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Abstract: Barge ships are designed to transport and assemble heavy and massive pieces of equipment
at sea. Active propulsion systems are not installed in this type of ship, so the desirable motion
and positioning of these ships can only be achieved with the assistance of several tugboats. In this
study, the dynamical characteristics of barge conveying systems were formulated and robust control
systems were designed to ensure efficient barge operation. To achieve these objectives, we first
developed a mathematical model of a barge ship, which incorporated a novel conveying system
configuration using tugboats. We then designed a robust controller for the tugboats that used the
sliding mode law to deliver the desired barge motion performance. Finally, the usefulness of the
proposed configuration and controller was verified via simulation studies using another system with
an H∞ controller. The proposed sliding mode controller showed superiority, especially in terms of
robustness against disturbances.

Keywords: barge ship; mother ship berthing; propulsion system; robust control; modeling; simulation

1. Introduction

In this paper, the problems of the modeling and motion control system design of
barge ships are considered. Barge ships are mainly used to transport huge and heavy
pieces of cargo or equipment, which is difficult for conventional ships. However, since
barges are not equipped with propulsion systems and are instead towed by tugboats, it is
difficult to achieve accurate and rapid motion and positioning requirements. Moreover,
safety and stability cannot be guaranteed because the system operations rely heavily on
the experience and skills of the operators. Recently, with the development of dynamic
positioning systems (DPSs), the motion control performance of surface-type ships has
been remarkably improved. In many cases, DPSs use the ships’ own propellers and
thrusters. However, in the particular case of barge operation, most of this work is carried
out by tugboats.

Numerous studies have been conducted on the automatic control of ship motion via
DPSs using tugboats. For example, a control method for towing vessels using single tug-
boats has been proposed [1–3]. These authors considered scenarios in which vessels were
lost or could not use their propulsion systems, so needed towing by tugboats. However, un-
like barges, the vessels in these studies were able to control their rudders to maneuver their
trajectories. Additionally, barge ships are usually much larger and heavier, so the towing
force from single tugboats would be insufficient and multiple tugboats with an appropriate
allocation are required. For instance, the combination of two tugboats and a damper system
was suggested in [4–6] to ensure the stable and fast berthing operation of a mother ship.
The tugboats pushed the ship from one side following the berthing direction, while the
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damper system was fixed on the harbor contacts and supported the ship from the other
side. It is also worth noting that tugboats can either push or tow ships; hence, damper
systems are essential for complete berthing operations, i.e., both horizontal positions and
the heading angle of ships are controlled through tugboat systems. Otherwise, there must
be four or more tugboats operating simultaneously to fully convey ships [7].

DPSs using four tugboats were used for vessel berthing in [8–10] and barge positioning
in [11]. The tugboats were arranged on four sides of the controlled ships and provided
thrust in four different directions. A similar configuration was applied for a ship conveying
system using five or six tugboats in [7]. It seems to be an appropriate arrangement since
the thrust can be evenly distributed and the forces and torque in the required directions are
easily obtained. However, considering the working environments of barge ship conveying
systems, i.e., transporting, loading and unloading heavy cargo in narrow spaces (such as
shipyards), this configuration becomes inappropriate. For example, in the berthing process,
tugboats adjust their thrust force appropriately so that the controlled barge ship slowly and
smoothly approaches the harbor wall. Then, the berth-side tugboats are asked to move out
of the ship’s path and the other tugboats, which can only push the ship toward the dock,
have to work very gently resulting in a slow and inefficient berthing operation. Figure 1
shows an example of this situation.
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Some studies [8–11] have also shown that mother ships could be effectively conveyed
using properly controlled thrust from tugboats, i.e., ships were able to follow a trajectory
(for example, the planned route for ship berthing) or be positioned at desirable set points.
Unfortunately, from a practical point of view, the demanding properties of barge motion
control are still not easily achieved. One of the main reasons for this is that so far, all control
actions, i.e., the operation of tugboats, have been performed manually, so the control
performance depends entirely on the competence and experience of the operators. The
control performance focuses on the stability of the process rather than speed. Additionally,
the propulsion systems of tugboats still rely on internal combustion engines, which makes
it challenging to adopt automatic control systems for autonomous operations. Fortunately,
electric and self-propelled/remote-controlled tugboats have recently been developed. Fully
electric tugboats have even reached the commercial stage [12]. This has opened up the
opportunity to dramatically improve DPS operations using tugboats.

