count 100
Message interval 15 s
Message size truncnormal (1.5, 1) MiB
Buffer size 56 MiB
Node selfish bernoulli (0.7)
Movement change interval truncnormal (30, 15) min
Movement angle delta normal (0, 30)◦

Movement velocity normal (30, 10) mps

Because successful transmissions in opportunistic networks are highly dependent on
mobility and node forwarding, selfish nodes reduce delivery ratios [13] remarkably. Utility

https://omnetpp.org
https://github.com/ComNets-Bremen/OPS
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$∗ represents the incentive degree, which can be reflected by delivery ratios in the network
with selfish nodes. In comparison, the co-domain of $∗ is rescaled with the same co-domain
of delivery ratios due to the different scalars. The rescaled values are analyzed by mean
square errors (MSE), as shown in Table 2 and Figures 3 and 4. We analyze each of them
in the following subsections. Another important metric for opportunistic networks is the
contact time of the nodes. Because selfish nodes decrease contact times due to the lower
forwarding rate and incentive schemes try to increase the rate shown by delivery ratios, it
is implied in delivery ratios that there is a higher delivery ratio with a lower contact time if
there are no extra factors, such as attackers.

Table 2. MSE between delivery ratios and $∗.

Parameter IPAD PRGT

scheme parameter 5.18× 10−5 1.76× 10−4

buffer size 5.00× 10−4 7.04× 10−4

energy capacity 2.48× 10−5 4.14× 10−5

(a) comparison of v (b) comparison of buffer size (c) comparison of energy capacity

Figure 3. Verification with PRGT.

(a) comparison of β (b) comparison of buffer size (c) comparison of energy capacity

Figure 4. Verification with IPAD.

3.1. Incentive Schemes

The message price per byte v in PRGT affects the message price and reward directly;
thus, it is selected as an argument in this verification. For PRGT, $∗ and delivery ratios
from simulations are shown in Figure 3a.

In IPAD, the private selfish factor β is the parameter for analysis, and is used in the
payoff function for incentive. With a larger β, a larger price is needed and nodes have to
forward more messages to obtain credit for their own messages, as shown in Figure 4a. As
a whole, the similar relations show the correctness and generality of r(qm).

Furthermore, from $∗ and delivery ratios, it can be found that the impact of parameters
in incentive schemes is low. The main factor is the incentive strategy, represented by r(qm).
The $∗ of PRGT is larger than that of IPAD, which means that the degree of incentive of
PRGT is greater than that of IPAD in the same scenario.
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3.2. Buffer Size

Similar to the previous verification, delivery ratios and $∗ with buffer sizes are shown
in Figures 3b and 4b. The two similar relations suggest that buffer sizes can affect perfor-
mance, and the proposed model reflects the realistic relationship with buffer size. Intuitively,
message sizes have similar results as buffer sizes, because they are inversely proportional
in the model and work together to store messages in simulations.

An increasing buffer size means that a node can forward more messages or a larger
message at a time, however, the increase is slowed down because of the restriction of nodes’
movement paths. Therefore, too large a buffer size is useless for network performance
unless used with a larger message size.

3.3. Energy Capacity

The selfish behavior caused by energy in simulations is that if the energy is lower than
the safety value, forwarding is stopped unless nodes need credits. The energy capacity is set
to simple values here instead of considering a real scenario for easier calculations and un-
derstanding. Delivery ratios and $∗ with energy capacities are shown in Figures 3c and 4c.
These two similar relations suggest that this parameter can affect performance and the
proposed model can reflect the realistic relationship.

Similar to messages size, the energy consumption per action has similar results to
energy capacity, as they influence each other in the model and the simulations.

4. Capacity Analysis for Incentive Schemes

Network capacity can be analyzed with the proposed model by abstracting incentive
schemes. For simplification, this analysis is based on an existing efficient mobile model
of a sparse clustering regime [2], in which nodes’ behaviour resembles the opportunistic
networks with social groups discussed in Section 1. The network model is introduced at
first. then the capacity and factors are discussed.

4.1. Traffic Model

We assume all nodes communicate with others at the same rate λ.

