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Abstract: In this paper, a semi-analytical method has been developed for the hydrodynamic analysis
of a floating polygonal platform that is centrally placed within a floating polygonal ring structure
under wave action. In view to understand the wave interactions inside the ring structure, the
formulation considers two cases: when the platform and ring structure oscillate individually, and
when they oscillate together under wave action. The polygonal shapes of the floating structures can
be created from a parametric equation involving the cosine-type radial perturbation. The formulation
and computer code are verified by comparing the results with those obtained from the commercial
software ANSYS AQWA. When floating ring structures are used, trapped waves are created in the
inner water basin resulting in resonance. The interactions among the trapped waves, inner floating
platforms and outer ring structures are investigated by performing parametric studies. By changing
the dimensions of the platform and ring structure such as the drafts, the radii of platforms and
polygonal shapes, their effects on major hydrodynamic quantities may be understood.

Keywords: 3D hydrodynamic analysis; resonance; floating polygonal structures; wave energy
harvesting; cosine-type radial perturbation; eigenfunction expansion method

1. Introduction

Floating platforms have been used for offshore oil and gas rigging, offshore renewable
energy farms, aquaculture farms, floating hotels, floating parks, floating houses and floating
entertainment/leisure facilities [1-3]. Floating breakwaters create a sheltered sea space that
allows safe operation and maintenance of floating solar farms [4], fish farming [5], ship
harbouring [6-8], etc. By placing a floating platform within a floating ring breakwater, one
may have a practical solution for operating the aforementioned activities in an open sea.
For example, Figure 1 shows a conceptual design of a mega offshore floating fish farm
surrounded by a hexagonal floating breakwater in an open ocean. The internal floating
hexagonal platform houses the control centre, power production and storage facility, fish
processing plant, offices, workers” quarters, etc. Alternatively, the floating ring structure
may be designed to trap waves to create a high wave energy environment with the view
to harvest wave energy using the piston-like internal floating cylinder, i.e., Wave Energy
Converter (WEC) device [9,10].

Garrett [8] determined the wave motion inside a thin-walled bottomless harbour
using an analytical method. Mavrakos [11] and Mavrakos [12] extended Garrett [8] study
for thick-walled floating bottomless circular cylinders and solved the diffraction and
radiation problems, respectively. Later, Mavrakos and Chatjigeorgiou [13] tackled the
second-order waves for the same problem in order to improve the inaccuracy of the
linear wave potential theory due to the trapped waves in the inner water basin resulting
in the highly amplified resonant waves. For two concentric floating circular cylinders,
Mavrakos [14] and Mavrakos [15] obtained the wave exciting forces and hydrodynamic
coefficients. Mavrakos, et al. [16] addressed tightly moored two concentric floating circular
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cylinders under first and second-order waves. Konispoliatis, Mazarakos and Mavrakos [10]
presented analytical solutions for an array of Oscillating Water Column (OWC) devices.
Each OWC device consists of concentric circular cylinders.

(b)

Figure 1. HEXAGON: a mega offshore floating fish farm: (a) plan view; (b) isometric view.

However, the existing formulations are mostly based on floating circular cylinders
as it is analytically tractable in the cylindrical coordinate system. In practice, non-circular
models are used for marine structure applications [17-19]. Recently, Park and Wang [20]
and Park and Wang [21] respectively investigated the hydrodynamic behaviours of floating
polygonal platforms and floating polygonal ring structures by solving the diffraction and
radiation problems. The shape of the polygonal platform or ring structure was created by
using the cosine-type radial perturbation [22]. It has been shown that these hydrodynamic
problems can be solved analytically by using the Eigenfunction Expansion Method. In
continuing this line of study that uses the analytical method for hydrodynamic analysis
of floating structures, this paper further investigates the hydrodynamic behaviour of
a floating polygonal platform that is centrally placed within a floating polygonal ring
structure. In order to understand the wave interactions inside the ring structure, the
study will investigate the cases where the floating platform and ring structure oscillate
individually as well as when they oscillate together under wave action. A parametric study
involving different drafts, widths of the floating polygonal platforms and polygonal shapes
will be performed to understand the hydrodynamic actions inside the floating polygonal
ring structure that exhibits resonance phenomena at specific wave frequencies.

The contents of the paper are laid out as follows: Section 2 defines the problem at
hand and Section 3 presents the governing equation and boundary conditions for the prob-
lem. Section 4 solves the diffracted and radiated potentials by using the semi-analytical
approach. Sections 5-7 deal with the determination of the wave exciting forces, hydrody-
namic radiation forces and motion responses of the floating platform and ring structure,
respectively. Section 8 demonstrates the verification of the present semi-analytical approach
by comparing the results with those obtained from the commercial software ANSYS AQWA.
Section 9 furnishes the hydrodynamic results for parametric studies. Finally, concluding
remarks are given in Section 10.

2. Problem Definition

Consider a floating rigid regular polygonal platform that is centrally placed within
a floating rigid regular polygonal ring structure as shown in Figure 2. They are allowed
to oscillate together or individually but are assumed to be kept in place as the current
and drift force are not considered in this study. The considered water depth is & and the
incident wave, having a period T and amplitude A, impacts the floating platform and ring
structure at an oblique angle 8. The freeboard is assumed to be sufficiently high to prevent
wave overtopping. The drafts of the platform and ring structure are di and dy, respectively.
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The cylindrical coordinates (r, 8, z) are adopted with the origin at the centre of the regular
polygonal platform.

i\i

:T R;
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Figure 2. Floating polygonal platform and ring breakwater.

The plan shape of the polygonal platform or polygonal ring structure is generated by
using a radius function defined by the cosine-type radial perturbation given by [22]

Rl(e):R01{1+81C081’1p1(9*901)}, 1=1,2,3 1

where Ry, €], 1y, and 0y, are parameters to be chosen by the analyst. This radius function can
be used to construct all kinds of regular polygonal shapes. For example, polygonal shapes
such as an equilateral triangular, square, pentagon and hexagon can be straightforwardly
created by choosing the appropriate values for the dimensionless parameters ¢;, 1, and
6p,, which are summarised in Table 1. The size and shape of the polygonal platform and
ring structure are predominantly controlled by R; (I =1, 2, 3) where [ = 1 represents the
platform boundary whilst | = 2 and 3 represent the inner and outer boundaries of the
ring structure, respectively. In addition, one can freely orientate the polygonal shapes by
changing 6, .

Table 1. Regular polygonal platform and ring shapes created from the cosine-type radial perturbation
So, denotes the plan area of the polygonal platform for 4 = 1 and the polygonal ring structure for
g = 2. The values in the bracket are in turn associated with Ry, Ry and R3.

Polygonal
Shapes

Circle Triangle Square Pentagon Hexagon
So, Ao, 1.005 x A, 1.002 x A, 1.001 x A, 1.000 x A,
So, Ao, 1.005 x Ao, 1.002 x Ay, 1.001 x Ay, 1.000 x Ag,
£ [0, 0, 0] (0.1, 0.1, 0.1] [0.06, 0.06, 0.06] [0.04, 0.04, 0.04] [0.03, 0.03, 0.03]
1y, [0, 0, 0] [3, 3, 3] 4, 4, 4] (5,5, 5] [6, 6, 6]
0o, - (3. 3, 5] (3, 1 4] 13, 3, 5] (5. & 4]
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In this study, the following hydrodynamic properties of floating polygonal platform
and ring structure are to be determined: (i) diffracted and radiated potentials, (ii) wave
exciting forces, (iii) added mass, (iv) radiation damping, (v) RAOs (Response Amplitude
Operators), (vi) wave field.