Therefore, in this study, we developed a control system for tugboats that could quickly
and safely convey barge ships along the desired path to the target position within the
working environments of the barges. To achieve this objective, we first developed a novel
configuration using four tugboats to convey barge ships. Then, we formulated a dynamic
model of a barge, incorporating the assembly of the four tugboats. To this end, we de-
signed a sliding mode controller to achieve the robust stability and desired performance
of barge motion. Sliding mode controllers offer robust control techniques that can cope
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with uncertainties and disturbances in water environments, as in [9,10], while simultane-
ously achieving control performance. Control systems operate the thrust/towing forces of
tugboats so that barges can follow desired trajectories and be positioned at the required
set points with only small errors, even in harsh environments. We also introduced an H∞
controller, which are well known for preserving the robustness of control systems, for the
sake of comparison. We also conducted simulation studies to validate the efficiency of the
proposed configuration and control system.

2. Proposed Configuration and System Modeling
2.1. Proposed Configuration

This study considered a barge ship as the mother ship and developed a conveying
system using four tugboats. The barge ship did not have a propulsion system and could
only move with the assistance of the tugboats. We considered the narrow working space of
the barge and other special operations, such as berthing. These operations made the tugboat
configurations from previous studies inappropriate. Therefore, we deemed it reasonable to
place all of the tugboats on one side of the barge, for example, on the outboard side of the
barge during berthing operations. Then, for complete control of the barge’s translation and
rotation, two pairs of tugboats operated in opposite directions: two tugboats towed the
barge, while the other two pushed it.

A schematic drawing of the proposed configuration is depicted in Figure 2 [13]. The
system consisted of the barge’s body-fixed frame (os, xs, ys, zs) and a reference Earth-fixed
frame. The parameters of the configuration presented in Figure 2 can be summarized
as follows:

ψs, ψ1, ψ2 represent the heading angle of the barge ship and tugboats;
θi(i = 1, . . . , 4) represents the angle between the ys axis and the line from the barge’s center
to the ith connection point of the conveying system;
αi(i = 1, . . . , 4) represents the angle between the xs axis and the ith control force;
βi(i = 1, 2) represents the angle between the X axis and the ith control force;
γi(i = 1, 2) represents the angle of the rudder of the ith tugboat;
lic(i = 1, 2) represents the length of the rope from the connection on the barge ship to the
ith tugboat;
li(i = 1, . . . , 4) represents the distance from the center of the barge to the ith connec-
tion/contact point of the conveying system;
lb represents the longitudinal distance from the center of the barge to the connection/contact
points of the conveying system;
liy(i = 1, . . . , 4) represents the lateral distance from the center of the barge to the connec-
tion/contact points of the conveying system.

Fi, (i = 1, . . . , 4) denotes the forces generated by the tugboats. In detail, F1 and F2
represent the pulling forces from the two outboard tugboats pulling the barge using ropes
and F3 and F4 represent the pushing forces from the other two tugboats. Fpi, (i = 1, 2)
represents the propulsion force and Fi, (i = 1, 2) denotes the reaction of the towing force
acting on the ith tugboat. The forces and torque of the tugboats were generated by their
main propellers and aft rudders. The dynamics of the tugboats that pushed the mother
ship in this proposed configuration were identical to those in conventional arrangements
and have been well studied in previous publications. Moreover, we could just consider
their forces acting on the barge and dismiss their dynamics within the total system. Hence,
only the motion of the barge ship and the tugboats were derived in this study. To examine
the controllability of the proposed configuration, as well as to then design a control system,
the planar dynamics of the barge and the towing tugboats were derived.
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2.2. Barge Ship Modeling