Definition 1 (The throughput capacity of opportunistic networks). The throughput capacity
λ is that nodes can sustain Θ( f (n)) bits per second if there are deterministic constants c > 0 and
c′ < ∞ such that {

limn→∞ Pr[λ(n) = c f (n) is feasible] = 1
limn→∞ Pr[λ(n) = c f (n) is feasible] < 1 .

(15)

4.2. Network Topolopy

The sparse clustering regime considers n nodes moving over a square with area n, and
nodes are divided into m = Θ(nv)(0 ≤ v < 1) groups. Each group covers a disk with radius
R = Θ

(
nβ
)
. The average number of nodes per cluster is assumed as q = n/m = Θ

(
n1−v).

When v + 2β < 1 (i.e., mR2 = o(n)), the strong node cooperation in which communications
are mainly dependent on mobility is considered as a sparse clustering regime.

The time is divided into slots. Cluster centers and nodes are independent and iden-
tically distributed (IID) and uniformly chosen among the whole network and their own
cluster, respectively, at the beginning of each time slot. That is, each cluster center randomly
selects a point in the network area as its new center and nodes randomly select positions in
the contained cluster. Nodes transmit messages without movement.

4.3. Scheduling Policy

Nodes move in clusters and clusters move in the whole area such that different usage of
high and low quality communications is exploited. The tradition models can be considered
as all nodes under the same cluster with different node density. The scheduling policy
defines how clusters work under the regime, which is shown in Figure 5.



J. Mar. Sci. Eng. 2022, 10, 1474 9 of 18

Step 1

Cs
Ck

Step 2

Ck

Cd

Step 3
Cd Step 4

Cd

Figure 5. Scheduling policy.

1. A source creates relays Rs in source cluster Cs via multicast. The message is sent to a
cluster Ck(k = 1, · · · , Rc

s) by one-hop unicast when the cluster meet others.
2. Relays Rk

s are created in Ck via broadcast. After clusters repeat these actions some
number of times, the message reaches the destination cluster Cd.

3. Relays Rd
s are created by broadcast in the destination cluster until the message is near

to the destination node.
4. If the distance between the destination node and the current node is within a range ls,

the message is transmitted via hs-hop unicast to reduce resource usage.

4.4. Transmission Protocol

If sources i and j want to send messages to destinations k and j, respectively, for an
arbitrary other node k, the following equation should be satisfied [18]:

|Xj − Xi| ≥
∆
2
(|Xi − Xk|+ |Xj − Xl |) , (16)

where Xi is the position of i and |Xi−Xj| is the distance between them. The basic inequation
is often used in research directly, and is associated with incentive schemes similar to the
physical model in [18].

To have transmissions, the incentive degree should have a lower bound, that is,

$(µ) ≥ $ . (17)

According to inequality properties, we have

$k
$i + 1

≤ $
$ + 1

. (18)

If we assume successful transmission probabilities between nodes are the same, the
closest node has the highest cooperation degree. Moreover, +1 in the left formula has little
impact on the inequation. Therefore, from the previous formula we can infer that

$
(

µk
|Xk−Xj |α

)
$
(

µi
|Xi−Xj |α

) ≤ $
$ + 1

, (19)
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where α is the distance decay and µ replaces entanglement λ in (3) to avoid conflicts with
the throughput λ. After expanding $(µ), we have

|Xi − Xj|α

|Xk − Xj|α
µk
µi
≤ $

$ + 1
. (20)

In the worst situation, µk
µi

is equal to µ>
µ⊥

where µ> is the maximum feasible entangle-
ment in the scene and µ⊥ is the minimum feasible entanglement to lead to the emergence of
communications in the scene which meets that ∀µ > µ⊥ implies q∗(µ) > 0 and $∗(µ) > 0.
Then, we have the inequation with the distance and incentive schemes:

|Xk − Xj| ≥
(

µ>
µ⊥

$ + 1
$

) 1
α

|Xi − Xj|

= (1 + ∆)|Xi − Xj| ,
(21)

where ∆ :=
(

βPmin
Pmax

) 1
α − 1.