3. Governing Equation and Boundary Conditions

The hydrodynamic analysis will be performed in the frequency domain. The fluid
domain is divided into 4 regions as shown in Figure 2. Region I is the sea space underneath
the platform structure, Region II is the sea space between the platform and ring structure,
Region III is the sea space underneath the ring structure and Regions IV is the sea space
outside the ring structure. The fluid is assumed to be incompressible, inviscid and irrota-
tional, and hence, the linear potential theory may be applied. Accordingly, the fluid motion
is governed by the following Laplace equation

10 [ 9¢ 10% 0%
rar<rar)+r2392+az2_0 @
where ¢ is the velocity potential given by
¢ =¢r+¢p +¢r ®)

in which ¢; is the incident potential, ¢p the diffracted potential and ¢r the radiated
potential. The radiated potential may be expressed as the sum of 6 radiation modes
corresponding to the six degrees of freedom as

" ()
or = Y (—iwgied) )
j=1
where i is the imaginary unit, w the wave angular frequency, ¢; the motion amplitude of

the ring structure for the j-th radiation mode and (])g) the normalised radiated potential for
the j-th radiation mode.
The velocity potential must satisfy the following boundary conditions

9%

= —¢ on the free surface 5)
0z z=0 8 lz=0

a—(P =0 on the seabed 6)

0z |,__y,

. OppR . e

rlg‘go <8r —ik¢pr) =0 at infinity (7)
V¢png = —Vrng, at wetted surface for diffraction problem 8)
V¢g) ng, =njng, (j=1,2,---,6) at wetted surface for radiation problem (9)
where k is the wave number, ¢ the gravitational acceleration and n; the generalised
motion normal for 6 DOFs (degrees of freedom), i.e.,, n; = ny, n, = n,, n3 = ng,
ng = —(z—zg)ny + (y —yg)nz, ns = (z — zg)ne — (x —xg)n; and ng = —(y — yg)ny +

(x — xg)n,, where (xg,YG,zg) are the coordinates of the floating structure’s centre of
gravity and ng, the unit normal vector to the polygonal body surface pointing out of
the floating body. In order to consider the polygonal geometries, the surface function
Si(r,0) =r—Ry(0), (I =1,2,3)is introduced and its derivative with respect to 6 is defined
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as % =— aRgée) [23]. By using the surface function, the unit normal vector to the wetted
body surface pointing to the fluid ny, is given by [23]
3,2 105 | 957
VS (r,8 Slr+ 2L+ Lz 1 10S,=
5 = l(r ): r r 90 z — ?_'_77194_0; (10)
|ng, |ng, | 2 r 96

19S
1+ (77&)

where V denotes the del operator in a cylindrical coordinate system for obtaining the
gradient of a vector. Thus, the normal velocity on the floating polygonal platform and ring
structure wetted surface can be in general calculated by using the divergence operator in
the cylindrical coordinate system as

(g 1
Vs = o2 (ar T ae) (an
1+ (7%)

4. Solutions for Diffracted and Radiated Potentials

The assumed solutions for the diffraction and radiation problems can be expressed as
a unified form as given by

. . 00 . |m| o0 .
(ip) _ i) Gop) (1 (j.p) Im(pur) im
¢ = dp + m;w{AmO <b1 ) + n;l A T (pub) cos pu(z +h) pe (12)

(i) _ (i) Gip) Hm(kr) | 20 | & [ o6p) Im(knr) (op) Km(knr) | Zu(2) | imo
3 ’m:);ooHBmO Jm (kr) +Cpg Hm (k"l)} Zy(0) +n§1{3nm T (knby) + Crirn Kt (knay ) } Z,,(O)}“ (13)

ap

. i . . o . +|m| . —|m| .
¢§],P) _ q)}(jép)Jr D(()]O:P) In i + E[(]]Orﬂ) In b73 + y {D;(ibp) (ﬁ) + E%ﬂ) (L) }eml9
[e0]

m=—
m#0 (14)
+ & L (DU el Bl el f cosqu(z+ e

m=—oo p=1

pUP) = i {F(j,p) Hu(kr) Zo(z) + i plip) Kin(kn) Zn(2) }eime (15)

"0 Hy(kaz) Zo(0) " Kon(knas) 24 (0)

m=—oo n=1

where the superscript j denotes the diffraction when j = 0, otherwise the radiation mode
for 6 DOFs (j = 1 for surge, j = 2 for sway, j = 3 for heave, j = 4 for roll, j = 5 for pitch and
j = 6 for yaw) and the superscript p denotes the oscillating body, i.e., p = 1 for the central
platform, p = 2 for the ring structure, p = 3 for the two bodies oscillating monolithically
or individually and p = 0 for zero-motion to address the diffraction problem. Hence, in
order to obtain the solution for the radiation problem, the two cases for p = 1 and 2 must

be added. 4),(,]; P and ¢,E]3"’ ) are respectively the particular solutions for Regions I and III and
the vertical eigenfunction Z,, for both Regions Il and IV is given by

_ coshk(z+ h) 1 sinh2kh B
Zy(z) = W, Np = 5 {1 + Zkh} (n=0) (16)
_ cosky(z+h) 1 sin 2k, h B
Za(e) = = N = 2{1+ S| (=12 ) (17)

A,%np ), B,(é;f ), C,Sﬁ;f) and D,Si;f ) are the unknown complex coefficients to be determined;
Jm is the Bessel function of the first kind of order m, I, and K, are respectively the modified
Bessel function of the first and the second kinds of order m; a; and b; are respectively the
shortest and the longest distance from the origin to the structure surface along the radial
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direction atr = R;(0) (I =1, 2, 3). The wavenumber k, and the vertical eigenvalue k;, for
Regions Il and IV are given by

2
& _ ktanhk =0 (18)
8
w?
ko = —ik, ? +kptank, =0 (n=1,2,00) (19)
and vertical eigenvalues p, and g, for Regions I and III are respectively given by
n
Pn= 17— 7 (n=0,1,2,00) (20)
M= g (1=012,) e
—d,

The particular solutions 4)5,]'1”7) and 4)%”7 ) are given by

4);]{77) (r, 9,2) = 750]'50V¢1 (22)
4(z4h)2— 14437 )r? . S4iyG, —O5i%G, )12
ety — () S(hfdl) 31)r {53j + 4y <r sinf — ycp> — &5; (rcosf) - xq,) }251,, + (savey o5y )2 Gsp(hjl)cp)

471(,/3)';7) (1’, 9,2) = 750]'50P¢1
4(z+h)* - (1+45) (23)

+W)’2 {(53j + 04 <r sinf — ]/G,,) — 05 (rcos@ — xq,) }252,, + W

where §;; is the Kronecker delta (1 if i = j, 0if i # j) and (pr’ pr) the horizontal

coordinates of the centre of gravity of the oscillating body p. The incident velocity potential
in the cylindrical coordinate system is given by

ng > im0+ —p) coshk(z + h)
¢1(r,0,2) Y Jwm(kr)e ot (24)

m=—00

The matching conditions for the pressure and velocity continuities are

Gp) . _ {00y Ver + (§1P + 53?)“]'}“51 o —d1 <z<0
V¢, ng, = Vqﬁ]”’).nsl atr = Ry and h<z<—dy (25)
Prp=¢op atr=Ry and —h<z<-—d; (26)

Gp) . _ { d0p V1 + (‘SZP +53p) j}'I‘Sz - —dy <z<0
V¢, ng, = g (p) atr = Ry and h<z<—d (27)
4)3,? = ¢2,P atr =Ry and —h<z< —d, (28)

Gp) . _ _{_JOPV(PI + ({SZP + d3p)m; } s, _ —d <z<0
Vg, ngg = _ V¢§]'p)'n53 atr = Rz and h<z<—d (29)
oV = gUP) atr =Ry and —h <z < —d, (30)

where R; (I =1, 2, 3) denotes the radius function as defined in Equation (1) and
nj-ng (I =1, 2, 3) for 6 DOFs is provided in Appendix A.