For the sake of simplicity, the barge ship was assumed to be symmetric in the planar
plane and its center of gravity was assumed to coincide with the origin of the body-fixed
frame. Then, the motion equation of the barge ship could be represented in the following
form [14]:

Ms
.
νs + Dsνs = τs,.
ηs = R(ψs)νs

(1)

where Ms ∈ R3×3 denotes the inertia matrix (which included the mass ms, the moment
of inertia about the zs axis of the barge Izs , the added mass

(
X .

us
, Y .

vs
, Y.

rs

)
and the added

inertia
(

N .
vs

, N.
rs

)
) and Ds ∈ R3×3 is the damping matrix. Ms and Ds were described as

follows [14]:

Ms =

ms − X .
us

0 0
0 ms −Y .

vs
−Y.

rs
0 −N .

vs
Izs − N.

rs

,

Ds =

−Xus 0 0
0 −Yvs −Yrs

0 −Nvs −Nrs


(2)

ηs =
[
x0 y0 ψs

]T ∈ R3 was used to represent the position and the heading angle

of the barge in the Earth-fixed frame. νs =
[
us vs rs

]T ∈ R3 was used to represent the
surge, sway and yaw rates in the body-fixed frame. R(ψs) was the rotation matrix between
the Earth-fixed frame and the body-fixed frame, which was defined as follows [14]:

R(ψs) =

cos ψs − sin ψs 0
sin ψs cos ψs 0

0 0 1

 (3)
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The force and moment vector τs =
[
τsx τsy τsr

]T represented the surge force, sway
force and yaw moment. They could be derived using the configuration matrix T(α) of the
conveying system in Figure 2 as follows:

τs = T(α)F,τsx
τsy
τsr

 =

 cα1 cα2 cα3 cα4
sα1 sα2 sα3 sα4

l1ycα1 − lbsα1 −l2ycα2 + lbsα2 −l3ycα3 + lbsα3 l4ycα4 − lbsα4




F1
F2
F3
F4

 (4)

where c( · ) = cos( · ) and s( · ) = sin( · ). The amplitude of the force was positive for
towing and negative for pushing.

F =
[
F1 F2 F3 F4

]T was the control force vector that was generated by the four
tugboats as an actuator. A control allocation was required to compute the force from each
tugboat for the required force and moment vector τs of the barge. One of the common meth-
ods for this is based on the Moore–Penrose pseudoinverse T(α)TT(α)∗ of the configuration
matrix T(α), i.e.,:

F = T(α)TT(α)∗τs,

T(α)∗ =
{

T(α)T(α)T
}−1 (5)

In other words, given the angles αi, (i = 1, 2), the corresponding control force F could
be calculated. Moreover, the following relationship between the ηs and νs could be written
from Equation (1):

νs = RT(ψs)
.
ηs,

.
νs =

.
R

T
(ψs)

.
ηs + RT(ψs)

..
ηs

(6)

Then, the motion equation could be written solely in the Earth-fixed frame as fol-
lows [14]:

Ms
∗ ..
ηs + Ds

∗ .
ηs = τs

∗ (7)

where the system matrices Ms
∗ ∈ R3×3, Ds

∗ ∈ R3×3 and τs
∗ ∈ R3 were given by:

Ms
∗ = R(ψs)MsRT(ψs),

Ds
∗ = R(ψs)

(
DsRT(ψs)−MsS(

.
ψs)R

T(ψs)
)

,
τs
∗ = R(ψs)τs

(8)

S(
.
ψs) ∈ R3×3 was the skew-symmetric matrix of the rotation, which was defined

as follows:

S(
.
ψs) =

 0 −
.
ψs 0

.
ψs 0 0
0 0 0

 (9)

2.3. Towing Tugboat Modeling

In the same manner, the state η1 =
[
x10 y10 ψ1

]T ∈ R3 represented the position and
heading angle of tugboat 1 within the Earth-fixed frame. The motion equation of tugboat 1
was written as follows [14]:

M1
.
ν1 + D1ν1 = τ1 + G1γ1,

.
η1 = R(ψ1)ν1

(10)

where M1 ∈ R3×3 is the inertia matrix and D1 ∈ R3×3 is the damping matrix of the tugboat.
The force and torque vector τ1 =