4.5. Upper Bound of Network Capacity

Different from the other studies, because ∆ is deemed as a variable associated with
incentive schemes by (21), it is not simplified during derivations. According to the inter-
ference restriction and the meeting probability among nodes and clusters, the amount of
messages that can be transmitted in a time slot between clusters is O

(
mR2

∆2

)
if the transmis-

sion range is Θ
(

R
√

m
n

)
and the amount of messages in a cluster is the similar. Therefore,

we can propose the following theorem:

Theorem 1 (Throughput capacity of incentive schemes). In a sparse clustering regime with
incentive schemes, the throughput capacity can achieve Θ

(
mR2

∆2

)
and the upper bound can be

reached if and only if the transmission range satisfies li = Θ
(

R
√

m
n

)
, where i is a duplication in a

cluster, and li = Θ(1), where i is a duplication between clusters. Each node can achieve Θ
(

mR2

n∆2

)
.

We dismiss the proof here for simplification, as it is similar to the proofs of Theorem 1
and Theorem 2 in [19].

The above conclusion does not consider the limited ratio resources that messages can-
not be sent out due to congested channels when many nodes send messages simultaneously
in the same area. If the channel capacity can transmit W bits per second during the whole
network alive time T, each bit b at hth-hop satisfies

λnT

∑
b=1

h(b)

∑
h=1

1 ≤ WnT
2
≤WnT . (22)

According to (16), there are no other nodes in the disk radius ∆
2 times transmission

range. Each node consumes 1
n in area n averagely, thus, the summing area that source

nodes consumes meets
λnT

∑
b=1

h(b)

∑
h=1

Sb ≤WT , (23)

where Sb is the area of bit b and h(b) is the hop of bit b. The following lemma can be
achieved with the above idea:
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Lemma 1 (Throughput inequation considering ratio resources). Considering ratio resources,
the throughput of bit b under sparse cluster regime should meet the following inequation:

λsnT

∑
b=1

∆2

4
E[Rd

s
b]− 1
n

+E

λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

π∆2

4
lh
b

2

mR2

 ≤ cs
1WT log n , (24)

where cs
1 is a positive constant.

The proof is omitted for simplification as it is similar to Proposition 3 in [20] and
Lemma 3.3 in [2]. With the above lemma and theorem, we can deduce the following theorem:

Theorem 2 (throughput capacity under sparse clustering regime with incentive schemes).
In a sparse clustering regime, the throughput capacity with incentive schemes is

O

(
min

{√
n log n
mR2∆2 ,

mR2

n∆2

})
(25)

and the upper bound can be achieved when

l = Θ
(

R
√

m
n

)
.

The proof is shown in Appendix A.

5. Factors Discussion

To design efficient incentive schemes with the formula, it is necessary to take a detailed
discussion for each factor. The cooperation degree is introduced as an important factor for
the incentive degree that provides a base of a network, as discussed in Section 2.1, so we
discuss it first. Then, the mobility mode is analyzed because the capacity formula without
incentive schemes should have the same result as the sparse clustering regime. Finally,
each factor in utility $∗ reveals impacts.

5.1. Cooperation Degree

As µ> and µ⊥ in (21) are defined by the network environment, intuitively, Theorem 1
should meet lim∆→∞ λs = 0 and lim∆→1 λs = O

(
mR2

n

)
. The first proposition is easily

derived because limµ→∞ $ = ∞ theoretically. When lim$→∞ ∆ =
(

µ>
µ⊥

) 1
α − 1 = 1, the

second proposition is derived. It must be noted that µ has explicit upper and lower bounds
in reality because nodes cannot communicate to others without restriction. Therefore, the
real upper bound should consider the cooperation between nodes defined by network
topology and mobility.

5.2. Mobility Mode

Without incentive schemes, m, R, and n, represented as mobility mode, are the main
factors. The capacity defined in Theorem 2 is a minmum value from two formulas. To
find the impactful range of each formula, the variation of network capacity versus the
number of nodes is shown with results in Figure 6. With an increasing number of nodes,
network capacity grows quickly at the beginning. It converges at last due to the limited
ratio resources. The red vertical line is the break point represented as the ideal number of
nodes in a special network. Here, m and R have corresponding results as above because
they are inversely proportional to n.
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Figure 6. Number of nodes versus throughput.