We consider the horizontal coordinates of the centre of gravity to coincide with the
origin, i.e., (xg,,¥s,) = (¥G,,¥g,) = (0, 0); however, the vertical coordinate of the centre
of gravity may not be zero, zg, # 0 and zg, # 0. The assumed velocity potentials
given in Equations (12) and (15) are substituted into the matching conditions given in
Equations (25)—(30). This furnishes

© ©
(j.p) 2 Ly (knRy) i Zinn (kn R ) 2 Ky (knRy) o Kon (knRq) Zn(z) Limb
oo (Bt { Ryt + im iy Su o+ Gl { R Rl + im ey 10 | Z5)e™

= (B0, + 1y + 83, 1Y
(r=Ry,—d1 <z<0,0<60<2m)
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£ 2 [glUn) [ R2Zam(kaRe) | i1 Tun(kuR (o) { p2 Ky (kR o Ko (kR Zu(z) yim
m:zioo n;(][ m {R% L"n((knbzl)) +im Imv((knhzl)) 51,6} + Cn;”} {R% K nn<(k/x”11)) 51’9 +um Kmn<(kn”11)) 51’9 }} T(é;e ‘
= L L AW {RERE +im TS} cos pa(z 4 e (32)
~(j)
= (50/;, -+ 51,,3 + 53/;1)731
(r=Ry,-h<z<-d,0<60<2m)
= BUP) Zun(kuR1) Gop) Ko (knR1) \ Zn(2) Limd v v AUP) Tun(paRa) 0
LT (B Ty i e 2 — T T AR cos (e + Ry
(33)
= (00, + 81, +83,)P)
(r=Ry,—h<z<-d,0<0<2m)

& 2Ty (knRa) | 7 Toun(knRo) (P { 2 Kiun(kaRa) |+ K (knRo) Zu(2) im0
m,z_oonzo[ { 2T lnby) T T (Ruby) 2 } + G {R 2K (knar) T Ko (k) Sl’e}] 20 (34)
= (B0, +dap + 83, HY

(r=Ry,—dy <z<0,0<060<2n)
b b (p) 2 Ly (knRo) o Linn (knR2) 2 K (knRp) Kmn(’(ﬂR ) Zn (Z)n‘ 0
m:zfoo nEO |:an {RZ Imn(knb22> +um Zmn("rlbzz } {Rz Komn knalz ’Cmu(knﬂlz) Sl 9}] Z,(0) e
OO
_ 2 L (9 R2) i Imn(an2>
m*—oon 0[ mn {RZ Zonn( Wnb3) Imn(qnb%) 52’9} (35)
. ~ ()
K (gnR2) . Kun(gnR
B { B} + im en(0iaf Sao f | + cosau(z-+ W™ = (B + 02+ 83,)Q;
(r=Rg,—h<z<—dp, 0<0<2m)
() ()
J:P) Zinn (knRp) ]P Knn knR Zn e 6
me ngo{an T k"hzz) + Cmn Ko k,,ulz }Z,I i
> > IY?XVI )XR Kﬂlﬂ VIR j
7m Zoo Z { "j’f Inxniznb;)) + "j’f }Cmn l’;nuzz } cos qn z+ h o = (50 P + 52 P + 53 P)Q( ) (36)
= n=
(YfRz,—hSZS —dz, OSGSZTL’)
[ee] [ee] . .
(j.p) 2 Ky (knR3) Ko (knR3) Zn(z) 0 _ ()
m:gm nEO an {R3 ’Cmn(kn”; +im ’Cmn(kn“;) 53’6} Z,(0) elm ((SO P + 52 23 + 53 P)H (37)
(r=Rs3, —dy<z<0,0<60<L2m)
0
(jiP) [ p2 K (knRs) | = Knn(knRs3) Zn(2) Limf
m§m|: Z an {R3 Konn (kw”33) +im Kinn (kn”33) 53’6} Z,,(O) lm :|
2L (4nR3) i Lo (qnRs3)
m_ZW nzo[ P{Ra iy + i Sso | (38)
) ) ~(j)
b Kiun (qn R Konn (qn R _
-‘rE,(,{np) {R2 Kmn((Z)xHZS; +im Kmn((qnﬂj)) 53’9}] oS fn (Z + h)elmg o (50,}7 + 52"] + ‘5347) Q3
(7:R3,—h§2§ —dz, OSGSZTL’)
[ee]
(j,P) Kin(knR3) Zn(2) imo _ (j:p) Ziun(qnR3) (j:P) Kuun (qnR3) imo
m—zioo ng an Konn (knaz) Z (O)E m—zioo nZO Dm" Zun (qnb3) + Em" Kon (qnaz) }COSqn(Z +h)e (39)
- (‘SO,p + ‘52,;7 + 53,;7) Q3
(r=R3,—h<z<—dy, 0<0<2nm)
where S; g denotes %) (=1, 2, 3),K},, and Z,,, are respectively the derivatives of

Ry(6)

Kmn and Ly, with respect to v. iy (kn?), Zyn (Put), Zinn (qnt), Kun (qur) and Kpn (kar) are

given by

Jm(kr) forn =0

I (k r) = Im kn
A T ((knbrz)) forn >0

(bl) " forn=0
Tun(pur) = 1

L (pnt)
T (puB) forn >0

aL forn =0and m =0

Imn Qnr (hL) forn =0andm # 0
(q ) forn >0
Ian3 forn=0andm =0
A\
Konn(qnr) = (E) forn =0andm # 0
K (qn1)

Kon (752 forn >0

(40)

(41)

(42)

(43)



J. Mar. Sci. Eng. 2022, 10, 1430 8 of 29

5 ’”(%:)) forn =
Konn (knt) = KZ,I(k,,i) P 0 (44)
Km(knu3) orn >

1P o0 5 and é(])('fo 1,61 =1,2,3 ided i '
PR Q7 Py 1 (=01, ,6;1=1,2,3) are provided in Appendix B.
In the foregoing formulation, numerical integration should be used for establishing
the associated simultaneous equations because the radius functions are substituted into
the arguments of radial terms such as the Bessel function, modified Bessel function and
radial polynomial functions. Liu, et al. [24] replaced such radial terms with the Fourier
expansion series so that the integration could be performed analytically. Recently, Park
and Wang [20] suggested an improved method that enables the computational time to
be significantly reduced by using minimal numbers of Fourier coefficient sets. By using
Park and Wang [20] improved method, 13 sets of Fourier coefficients such as a,(ﬁ,L,q, bﬁnl)n(qz ),

@) 420) [2.0) () g 12

Cinng Qg+ Cmn mag  are introduced for solving diffraction and radiation
problems. The applied Fourier expansions are as given in Table 2 and their derivatives with
respect to  can be directly obtained by using the formerly obtained Fourier coefficients (see
Table 3). The Fourier coefficients can be calculated by the functional orthogonality, i.e., by
multiplying e~#1% and integrating over [0, 27].

Table 2. Fourier expansions for the functions used in velocity potential.