[
τ1x τ1y τ1r

]T was generated by the tug’s propulsion
force Fp1 and towing force F1. G1γ1 represented the force by tug’s rudder, with γ1 denoting
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the rudder angle and G1 denoting the vector of coefficients. τ1 and G1 were defined
as follows: τ1x

τ1y
τ1r

 =

1
0
0

Fp1 −

c(β1 − ψ1)
s(β1 − ψ1)

0

F1, G1 =

−g1x
−g1y
g1r

 (11)

Equation (11) indicated that by adjusting the propulsion force, rudder angle and
heading angle, the tugboat was always able to provide the required towing force F1 for
the barge ship, as well as the force and torque τ1 that were required for its own motion.
Moreover, as shown in Figure 2, the tugboat’s position could be represented as follows:

x10 = x0 + l1 sin(θ1 + ψs) + l1c cos β1
y10 = y0 − l1 cos(θ1 + ψs)− l1c sin β1

(12)

Substituting Equation (12) and the relationship
.
ν1 =

.
R

T
(ψ1)

.
η1 + RT(ψ1)

..
η1 into

Equation (10), the motion equation of tugboat 1 could be rewritten as follows:

M1
∗ ..
η1 + D1

∗
(

~
R1(ψs)

.
ηs + L

.
η1 +

¯
K1

)
= τ1

∗ (13)

where

~
R1(ψs) =

1 0 −l1(sin θ1 sin ψs − cos θ1 cos ψs)

0 1 l1(cos θ1 sin ψs + sin θ1 cos ψs)

0 0 0

, L =

0 0 0
0 0 0
0 0 1

,
¯
K1 =

−l1c sin β1
.
β1

−l1c cos β1
.
β1

0

 (14)

and
M1
∗ = R(ψ1)M1RT(ψ1),

D1
∗ = R(ψ1)

(
D1RT(ψ1)−M1S(

.
ψ1)R

T(ψ1)
)

,
τ1
∗ = R(ψ1)(τ1 + G1γ1)

(15)

In the same manner, the motion equation of tugboat 2 was derived as:

M2
.
ν2 + D2ν2 = τ2 + G2γ2,

.
η2 = R(ψ2)ν2

(16)

where M2 ∈ R3×3 is the inertia matrix and D2 ∈ R3×3 is the damping matrix. The position
of tugboat 2 [x20 y20]

T was represented in terms of the barge ship’s position and heading
angle by:

x20 = x0 + l2 sin(θ2 − ψs) + l2c cos β2
y20 = y0 + l2 cos(θ2 − ψs) + l2c sin β2

(17)

Consequently, Equation (16) could be rewritten as follows:

M2
∗ ..
η2 + D2

∗
( ~

R2(ψs)
.
ηs + L

.
η2 +

¯
K2

)
= τ2

∗ (18)

where

~
R2(ψs) =

1 0 −l2(sin θ2 sin ψs + cos θ2 cos ψs)
0 1 −l2(cos θ2 sin ψs − sin θ2 cos ψs)
0 0 0

,
¯
K2 =

−l2c sin β2
.
β2

l2c cos β2
.
β2

0

,

M2
∗ = R(ψ2)M1RT(ψ2), D2

∗ = R(ψ2)
(

D2RT(ψ2)−M2S(
.
ψ2)R

T(ψ2)
)

, τ2
∗ = R(ψ2)(τ2 + G2γ2)

(19)

The motion equation of the entire system shown in Figure 2 could be represented by
combining the resulting motion equations of the barge ship and tugboats. By defining the new
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state vector x =
[
ηT

s ηT
1 ηT

2
]T and control input vector u =

[
τs

T τ1
T τ2

T γ1 γ2
]T ,

the model of the system was given by:

M(x)
..
x + D(x,

.
x)

.
x + N(x,

.
x) = g(x)u (20)

where the system matrices were defined as follows:

M(x) =

 M∗s 03×3 03×3

03×3 M∗1 03×3

03×3 03×3 M∗2

,D(x,
.
x) =


Ds
∗ 03×3 03×3

D1
∗ ~
R1 D1

∗L 03×3

D2
∗ ~
R2 03×3 D2

∗L

, N(x,
.
x) =


03×1

D1
∗¯K1

D1
∗¯K2

, (21)

g(x) =

R(ψs)
T 03×3 03×3 03×1 03×1

03×3 R(ψ1)
T 03×3 R(ψ1)

TG1 03×1

03×3 03×3 R(ψ2)
T 03×1 R(ψ2)

TG2


3. Control System Design

Then, we designed a control system to move the barge ship, which did not have
a propulsion system, to the desired position safely and quickly, i.e., the objective of the
control system was to operate the tugboats such that the robust route tracking and posi-
tioning performance of the barge ship was ensured, even in the presence of disturbances.
It is worth noting that the towing forces from the tugboats only acted on the barge when
the ropes were in tension. Therefore, the position and orientation of the towing tugboats
needed to be controlled. Their desired trajectories were obtained from those of the barge
and Equations (11) and (17). Considering the uncertainties and disturbances in the applica-
tion, we needed to design the control system based on robust control design frameworks.
A sliding mode controller was developed and an H∞ controller was introduced for the sake
of comparison.

3.1. Sliding Mode Control Design

The proposed sliding mode control input was defined by a summation of the equiva-
lent control part u1 and the switching control part u2, i.e.,:

u = u1 + u2 (22)

The sliding surface was defined as follows:

s =
.
~
x + λ

~
x (23)

where λ ∈ R3×3 is the controller gain matrix, which was diagonal positive definite.
~
x = x− xd was the tracking error, where x is the state vector that was defined in the
previous section and xd is the vector for the corresponding desired position and orientation.
All of these were expressed in the Earth-fixed frame. The convergence of the sliding surface
to zero implied that the state error

~
x converged to zero. We defined a virtual state error in

the Earth-fixed frame as follows:
.
xa =

.
xd − λ

~
x (24)

Then, from Equations (23) and (24), the sliding surface could be rewritten as follows:

s =
.
x− .

xa (25)

Using the sliding surface in Equation (25), the entire system in Equation (20) could be
derived as:

M(x)
.
s = g(x)u−D(x,

.
x)s−M(x)

..
xa −D(x,

.
x)

.
xa −N(x,

.
x) (26)
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By letting
.
s = 0, the equivalent control could be obtained as follows:

g(x)u1 = D(x,
.
x)s + M(x)

..
xa + D(x,

.
x)

.
xa + N(x,

.
x) (27)

In order to guarantee that the sliding surface converged to zero in a finite time, we
introduced a sliding surface dynamic with the following expression:

.
s = −Ws−Ksgn(s) (28)

where W ∈ R3×3 and K ∈ R3×3 are diagonal positive definite controller gain matrices and
sgn(·) denotes the signum function. The following switching part of the control law was
chosen to ensure the introduced dynamics:

g(x)u2 = −Ws−Ksgn(s) (29)

The following non-negative Lyapunov function was chosen to verify the stability of
the system:

V =
1
2

sTs (30)

Hence, the time derivative of V, using the control input given in Equations (27) and (29),
was obtained as follows:

.
V = sT .

s
= sTM(x)−1(g(x)u−D(x,

.
x)s−M(x)

..
xa −D(x,

.
x)

.
xa −N(x,

.
x)
)

= −sT(Ws + Ksgn(s)) ≤ 0
(31)

Therefore, we could conclude that the control system was asymptotically stable.
In Equation (29), the discontinuous signum function could generate the chattering phe-

nomenon in a neighborhood of the sliding surface s = 0. Hence, to reduce the phenomenon,
the signum function was replaced by the saturation function in Equation (32):

sat(s) =


1 if s/ε > 1
−1 if s/ε < −1
s/ε if |s/ε| < 1

(32)

where ε is the thickness of the boundary layer [15]. Then, the resulting control input was
obtained as follows:

g(x)u = D(x,
.
x)s + M(x)

..
xa + D(x,

.
x)