5.3. Incentive Factors

In the following discussion under the two different formulas, the part from Theorem 1
in Theorem 2 is discarded for simplicity. The parameters used in analysis are listed in
Table 3, and are selected according to simulations in Section 3 and cluster sparse regime [2].

Table 3. Value of parameters.

Parameter Description Value

n number of node 100
v Grow exponent of m 4/9
β Growth exponent of R 1/3
µ> Maximum achievable entanglement 10
µ⊥ Minimum achievable entanglement 5
α Decreasing coefficient of cooperation 1
µ Entanglement 6
c Constant cost 0
s Safty coefficient 2
Ec Energy cost per message 1
Bc Buffer cost per message 1
Es Energy capacity 5
Bs Message buffer 5
Z Message price 100
R Message reward 30

How incentive schemes affect network capacity is shown in Figure 7. An incentive
scheme usually tries its best to increase its incentive degree to reach a higher capacity.
However, the decreasing rate of change suggests that throughput cannot increase infinitely.
The limitation is restricted by the cooperation degree discussed in Section 5.1. Moreover,
the incentive degree has its own extremum, as shown in Section 3. Therefore, thoughput
can reach its limitation earlier.
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Figure 7. Incentive schemes versus throughput.

The limitation can be observed obviously through the relation with buffer usage and
energy usage. Similar to the analysis in Section 3, the message size and energy cost per
message work with buffer size and energy capacity together. As such, only the latter are
discussed here; the relations are shown in Figures 8 and 9. The fact that they reach the
limitation quickly suggests that both of them are the basic condition to ensure that nodes
communicate. If a higher network capacity is needed, other factors should be adjusted
to increase the achievable upper bound. According to this analysis, a suitable buffer and
energy are more important; their value can be taken from our theorem.
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Figure 8. Buffer size schemes versus throughput.
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Figure 9. Energy capacity versus throughput.
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The secure and incentive scheme can affect the achievable upper bound shown in
Figures 10 and 11. Both of them have negative effects on network capacity. However,
we cannot reduce them discretionarily. A too low reward or a too high price may block
communications between nodes due to insufficient credits. A too low security coefficient
may bring attacks to nodes. With these conditions, the relations can help us to design
incentive schemes to select rewards and evaluate the security coefficient for both a node
and the network.
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Figure 10. Reward versus throughput.
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Figure 11. Security versus throughput.

6. Conclusions

In this paper, we design a mathematical model based on a quantum game model
involving node parameters and use this model with a sparse clustering regime to analyze
network capacity with incentive schemes. The mathematical model reflects the incentive
degree for an incentive scheme in opportunistic networks with selfish nodes, finding that
the character of incentive schemes is mainly determined by the relationship between reward
and cost. According to the capacity analysis, how the factors affects on capacity are aware.
The formula can be a guideline for new efficient incentive schemes. However, only energy
usage, buffer usage, and security are considered. Other parameters, such as messages alive
time and how the environment affects entanglement, can be taken into account as well.
The capacity analysis associates the transmission model with incentive schemes simply. In
the future, a more powerful model should be raised to reveal more details. In addition to
sparse clustering regimes, other mobility models can be analyzed with incentive schemes.
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Appendix A. Proof of Theorem 2

Applying Cauchy–Schwarz inequality to the second monomial in (24) obtainsλsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

lh
b


2

≤

λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

1


λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

lh
b



≤ WTn
2

λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

(lh
b )

2 ,

where the last step is from (22). Then, we have

E

λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

(lh
b )

2

 ≥ 2
WTn

E


λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

(lh
b )


2 .

Applying Jensen inequality to the above inequation obtains

2
WTn

E


λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

(lh
b )


2 ≥ 2

WTn

E

λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

(lh
b )




2

,

where ls
b is the transimssion range of bit b from source s and rs

b is the distance of each
transmission between two nodes. For multi-hops, the following inequation is obvious:

hs
b

∑
h=1

lh
b ≥ ls

b .