Veloc1.t y Condition Functions Used r Fourl.e r
Potential Expansions
oo O PR
n>0 waves Lu(pur) g=—c0 "7
n=0 Incoming Jm (kr) % b,(ﬂl’,%)qeiqg
¢ n>0 waves I (k) R g=—o0
2 12 -
n=0 Outgoing Hy (kr) °Z°: Cﬁ,}ﬁ)q eitf
n>0 waves Ko (knr) g=—co "
n= 0, r
B . _— oo 2,3 .
n=0 Incoming | _Z ds,l,n,)qelqe
m # 0 waves g=—0o0
n>0 L (qnr) A
$3 S \ 23
In =2
m=20 r
H=0, Outgoing i Y 353,'2,)qeiq9
m#0 waves r g=—00
n>0 K (qnr)
¢ n=0 Outgoing Hyn (kur) R g fﬁl qeiqe
n>0 waves Ky (knr) g=—co” "’
Incident ®© ;
o N/A waves Jm (kr) Rips y gs,},ﬁjg’)e”f(’

g=—00
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Table 3. Fourier expansions for the derivative of functions used in velocity potential.

Derivative of

Velocity Potential Condition Functions Used r Fourier Expansions
n=0 |m\r‘m|*1 @ _Z af,}}),qeiqe
In Incoming waves R =
o / ' 2 (M (1) ig6
n>0 In (Pﬂr) % ngw (amfl,n,q + amHJuq) el
_ / E S (112 (12) iq6
n=0 Jm (kr) 2 :§w<bm71,0q bm+1,0,q>elq
Incoming waves i
4 ko 12) (12) 9
n>0 Ly (knr) v ngw (bm—l,n,q + bm+1,n q) el
63% / K12 ® 12) (12)
= k ’ 4 1 9
n=0 Hy (kr) 2 X (Cm—l,O,q - Cm+1,o,q>ezq
Outgoing waves i
/ ke v (A(12) 12) iqo
n>0 Kin (kni’) -2 ngm (Cmfl,n,q + Cerl,n,q) e
n=20, ’ 00 23) -
m=0 Inz; L dygne”
g=—00
n=y, et .
m#0 Incoming waves rlml h:'—‘ q:Z_OO dﬁ’gl]elqe
(o)
f (23) (23) iq6
n>0 L (qnr) i ngw (dmil,n,q + dm+1,n,q> el
i 5 Raj3
n=20, b: X 2,3)
m=0 In 5 - ¥ e((),o,; et?
g=—00
n=0, Outeoi o |m| ml S (23) ig
m#£0 utgoing waves -5 X eypee
—o0
[ee)
n (23) (23) iq0
n>0 K (an) - % ngw (E;nfl,n,q + em+1,n,q) e
_ / ko (3) (3) iq0
n=20 Hy, (knr) 2 :Z_OO (fm—l,O,q _fm+1,o,q)elq
a&% Outgoing waves R3 i
/ ke © ®3) 3) iqo
n>0 K}, (k) y q:_m( P g+ g )€
Ay : / [ 1,2,3 12,3 i
m NA et L00 Ras§E (05,0, )en

Also, the radius function and the derivative of the surface function with respect to 6
can be obtained by using a1 4, d1,0,4 and €104

rlr—ry(0) = Y “5,(3,71,817[’6 (45)
Nny=—00
o (23) _in,
r|r:R2,3(9) = Z dg,o,;i,em ‘ (46)
Ny=—00
1 = (23) i
; = Y 6%,0,2,‘?””9 (47)
r:R2,3(9) Nny=—00
aS > 1 :
8791 - _ Z (m,)ag,g,nremre (48)
5120 Ny=——00
2S = . 23) in,
o2 =— Y (in)d%) &? (49)
Sp3=0 ny=—00
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Equations (31)—(39) can be thus expressed by using the Fourier coefficients obtained in
Tables 2 and 3 as

0o 00 00 . (e} ( ) ( ) Zu(z .
wEonEo X aimin 0§ B Byyng + CH q} 285 = (B0 + 81+ 83, Y (50)

(r=Ry,—dy <z<0,0<6<2n)

iy~ () (1)
o quiz_ooe (m+ny+q)9n§0 |: %;1 )bm n + Cz(nn )Cm " q:| ;:&)) _ miz_mnq;_ooqiz_ooe i(m+ny+q)0 Z Amn am p (51)

(r:Rl,—hSZS—dl,OSGSZTE)

~ ()
= (Go,p +901,p +03,)P1

© ) . © ,( ) ~(1) el (1)
Yy ellmaey {an +c,5m)cm,,,,}§;§0§ — ¥ ¥ ey aAUPT ) cospa(z+h)
m=—00 g=—00 0 Mm=—00=—00 n=0 (52)

n=|
= (dop +01,p + 03,) PV
(r=Ry,-h<z<-—d,0<60<2n)

=) )

Y Y of: el(m+n+q)0 Oﬁ

M=—00 11, =—00 =—00 n=

o) _
()5 G @ | zy 0)
Byt by Y Cat Comng Z”E ; (50,}7 oo+ 53,}”)%2] (53)

(r=Rp,—dy<z<0,0<60<2m)

o oo c i~ (2) (2)
)y Z Z ef(mtnr+9)0 ZO |:B£r]nf) bm ng T ann >Cm n ‘7:| é:g >)

M=—00 11,;=—00 =—00

) c (@) P~ (2)
Y % % ellmrnrae zo {D%m,n,q + E%'f)em,n,q} €08 (2 + h) (54)
M=—00 11;=—00 =—00 n=f
~(j)
= (bo,p +02,p +93p)Q

(r=Ry,—h<z<—dp,0<60<2m)

0 © i o ~(2) ~(2)
i(m Gp) 7 Gip) Zu(z
m:);wq:;me< +9)0 h) [B,,{,f Bg + Cit cmnq} o
o o 0 ~(2) . 55

— Yy eilmtae ) Di,{,f’)dmm—l-E,sm)e,(ﬂLq} cosgu(z+h) = (8, + 82, + 05,) QY (55)

M=—00 j=—00 n=

(r:Rz,fhgzgfdz,ng)an)
[ee] (e} [ee]
i(m+n,+ (p) 7 Zn(z) _ (1)

m_gwnrgwq_;we( q =0 F fmnt]Zn(O (5017“‘52;1"'53;7)% (56)

(r=R3 —dy <2<0,0<6<2nm)

o [eo) o) [ee]

i(m+n,+q)60 (.p) ~ O Zn(z)
)3 ) Y e 1 Z Fnn fmn,qzn(())

M=—00 ;=—00 =—00

_ Z Z E ei(m+m+q)92

M=—00 11, =—00 =—00 n=0

~(j
= (dop +02p+35)Q;3

®3) 3)
D,Sﬁnp)dmnq+E§,m)emM] cos gn(z +h) (57)

(r=R3,—h<z<-—dp,0<6<2m)

= 0 . 0 o] e . o] ( )
Y Y ei(m+q)6 Y FH’ fman”EZ) -5 Y et(m+q)9 Y |:D£1]1rf7)dmnq+E§]1f) m)nq:| COSqn(Z+h)

Mm=—00 g=—00 n=0 m=—00 g=—00 n=0 (58)
= (do,p + 62p + 63,5) QY
(r=Rs,~h <z< —dy, 0<6<27)
~1) ~MWA2) 1)) ~2).6) <@2),3) ~OB) _
where the reduced forms of a1, Uying + Coung » Ampng » €mmg » f g and their normal

derivatives are given in Appendix C.