.
xa + N(x,

.
x)−Ws−Ksgn(s),

u = gT{g(x)gT(x)
}−1{D(x,

.
x)s + M(x)

..
xa + D(x,

.
x)

.
xa + N(x,

.
x)−Ws−Ksgn(s)

} (33)

3.2. Controller Design

An H∞ controller was introduced to compare the control performance of the proposed
controller. The H∞ method is one of the most preferred control techniques for acting on
uncertainties [16]. The standard configuration of a control system is shown in Figure 3.
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In Figure 3, w represents the external input, z denotes the output signals and P(s) is
the generalized plant of the proposed system. We defined the closed-loop transfer function
from w to z as Tzw. The objective of the H∞ controller design was to find K(s), such that
the H∞ norm of the closed-loop transfer function was less than a given positive number
(γ), as shown following equation:

‖Tzw‖∞ < γ, (γ > 0) (34)

On the other hand, when ψs, ψ1, and ψ2 were sufficiently small, we could obtain
a linear state-space model that represented the dynamic characteristics of the entire system.

This was achieved by defining the new state vector
¯
x =

[
.
η

T
s ηT

s
.
η

T
1 ηT

1
.
η

T
2 ηT

2

]T
and

the control input vector uH =
[
τs

T τ1
T τ2

T γ1 γ2
]T . The state-space model was

represented as follows:
.
¯
x = A

¯
x + BuH

¯
y = C

¯
x

(35)

where the system matrices were given by:

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33



A11 =

[
−M−1

s Ds 03×3

I3×3 03×3

]
, A12 = A13 = [06×6],

A21 =


M1d11 M1d12 0

M1d21 M1d22 0
M1d31 M1d32 0

 03×3

I3×3 03×3

, A22 =


0 0 M1d13

0 0 M1d23
0 0 M1d33

 03×3

I3×3 03×3

, A23 = [06×6],

A31 =


M2d11 M2d12 0

M2d21 M2d22 0
M2d31 M2d32 0

 03×3

03×3 03×3

, A32 = [06×6], A33 =


0 0 M2d13

0 0 M2d23
0 0 M2d33

 03×3

I3×3 03×3



B =



M−1
s 03×3 03×3 03×1 03×1

03×3 03×3 03×3 03×1 03×1

03×3 M−1
1 03×3 M−1

1 Bδ1 03×1

03×3 03×3 03×3 03×1 03×1

03×3 03×3 M−1
2 03×1 M−1

2 Bδ2
03×3 03×3 03×3 03×1 03×1


, C =

I3×3 03×3 03×12

03×9 I3×3 03×6

03×15 I3×3



(36)

with Mid11 Mid12 Mid13
Mid21 Mid22 Mid23
Mid31 Mid32 Mid33

 = −M−1
i Di

~
R(ψs), (i = 1, 2) (37)

Referring back to the problem in Equation (34), we could obtain the generalized

plant P(s) regarding the state-space model in Equation (35) by letting w =
¯
xd and

z =
[
z1

T z2
T]T

=
[
uT ¯

x
T]T

.
¯
xd represented the desired value of the state

¯
x . The plant
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P(s) in the mixed sensitivity H∞ control framework is presented in Equation (38) and
illustrated in Figure 4. 

.
¯
x
z1
z2
y

 =


A 018×9 B

011×18 011×9 I11×11
C 09×9 09×11
−C I9×9 09×11


 ¯

x
w
uH

 (38)J. Mar. Sci. Eng. 2022, 10, 1413 11 of 16 
 

 

 

Figure 4. A schematic drawing of the mixed sensitivity 


H control framework. 

The 


H  controller could be derived simply using MATLAB software with the state-

space model that was presented in Equations (35) and (38). 

4. Simulations 

Simulation studies were conducted for two scenarios to show the usefulness of the 

proposed system. The first scenario was a two-set point tracking, in which the barge ship 

needed to move from its initial position to two consecutive set points. In the second sim-

ulation, the barge was required to follow a desired quarter-circle trajectory. Both scenarios 

were designed similarly, according to the motion of the ship during berthing. In addition, 

the motion control performance in each scenario was verified with and without the pres-

ence of disturbances. 