Appling Jensen inequality yields

2
WTn

E

λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

(lh
b )




2

≥ 2
WTn

(
λsnT

∑
b=1

E[ls
b]

)2

E

λsnT

∑
b=1

hs
b+

nRcs
b

mR2

∑
h=1

(lh
b )

2

 ≥ 2
WTn

(
λsnT

∑
b=1

E[ls
b]

)2

.
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Substituting the above formula into (24) yields

λsnT

∑
b=1

E[Rd
s
b]− 1
n

+
2π

WTnmR2

(
λsnT

∑
b=1

E[ls
b]

)2

≤
4cs

1WT log n
∆2 . (A1)

To continue the calculation, we should discuss Rd
s
b. Let ˆls

b(t) be the minimum distance
between the current cluster to Cd in slot t. If the value is negative, there is an overlap
between the current cluster and Cd. For convenience, we define ˆLs

b(t) = max(0, ˆls
b(t)). For

bit b, considering the network area and the transmission area of a cluster yields

E
[

n
[R + ˆLs

b(t)]
2

]
= E

[ n
R2 ILs

b(t)≤0

]
+E

[
n

[R + ˆls
b(t)]

2
ILs

b(t)>0

]
. (A2)

For the second monomial, we can obtain

E
[

n
[R + ˆls

b(t)]
2
ILs

b(t)>0

]
=
∫ √n

0

n
(R + u)2 d Pr

[
ˆls

b(t) ≤ u
]

= 1− n
R2 Pr

[
ˆls

b(t) ≤ 0
]

+
∫ √n

0

2n
(R + u)3 Pr

[
ˆls

b(t) ≤ u
]

du .

(A3)

Therefore, the original inequation is

E
[

n
[R + ˆLs

b(t)]
2

]
= 1 +

∫ √n

R

2n
u′3

Pr
[

R + ˆls
b(t) ≤ u

]
du′

= 1 +
∫ √n

R
2πRc

s
b(t)

(R + u′)2

u′3
du′

≤ 1 + 6πRc
s
b(t)

∫ √n

R

1
u′

du

= 1 + 6πRc
s
b(t) log

√
n

R
≤ 1 + 6πRc

s
b(t) log n

≤ 6πRc
s
b(t) log n .

(A4)

For a message under all slots, we have

E[(R + L̂s
b)

2] ≤ (R + ls
b)

2

E
[

n
[R + L̂s

b]
2

]
≥ n

(R + ls
b)

2

n
(R + ls

b)
2 ≤ 6πRc

s
b log n

Rc
s
b ≥

n
6π log n(R + ls

b)
2

≥ n
24π log nRls

b
.

(A5)

Substituting the above inequation into (A1) yields

1
24π log nR ∑λsnT

b=1 E[ls
b]

+
2π

WTnmR2

(
λsnT

∑
b=1

E[ls
b]

)2

≤
4cs

1WT log n
∆2 . (A6)
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If hs
b <

nRc
s
b

mR2 , the ratio resources consumption does not decrease with a decreasing
number of hops due to the unchanging transmission range. In such a situation, we deem

hs
b = Θ(

nRc
s
b

mR2 ), which is contained in the other situation and has the same result.

If hs
b ≥

nRc
s
b

mR2 , we can calculate (A6) directly. If ∑λsnT
b=1 E[ls

b] < λsTmR2, the first mono-
mial has little impact on the result in (A6), and it is duplication in clusters which is restricted
by duplication in clusters according to Theorem 1. We ignore this term and obtain

2π

WTnmR2

(
λsTmR2

)2
≤

4cs
1WT log n

∆2

λs2 ≤
cs

1nW2 log n
mR2∆2

λs ≤ O

(√
n log n
mR2∆2

) (A7)

If ∑λsnT
b=1 E[ls

b] ≥ λsTmR2, according to Theorem 1, the same upper bound can be

achieved when li = Θ
(

R
√

m
n

)
.
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