By multiplying the corresponding vertical eigenfunctions %Zn (z) in Equations (50),
(51), (53), (54), (56) and (57), ﬁ cos pn(z + h) in Equation (52), h%dz cos q,(z + h) in Equa-
tions (55) and (58) and the angular eigenfunction e~ in Equations (50)~(58) and integrat-
ing the equations for the associated integral intervals, one can combine Equation (50) with
(51), Equation (53) with (54) and Equation (56) with (57). By truncating the series terms
atm = M,n = N,n, = N, and g = Ny, 9(2M + 1)(N + 1) equations for the monolithic
motion or 18(2M + 1)(N + 1) equations for the individual motion, and the same number
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of unknowns are given for the diffraction problem and each radiation mode. Consequently,

the unknown complex coefficients (A,(éf , ﬁ,{f ), C,(,énp ), (] it ) E,(énp , Eonl Uip) ) can be solved by

linear algebra.

5. Determination of Wave Exciting Force
From Bernoulli’s equation, the fluid pressure p is given by

p = piwe (59)

where p is the water density.
By integrating over the wetted areas, the wave exciting force and rotational moment
for 6 DOFs are obtained by

Swg

where Sy, denotes the wetted surface of the floating body g on which the wave exciting
forces are acting.

By substituting the incident velocity potential and diffracted potentials with obtained
unknown complex coefficients into Equation (60), the wave exciting forces in 3 DOFs (i.e.,
surge, heave and pitch) acting on the floating polygonal platform (g = 1) and ring structure
(9 = 2) are given below:

Fzs)ll) = piw fozn fEdl (¢1+¢p,) {r:R] Ryny-(—ns,; )dzdf
- % Emeinz(%* ) .[0277 Jn(kR1)e™®Riny-(—ng; ) d8 ff]dl coshk(z + h)dz (61)

tpiw Y L J& {Bun T (knR1) + Coun Ko (knR2) e Ryng -(—n, )0 [©, 221 dz

m=—00 n=0

Flg)s = le f fliz (¢1+ ¢p,) |Z,7d1nz-(nz)rdrd9

Rq im6 (62)
= piw Z Z cos py(h — dl) o AmnZmn(pnr)e™ rdrdd
m=—oon=0
F = pico 3[4 (2 26,) (91 0,)| g, Rame ()= — 18 (14 9, (o8 0)mg-(nc)rdr] a0
= = o eim(3-p) [ J57 Im(kR1)Ryny - (—ng,)e™0d0 [, (z = z, ) coshk(z + h)dz
—coshk(h —dq) ./62" _/bR‘ Ju (kr)e™®r2 cos Gdrdﬁ] (63)
+piw Y Zg [fozn{anImn (knR1) + ConKon (knR1) Y™ Ryng - (—ns, )6 fgdl (z—zq,) é:((é; dz
Mm=—00 n=|
—cos py(h —dy) fom j'ORl ApnZyn (pur)e™r? cos Gdrde}
E) = pico [ [0, { (@14 #0,) ], g, Ramsemy + (91 + ¢D,)|,_g, Ramx-(—nsy) =6
= &5 ¥ eGP [T, (kRy)Rong ms, + J(kR3)Rsny-(—ng;) b do |7, coshk(z + h)dz (64)
m=-—0oo
+p1w m—zi ; ,[UZH[{anImn(knRZ) + CmnKmn (k;sz)}Rznrnsz + an}cmn (knR3)R3nl '(7n53>]eimed9 fgdz ;:igg; dz
£
Fyy = PW f f (¢1 + ¢p,) ‘Z_idan-(nz)rdrdG )

= piw Z Z cos pp(h — dz) 1523{DmnImn(an) + EnnKon (qnr) Y™ rdrd

m=—oo n_
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15;25 = piw fzn [fodz (z— ZGz){ (91 +¢p,) {r:RzRZHX.HSZ + (¢1+¢p,) ‘r:R3R3“X’(_nS3)}dZ

ij (471+¢D3)\Z_idz(rCOSG)nz-(nz)rdr}d9
= %mgwe’"’ﬁ B) { 02"{],,,(kR2)R2n1~n52 + Jm(kR3)R3ny -ng, }e™0do ff’dz (z
~2¢,) coshk(z + h)dz — coshk(h — dy) 27 '1523 T (kr)e12 cos 9drd9] (66)
i £ wéo J& U BT (knRa) + ConnConn (knRa) } Ramy i, + Fyn Ko (knR3) Rymg
(- ngg)}e""’gde fodz( —26,) Z:E ;dz
—piw E Z cos pu(h — dz) £3{DmnImn(an) + EpnfConn (qn) }e™012 cos 0drd

m=—oon

where the unknown complex coefficients for the diffraction Ag,m ), B,(,?no), C,(,?no), D,(,?,’lo), E,S?,;O)

and F,(,m ) are expressed as A, Bmn, Cmn, Dmn, Emn and Fy,y, for brevity. zg, and zg, are the
z-coordinates of the centre of gravity for the floating polygonal platform and ring structure,
respectively. The wave exciting forces for other DOFs such as sway, roll and yaw can be
similarly obtained by using the unit normal vector (—ns + n;) and the generalised motion
normal n;. The divergence n;n, are given in Appendix A.

6. Determination of Radiation Forces
The radiation force is obtained by

o | (i 007 e, =7 o)) @

SZUq

are the added mass and the radiation damping of the floating body
g by the oscillating body p for the i-th mode of force and the j-th mode of motion, which are

respectively defined as
yf]q’p) ( f(q p)) (68)

AP = m (pwfy ™) (69)

where ‘ul(g’p ) and )\I((M’)

Re(-) denotes the real part and Im(-) the imaginary part. fl.(].q’p ) is the integral form
for i-th mode of force and j-th mode of motion associated with the floating body g by the
oscillating body p. By substituting the normalised radiated velocity potentials with the

obtained unknown complex coefficients into Equation (67), ﬂgq,p) (p=12and g =1,2) for

3 DOFs are given by
1, 21 | 1,
17 = 5T 2 9" me(may ) Ridzd
bt ) (Lp) imé Zn (70)
= T8 B TR + Cl Ko (kaRy) bRime (—y) femede [, 2elE)dz
m=—00 n=0
5(11”7) = 02”{ [Odl (z—zGl)gb(l’P) R, N, (—ng )Rydz — ORl ¢(1,p) . (rcos)n,-(n; rdr}dG
= m:Zioo nZ::O JO { Snlnp)Imn(k Rl) +Cr<rm )Kmn(k R])}Rlnx ( n51 lmedej ( ch)é (((Z) (71)
— i i cos py(h — dl) ORl 1‘\§,,,’f7)IW(py,r)e"”"’r2 cos fdrd6
m=—o0 n=0

3(;,]0) = f27t - 4)1(232}7) ’z=—d1 nz~(nz)1’drd9

h—d
= ‘5110 f {7( 2 - e d )}7drd9 (72)
vy 2 cos pu(h—dy) [ [F1 AT, (par)emOrdrdo

m=—o0
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o {f?dl (z—2zg,) 4;1(252”7) ‘r:Rlny(fnsl)Rldz — [ 47]({51”” ’z:fd (rcos8)n,-(n;)rdr|do

= ; ;]0 {AE,?,}MIW,(anl)eing1nx-(fnsl)}d9j;odl( zcl) Eg;dz

(73)