The ship models that were used in the simulations were scale models that have been 

presented in previous experimental studies [2,3,17]. Their specifications are shown in Ta-

ble 1. 

Table 1. The specifications of the barge ship and tugboats. 

Item Parameter Value 

Barge Ship 

Length 2.0 m 

Breadth 1.0 m 

Weight 21.5 kg 

Tugboat 

Length 0.75 m 

Breadth 0.3 m 

Weight 0.45 kg 

The inertia matrix and damping matrix of the barge ship and tugboat were listed as 

follows: 

   
   

= =   
   
   

35.12 0 0 0.90 0 0

0 37.24 0 , 0 2.70 0

0 0 11.32 0 0 0.80

s s
M D  (39) 

   
   

= = = =   
   
   

1 2 1 2

2.25 0 0 0.17 0 0

0 4.15 0.065 , 0 0.67 0.05

0 0.065 0.56 0 0.05 0.178

M M D D  (40) 

Equation (39) represented the inertia matrix and the damping matrix of the barge 

ship and Equation (40) represented those of the towing tugboats. In particular, tugboats 

1 and 2 were assumed to have the same dynamic characteristics. The disturbance signal 

Figure 4. A schematic drawing of the mixed sensitivity H∞ control framework.

The H∞ controller could be derived simply using MATLAB software with the state-
space model that was presented in Equations (35) and (38).

4. Simulations

Simulation studies were conducted for two scenarios to show the usefulness of the
proposed system. The first scenario was a two-set point tracking, in which the barge
ship needed to move from its initial position to two consecutive set points. In the second
simulation, the barge was required to follow a desired quarter-circle trajectory. Both
scenarios were designed similarly, according to the motion of the ship during berthing. In
addition, the motion control performance in each scenario was verified with and without
the presence of disturbances.

The ship models that were used in the simulations were scale models that have
been presented in previous experimental studies [2,3,17]. Their specifications are shown
in Table 1.

Table 1. The specifications of the barge ship and tugboats.

Item Parameter Value

Barge Ship
Length 2.0 m
Breadth 1.0 m
Weight 21.5 kg

Tugboat
Length 0.75 m
Breadth 0.3 m
Weight 0.45 kg

The inertia matrix and damping matrix of the barge ship and tugboat were listed
as follows:

Ms =

35.12 0 0
0 37.24 0
0 0 11.32

, Ds =

0.90 0 0
0 2.70 0
0 0 0.80

 (39)

M1 = M2 =

2.25 0 0
0 4.15 0.065
0 0.065 0.56

, D1 = D2 =

0.17 0 0
0 0.67 0.05
0 0.05 0.178

 (40)
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Equation (39) represented the inertia matrix and the damping matrix of the barge ship
and Equation (40) represented those of the towing tugboats. In particular, tugboats 1 and
2 were assumed to have the same dynamic characteristics. The disturbance signal that
was applied in the simulations was a sinusoidal signal with a magnitude 0.05 N, which
corresponded to 10 % of the maximum control force (0.5 N) that was required for the barge
ship, and a frequency 0.5 Hz, as shown in Figure 5.
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4.1. Set Point Tracking Simulation Results

In the first scenario, the barge needed to move from its initial zero position to the first
set point at x0 = 10 m, y0 = 0 m and ψs = 0 deg. Then, after 200 s, it headed to the second
set point at x0 = 10 m and y0 = 10 m and, at the same time, it rotated ψs = −90 deg about
its vertical axis. Thus, in the simulation, the desired values of the vector ηs were given by:

ηs,d =

{ [
10 0 0

]T 0 s ≤ t < 200 s[
10 10 −90

]T 200 s ≤ t ≤ 400 s
(41)

The tugboats also needed to move in the same manner from their initial positions at
x1 = 0.5 m, y1 = −0.5 m, ψ1 = 0 deg, x2 = 0.5 m, y2 = 0.5 m and ψ2 = 0 deg.