2
{51p f Rl %r cos 072 cos 6drd#

+ E E cos pu(h — dy) fzn le A Imn(pnr)e”""r2 cos(?drd(?}

m=—oon=

(Lp) _ p2m 0 (5p)
15p = onf 4 Pr p‘,:Rl

= ; x jo {Bgnsnp)z-mn(kan) ;(nn)lcmn(k Rl)}Rlnx( n51 tmﬂdgf d 2; dz

n,-(—ng, )R;dzd6
(74)

(2p 0 (=
= { r:R x(nsy)Ry + 47 ‘r:R3nx ( ns3)R3}dzd9

= Z Z f [{ i Imn knRZ) + ann )’Cmn (knRZ)}Rznx'(nsz) + Frgr;mICmn(RB)RS)nx (75)

m=—00 n=0

(ng,)Jemed0 [°, ZE)a

2, 2 [ 10 1 L
= ﬂ{f,dz (z—zc,) { ok’ ‘rzkznx'(“”)Rz + 9, ’y:mn"'(_n”‘)&}dz
SO (reosein (nerr b
3 lz=—dy

= ; E fo { {Bﬁr}n )Imn (k RZ) Cr(nlr’np)Kmn (knRZ) }Rznx‘ (n52) + Fr(nlr;p)lcmn (knRS)RSHX (76)

(g} [z ;) Z"ES? dz

- Z Z cos pu(h — dz) 153 {DSMP)I,,,”(W) + Eﬁ,},’f’)ICmn (an)}ei’"erz cos fdrdé

Mm=—00 p=|

2" R3 (SP) n,-(n;)rdrdd
(o)
z=—d,
(1 d 2
52,, ; mf { ) _ (’ >}rdrd9 77)
+ Z Z COSPn f { mn mn(ﬁn )+ES;?:;men(Qnr)}eimgrdrde

2,p) 27 0 5,
_ésp)—fo*[f =26 {907 netoe) e (-ng o bz = [0
= ¥ 5 s >Im,,(k,,Rz>+c5,m)}c,,m<knR2)}Rznx () FS37 Ko o) Ra -(—y 00 [, (2 — 2,) Sz

m=—00n=0 (78)

—{ézp [02" fR3 %rcowr cos 0drde

(rcos6)n,-(n; )rdr} de
r=Ry

Mm=—co

1(;4’) _ 027'[ fi) {(P(S,P) nx.(nsz)Rl + (ng!’) nx-(7n53)R3}dzd6

= X Z f { { n?np)zmn (knRZ) C(Sr’lwlcmn (kn RZ) }Rznx‘ (nsz) + Fr(nsr;p)lcmn (knRS)R3nx (79)

m=—ocon=0

(~ng;)}ede [0, 2

+ LT cospulh—d) 5 [ { D Tl )+E&i’f”)cm(qm}em"*#cosedyde}

r=Ry r=R3

Note that fl(gp and fo ") are the same when the geometry of the floating body is
symmetrical about the x-axis.

7. Motion Responses of Floating Ring Structure

Consider the horizontal coordinates of the centre of gravity of the floating regular
polygonal ring structure coincide with the origin, i.e.,(xg,, ¥g,) = (xc, ¥c,) = (0,0) but
zg, # 0and zg, # 0. As regular polygons are geometrically symmetrical about certain axes,
the products of inertia of the floating regular polygonal platform/structure will become
zero regardless of their orientation. If the motion of the floating body is relatively small,
the following equations of motion in 3 DOFs (i.e., surge, heave and pitch) are satisfied.

[—wz( ()+;1 ) zw)\n ]{51 } [ leS zw)\ls ]{55 } [ wzyﬁ) zwAll ]{51 }
+[_‘U ?‘55 )_1“’)‘1;2]{55 } = { 1(1)}
(o) i e [ o) - ) o

[—wzpén) lw)‘(“)]{ﬁi )}+ [7 ( ( +;4§151>) th\<11>+m( gGM Hg“)} [ wngll’z)—iwx\éll'2>]{§§z)}
+[—w ;lé_r, ) Iw/\(12 }{é,gz } = {FS(I }

(80)

(82)
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[ (m® o pi7?) = ienfi? [ {er? b+ [z —ionZ [ {e ) + [ty —ion V[ {&" )
s -z {5} = (A7}

e ) o s [ ) ()= () 09

[~w?u? — il {eP} + [~0? (18 + 1Y) — irG? + m@geh? | {e8} + [fwzuéi'” — iV ]{e"}
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()

where m(P) is the mass of the oscillating body p, & ;
)

(83)

(85)

the unknown displacement of the

oscillating body p at i-th radiation mode, Fl-(q the wave exciting force acting on the floating

body g, I l-(l-p ) (i =1,2,3) the mass moment of inertia of the oscillating body p about i-axis,
Agf ) the waterplane area of the oscillating body p, sz,p ) the wetted volume of the oscillating

7 (p)
body p, GM(TP) (z % + zg’ ) Z(Cf)> the transverse metacentric height of the oscillating

w

- (p)
body p, GM(Lp ) <: ';”(5)2 + zg P _ Z(G )> the longitudinal metacentric height of the oscillating

body p and AISZ? (i = 1,2) is the second moment over the waterplane area of the oscillating
body p about i-axis.

By linear algebra, the motion responses g",‘l.(p) (i=1,2,---,6) are solved by using
Equations (80)-(85). By substituting the solutions into Equation (4), one can obtain the
radiated potential.

8. Verification of Semi-Analytical Approach and Computer Code

In order to verify the semi-analytical approach and the computer code, we compare
the hydrodynamic results (i.e., added mass, radiation damping, wave exciting forces, RAO
and wave field) with those obtained from the commercial software ANSYS AQWA based
on the Boundary Element Method.

For the verification exercise, we consider a floating hexagonal platform that is placed
within a floating hexagonal ring structure whose geometries are defined by the radius
function as given in Equation (1) with Rg, =50 m, Rg, =90 m, Rg, =100 m, 13 = 0.03,
Npy,s = 6and Oy ,, = % The drafts d; for the platform and d; for the ring structure are
equally 10 m. Figure 3 shows the structural shape. It is assumed that the centre of gravity
coincides with the origin and the water depth is 50 m. The incident wave is along the
x-axis (i.e., B = 0°).

-100

0.00 100.00 200.00 (m)
: : B ..
-50 0 50 100 50.00 150.00
(a) (b)

Figure 3. Hexagonal ring structure for verification study: (a) plan view; (b) 3D mesh model (AQWA).
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For the 3D model in AQWA, the maximum mesh size is 2.8 m which leads to a total of
11,459 diffracting elements to be used. It should be noted that a fine mesh model is required
to obtain a reasonably converged inner free water elevation. The regular wave angular
frequency domain for AQWA is divided into 20 frequencies for the interval [0.3866 rad/s,
1.2528 rad/s], which is equivalent to kh = [1, 8].

Figure 4 presents the added mass and radiation damping obtained from the present
semi-analytical method and AQWA. The numbers of truncated terms for the present semi-
analytical method were taken as M = 30, N =5, N; = 12 and N, = 24 for parametric studies.
It is unnecessary to perform the integration for all the m-series terms, but series index m
can be restricted to

m = =+1, £(n, £1) for surge or sway
m =0, +n, for heave
m==+1, £(n, £1), £(2n, £1) for roll or pitch
m=0,+2,+n,, +(n, £2),+£(2n, £1), £2n, for yaw

(86)

where 1, is the parameter of the radius function as given in Equation (1). Also, it should
be noted that N, and Nj can be taken as multiple numbers of n,. For instance, N, = 12
and N, = 24 are respectively 2 and 4 times 1, = 6 for a hexagonal shape. This rule can be
equally applied for calculating the wave exciting forces. Hence, such a selective calculation
can speed up the hydrodynamic analysis in composing the global system matrix as well as
obtaining the wave exciting forces and radiation forces.

15

[Present] [AQWA]

Indiv. Platform Indiv. Platform
10 |- - ~Indiv. Ring Indiv. Ring

Monolithic body A Monolithic body

= 0 -+ =
-5
-10
1 2 4 5 [ 7 8
kh
(a)
2 0
I
16 i
h
I
1.2 n
N
"
w08 H
= z Iy
\ r ! -
04 (9§ ‘N g @ 8-NT

(©)

Figure 4. Cont.
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Figure 4. Comparison of normalised added mass and radiation damping obtained from AQWA
and present approach: (a) added mass for surge; (b) added mass for heave; (c) added mass for
pitch; (d) added mass for surge-pitch; (e) radiation damping for surge; (f) radiation damping for
heave; (g) radiation damping for pitch; (h) radiation damping for surge-pitch.

The added mass was normalised by

(9.p) p) (a.p) (a.p)
—(q.p) _ P‘ﬂp . =lap) _ P‘ggp . =lap) _ P‘Sgp . =ap) _ F‘lgp

,u - 7 - 7 ;’l - 7 - (87)
o pSody” TR pSo,dg” T pSG dy o PSg; g
while the radiation damping was normalised by
T _ AP xan _ A xan _ A xan) _ AL 9
pwSo,dg pwSo, dg pwsquq pr(l)qu

where Sy, is the cross-sectional area of the polygonal platform for ¢ = 1 and that of the
polygonal ring structure for 4 = 2. The present semi-analytical results and AQWA results
are in excellent agreement; thereby confirming the validity, convergence and accuracy of
the semi-analytical approach. It can be seen that the magnitudes of crests near resonance
frequencies are sensitively varying with minor discrepancies between AQWA and present
results (see Figure 4b,d).

The wave exciting forces and RAOs were calculated for f = 0°. The horizontal wave
force, vertical wave force and rotational moment were normalised as follows:

o _ B g BV g M

YT pgASo,” T T pgASo, VT pgASeds
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The RAO (Response Amplitude Operator) is defined as the motion response nor-
malised by the incident wave amplitude A. Figure 5 compares the wave exciting forces and
the RAOs obtained from the present semi-analytical method and those computed from
ANSYS AQWA. It can be seen that the results are in close agreement; thereby verifying the
present semi-analytical formulation and method of solution.

12 [Present] [AQWA] 12

Indiv. Platform Indiv. Platform

= = =Indiv. Ring Indiv. Ring
—— Monolithic body Monolithic body

0.06

1w 0.04
Vo

0.02

() ()

Figure 5. Comparison of wave exciting forces and RAOs obtained from AQWA and present approach:
(a) surge force; (b) heave force; (c) pitch moment; (d) RAO for surge; (e) RAO for heave; (f) RAO for
pitch.

The wave field and profiles for the inner water basin of the floating hexagonal platform
and ring structure were calculated as shown in Figure 6 (for T = 10 s). The floating bodies
are oscillating together or individually. Wave profiles are drawn along the x-axis at y =0 m
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100

50

and y = 50 m, which are normalised by the incident wave amplitude for the wave period
10 s. The wave profiles obtained from the present approach and AQWA are well matched.
Note that the wave profiles belonging to AQWA were extracted from AQWA FLOW by
writing a computer code to process the raw data at selected points.

100 ¢

50

g 0 15 g 0 15
= B
1 1
-50 50t
0.5 0.5
-100 -100
5 8 . - . 0 . . 5 0
-100 50 0 50 100 -100 50 0 50 100
x (m) x (m)
(a) (b)
i ——v=0m (Present) ——v=50m (Present) i
25 | & y=0m (AQWA) » y=50m (AQWA) 25
2 3 :, sentttee 2 “‘."\.
.’,’-!... 9/ r \
= / _
=15 =15
1 1 \/
05 05
0 0
90 -70 50 -30 -0 10 30 50 70 90 %0 70 50 30 100 1030 500 70 0
x (m) X (m)
(©) (d)

Figure 6. Comparison of normalised wave elevations and profiles for together or individually
oscillating floating hexagonal platform and ring structure obtained from AQWA and present approach
(for T =10 s): (a) wave field for monolithic motion; (b) wave field for individual motion; (c) wave
profile for monolithic motion; (d) wave profile for individual motion.

9. Results and Discussion

Further hydrodynamic analyses have been carried out to investigate various effects
due to drafts, the radii of platforms and polygonal shapes. Floating hexagonal platform
and ring structure that oscillate individually are considered. The drafts for two individual
floating bodies are respectively taken as: (1) d1/h = 0.1, do/h = 0.1, (2) d1/h = 0.1,
d/h=02,03)d/h=02,dy/h=0.1and (4) d;/h =0.2,dy/h = 0.2. The wave exciting
forces and RAOQs are given in Figure 7 while the added mass and radiation damping are
presented in Figure 8. Note that “P” and “R” used in legends stand for “Platform” and
“Ring”, respectively. Overall, the ring structure shows greater dominance in surge and pitch
forces while the platform shows dominance in heave forces as shown in Figure 7 as the ring
structure primarily prevents wave propagation. For longer waves (say ki < 2), as more
waves are transmitted into the inner water basin, they become trapped; thereby, creating
a high energetic environment within the ring structure. Accordingly, this aggravates the
hydrodynamic interaction on the platform. However, the situations are reversed when
considering the RAOs for heave and pitch (see Figure 7e,f). Similar phenomena are observed
for added mass and radiation damping in the case of heave (see Figure 8b,f). In general,
when the ratio of the draft-to-water depth of the ring structure (i.e., d/h) is the same, the



J. Mar. Sci. Eng. 2022, 10, 1430 19 of 29

hydrodynamic results such as the wave exciting forces, RAOs, added mass and radiation
damping associated with the ring structure are very close to each other regardless of the
ratio of the draft-to-water depth of the platform (i.e., d1/h). Likewise, when d; /h of the
platform is the same, the hydrodynamic results associated with the platform are similarly
irrelevant to d, / h.

0.9
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0.6

0.45

P:d, /h=0.1, d,/h=0.1 R:d,/h=0.1, d/h=0.1
- B -P:d,/h=0.1,d./h=02 - B —R: d /h=0.1, d./h=02

— ® —P:d,/h=02, da/h=01 — & —R:dy/h=0.2, d./h=01

— & —p:d,/h=D2,d,/h=02 - % —R:d,/h=02, d,/h=D.2
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0.6
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(c) ()

Figure 7. Normalised wave exciting forces and RAOs for floating hexagonal platforms and ring
structures with various draft-to-water depth ratios: (a) surge force; (b) heave force; (c) pitch moment;
(d) RAO for surge; (e) RAO for heave; (f) RAO for pitch.
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P.d,/h=0.1, d;/h=0.1 R dy/h=0.1, d,/h=0.1
—® -P:d;/h=01,d,/h=02 - = —R: d,/h=01, d./h=02