Figure 6 shows the set point tracking simulation results and Figure 7 shows the control
inputs of the barge ship. The left-hand figures present the results from the H∞ controller
and the right-hand figures present those from our sliding mode controller. The results
presented in Figure 6a,b were obtained without any disturbances while Figure 6c,d were
obtained under disturbance. Figure 6a,b show that the barge ship moved to the target
position and orientation without any significant errors. Both control systems provided
a good tracking performance with a feasible control input. However, during the approach
phase from the first set point to the second set point, there was a tendency to deviate from
the desired tracking route. This was due to the rotation of the barge ship during this period.
Furthermore, using our sliding mode controller, the barge ship was able to approach the
target position faster than when it was controlled by the H∞ controller. Additionally, the
barge ship deviated from the desired route due to the influence of disturbances, as seen
in Figure 6c,d. Even so, our sliding mode controller achieved a better and more robust
control performance. In addition, in steady state, both controllers effectively rejected
any disturbances.
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Figure 6. The set point tracking performance of the barge ship when conveyed by the tugboats.
(a) Conveyed with the H∞ controller; (b) conveyed with our sliding mode controller; (c) conveyed with
the H∞ controller under disturbance; (d) conveyed with our sliding mode controller under disturbance.
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Figure 7. The control inputs of the barge ship. (a) Conveyed with the H∞ controller; (b) conveyed with
our sliding mode controller; (c) conveyed with the H∞ controller under disturbance; (d) conveyed
with our sliding mode controller under disturbance.
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4.2. Trajectory Tracking Simulation Results

In the second simulation, the desired trajectory was defined as an arc with a radius
of 10 [m] and an angle of 90 deg, starting from x0 = 10 m, y0 = 10 m and ψs = 90 deg
and returning to the zero position. The initial positions of the tugboats were x1 = 10.5 m,
y1 = 10.5 m, ψ1 = 90 deg, x2 = 9.5 m, y2 = 10.5 m and ψ2 = 90 deg. The trajectory ended
at 400 s, then stayed still at the final position until 600 s (Figure 8).
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Figure 8. The desired trajectory of the barge ship that was used in the simulations.

Figures 9 and 10 show the trajectory tracking performance and the control inputs of
the barge ship. The arrangement of the figures is similar to the figures. It can easily be seen
that our sliding mode controller achieved a better performance and robustness, even in the
presence of disturbances. Furthermore, at the departure stage and under the influence of
disturbances, the barge ship that controlled by the H∞ controller appeared to deviate from
the desired trajectory (Figure 9c). In conclusion, the proposed conveying system using our
sliding mode controller could achieve a robust motion control performance for the barge
ship and thus, ensure fast and safe working operations.
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Figure 9. The trajectory tracking performance of the barge ship when conveyed by the tugboats.
(a) Conveyed with the H∞ controller; (b) conveyed with our sliding mode controller; (c) conveyed with
the H∞ controller under disturbance; (d) conveyed with our sliding mode controller under disturbance.
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5. Conclusions

In this paper, the problem of the modeling and motion control system design of
conveying systems for non-propulsion barge ships was considered. Considering the
narrow workspaces of barges, a new configuration for conveying systems was proposed,
comprising a combination of pushing and towing tugboats that were arranged on one side
of a barge. A dynamical model of the entire system was derived and showed its feasibility.
Then, a motion control system based on the sliding mode framework and a comparative
H∞ control system were designed to convey a barge ship safely and quickly. The control
laws were obtained for the whole conveying system and, therefore, guaranteed the efficient
performance of both the barge ship and the tugboats simultaneously.

To show the effectiveness of the proposed system, simulation studies were conducted.
Set point tracking and trajectory tracking scenarios were considered in the simulations.
From their results, the maneuverability of the proposed barge ship control configuration
was validated. The proposed sliding mode controller showed its superiority over the
comparative H∞ controller, especially in terms of robustness against disturbances.

However, the correlations between the trajectories of barge ships and those of tugboats
have not yet been explicitly determined. This will be considered in our next study, along
with more advanced control system designs. Moreover, the proposed system configuration
and control system will be evaluated through further experiments. We hope that the pro-
posed idea could help researchers to find solutions for the autonomous berthing problem.
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