— @ -P:d,/h=02,d.fh=01 - = —R:d,/h=0.2, d,/h=01
R-d,/h=02, d,/h=02

5 | - & -pd k=02 dy/h=02

Figure 8. Normalised added mass and radiation damping for floating hexagonal platforms and
ring structures with various draft-to-water depth ratios: (a) added mass for surge; (b) added mass
for heave; (c) added mass for pitch; (d) added mass for surge-pitch; (e) radiation damping for
surge; (f) radiation damping for heave; (g) radiation damping for pitch; (h) radiation damping for
surge-pitch.
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In Figure 9, the wave exciting forces and RAOs for floating circular platform and ring
structure are presented for various radii of the circular platform, i.e., R;/h =0.5,1, 1.5. It
can be seen that the wave exciting forces increase with increasing Ry /h. On the other hand,
the RAOs for the platform decrease with increasing Ry /h, whereas the RAOs for the ring
structure do not show a distinctive relationship. This implies that a large working platform
placed within a floating ring breakwater is relatively stable in terms of motions when
compared with a small platform. On the other hand, when a small oscillating cylindrical
platform is deployed within a floating ring structure, relatively large kinetic energy can

be obtained.
1 1.5
—&— Platform:R h = 0.5
- & -Ring:R h = 0.5
0.8 1] —@— Platform:R ) h = 1
LA
[ - B -Ring:Rjh =1
[ . -
0.6 B : —@— Platform:R, h = 1.5
ILr_H ;i'-\hl o) N — = -Ring:R}h = 1.5

1.2 2.5

0.8

0.4

0.2

Figure 9. Normalised wave exciting forces and RAOs for floating circular platform and circular ring
structure with Ry /h = 0.5,1, 1.5: (a) surge force; (b) heave force; (c) pitch moment; (d) RAO for
surge; (e) RAO for heave; (f) RAO for pitch.
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Next, the free water surface elevation in the inner water basin will be investigated
for the various geometries of floating polygonal platform and ring structure. Added
mass, radiation damping and RAOs do not represent significant differences for similar
sizes of plan shapes as when their geometries are created by using the radius function as
given in Equation (1), the plan shapes for every kind of polygons are almost the same as
each other. In addition, as far as the wave exciting forces are concerned, the horizontal
forces such as surge or sway forces are distinctively changed when polygonal shapes are
appropriately used with their orientations. This phenomenon was already reported by
Park and Wang [20]. Hence, in this parametric study, the free water surface elevation in the
inner water basin will be the focus.

The floating circular platform and circular ring structure are initially considered to
investigate the inner wave fields. The draft-to-water depth ratio for the circular floating
bodies d1/h = 0.1,0.2 and dp /h = 0.1,0.2 are combined into 4 cases. The inner wave fields
at significant resonance frequencies are presented in Figure 10 by assuming the water depth
h = 50 m. The maximum value of the scale bar is set to 4; implying wave fields larger than
4 are included in the maximum value (yellow colour). It can be learned that when larger
d, and smaller d; are considered, there will be more waves trapped in the inner water
basin, resulting in higher free water surface elevation (see Figure 10b) and vice versa. Thus,
Figure 10b may be used for harvesting more wave energy, whereas Figure 10c is used for
creating a calm patch of water space.
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Figure 10. Normalised inner wave fields for individually oscillating floating circular platforms
and ring structures at significant resonance frequencies: (a)di/h =0.1,dp/h =0.1 (kh =7.5);
(b)dy/h=0.1,dy/h =02 (kh =55); (¢c) di/h = 0.2,dy/h = 0.1 (kh=75);
(d)d1/h=0.2,dy/h =02 (kh = 3.75).

In order to investigate the shape effect on the inner wave fields, several combinations
of different polygonal shapes such as a square, hexagon and circle are considered for
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di/h = dy/h = 0.2 by assuming the water depth & = 50 m. Normalised inner wave
fields for various floating polygonal platforms and ring structures at significant resonance
frequencies are presented in Figure 11. By referring to Figure 10d together with Figure 11,
it can be found that the inner wave fields at the significant resonance frequency for circular
shapes tend to spread waves to multiple directions (see Figure 10d). For the square shapes,
the inner wave fields are mild when compared with other cases (see Figure 11a) and
amplified waves appeared to be in one direction (see Figure 11c,e). For the hexagonal
shapes, waves are more amplified than the circular shapes and their propagations are in
multiple directions. This implies that the square shapes are beneficial in terms of creating a
calm patch of water space, whereas the hexagonal shapes are more advantageous for wave
energy harvesting.
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Figure 11. Normalised inner wave fields for various combinations of individually oscillating floating
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platforms and ring structures at significant resonance frequencies: (a) square platform and square
ring (kh = 3.75); (b) hexagonal platform and hexagonal ring (kh = 5.25); (c) circular platform and
square ring (kh = 5.25); (d) circular platform and hexagonal ring (ki = 4.5); (e) square platform and
circular ring (kh = 4.75); (f) hexagonal platform and circular ring (kh = 4.75).

10. Concluding Remarks

A semi-analytical method and computer code have been developed for the hydro-
dynamic analysis of a floating regular polygonal platform that is centrally placed within
a regular polygonal ring structure under wave action. The polygonal shapes for equilat-
eral triangle, square, pentagonal, hexagonal platforms and ring structures can be readily
generated by using the cosine-type radial perturbation. This shape function is the key
to enabling the problem to be solved semi-analytically. Cases involving the two floating
bodies oscillating together or individually were considered with the view to understanding
the hydrodynamic interactions among the trapped waves, inner platform and outer ring
structure. The method has been shown to be able to furnish accurate hydrodynamic quanti-
ties such as wave exciting forces, added mass, radiation damping, RAOs, and wave field.
The computational speed has been significantly quickened when compared with numerical
methods because of the semi-analytical method.

The effects of several parameters such as drafts, radii of platforms and polygonal
shapes on major hydrodynamic quantities are investigated by performing parametric
studies. When the draft of the ring structure is larger than the floating platform, trapped
waves are amplified more in the inner water basin. Additionally, the wave exciting forces
increase with increasing radii of platforms. However, the RAOs decrease with the increasing
radii of platforms. The inner wave fields for circular shapes tend to spread waves to
multiple directions, whereas those for square shapes are relatively mild and their amplified
waves are apt to propagate in one direction. For hexagonal shapes, the wave fields are
more amplified than other considered shapes and the waves’ propagations are in multiple
directions. In sum, floating square platform and square ring structure are beneficial for
creating a calm patch of water space, whereas the floating hexagonal platform and the
hexagonal ring structure are more advantageous for wave energy harvesting.
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Appendix A

The divergences between the generalised motion normal n; and unit normal vector
ng, (I =1,2,3) atr = R;(6) are calculated for 6 DOFs in the Cartesian coordinate system as
given by

cosf — %5119
nl.nsl = nX'nSl = —sz (Al)
20

1+Rzz
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sin 6 + %51,9

nyng, = nyn, = = (A2)
n3.nsl = nZ'nSl =0 (A3)
(Z — ZG) Sm@ + COSGSIG)
n4-ns = _(Z - ZG)ny-ns] + (y - yG)nZ'nsl — = (A4)
oo
(z~2) <C059 - %%9)
n5ns = (2 = zg)Nyx N5 — (X — Xg)Nz N5, = ; (A5)
1+ 2
R
—X, cos sin __sinf—cosf
ngng, = —(y — yo)neng + (x — xg)nyng, = S+ (v6—7c) \/9+SZ ) (A6)
1+
1

If 59 = 0, it can be applied to a circular platform or ring breakwater.

Appendix B
; ; A0)) ~(j)
The reduced expressions Hl(]), Pl(])' Ql(]), P, and Q; (j = 0,1,---,6;1 = 1,2,3)
introduced in Equations (31)—(39) and Equations (50)—(58) are given by
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where S; g denotes 39 | and zG, the z-coordinate of the centre of gravity for the

oscillating body p.
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