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Abstract: Key parameters in a process-based model depicting the morphological changes during storm
events should be adjusted to simulate the hydro- and morphodynamics, leading to site-, profile-,
and event-specific calibration. Although area models eliminate variability in calibrated parameters
along with each profile in complex bathymetry, the amount of influence datasets with different wave
conditions have on model performance is still unclear in an area model in a given parameter space. This
study collected hydrodynamic and bathymetric field data over four different storm conditions (two
single and two cluster storms) at Maengbang Beach, South Korea. The numerical model XBeach was
adopted using four storm datasets with four key parameters to examine the influence of event-specific
calibration data on subaerial storm erosion. When using clustered storm data, a relatively limited
number of parameter combinations showed higher model sensitivity to different parameter sets as
opposed to single storm data with the same parameter sets. Model sensitivity to different storm events
was correlated with cumulative storm power and resultant erosion volume in comparison with other
features in the datasets. The results are expected to guide the selection of an event-specific dataset with
various morphological and hydrodynamic factors in an area model under complex bathymetry.

Keywords: coastal erosion; XBeach; model calibration; storm cluster; crescentic bar; megacusps

1. Introduction

The erosion of sandy beaches stems from sediment supply limitations, human in-
tervention, extreme storms, and sea-level rise due to climate change [1]. Storm-induced
erosion can lead to intense short-term damage in coastal regions, highlighting the need
for hazard mitigation and coastal erosion early warning systems [2] based on several nu-
merical models (e.g., CSHORE [3], SBEACH [4], and XBeach [5]). Each model has various
semi-empirical parameters to simulate the appropriate hydro- and morphodynamics in a
specific area of interest. However, these parameters are event-, site-, and profile-specific in
model calibration because the beach response to storm events varies with the complexity of
the sandy beach environment. Profile-specific calibration [6–8] is used to select a suitable
parameter set for a specific profile in one-dimensional profile models. The profile model
is favorable in areas with alongshore uniformity, which assumes no distinct variability
alongshore because it can produce various simulation cases at relatively low computational
costs. Previous works by Simmons et al., 2017 [6] and 2019 [7] reported the improvement
of predictive skills by profile-specific calibration with rigorous calibration through Monte
Carlo sampling (i.e., the generalized likelihood uncertainty estimation (GLUE) method [6]).
Elsayed et al., 2017 [8] pointed out the correlation between optimum parameters of wave
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shape and initial seaward slopes. Therefore, the performance of each profile along the
shore can be improved through profile-specific calibration of the beach/dune erosion.
However, their alongshore uniform assumption has limitations in complex bathymetry,
where rhythmic sandbars and shoreline patterns or hard structures for coastal mainte-
nance projects are dominant. For instance, crescentic sandbars that are predominantly
found in microtidal sandy beaches on relatively gentle slopes (less than 1:20) [9] have
been associated with shoreline undulations (megacusps) [10–12]. Many factors, such as
wave direction, wave height, water level, and initial variability in bathymetry, affect each
factor complexly, constantly changing erosive and accretive locations. In addition, the
shoreline response to coastal protection structures varies with wave conditions and fea-
tures of the structures [13,14]. In such bathymetries, profile-specific calibration is highly
variable, which leads to the need for continuous calibration processes at a fixed profile in re-
sponse to changing conditions. Therefore, area models, especially the short-wave-averaged
but infragravity-wave-resolving model XBeach (surfbeat mode, hereafter called “XBSB”),
should be employed to produce reliable results from such complex interactions between
hydro- and morphodynamics without requiring extensive repetitive calibration. The area
model in the XBSB is irrelevant to profile-specific calibration and shows better model
performance on the observed alongshore variability with calibrated parameters [15,16].
Although it incurs a higher computational cost than the profile model, covering alongshore
variability with a parameter set saves time for adopting optimum parameter values along
with varying profiles.

XBSB was originally intended for applications with high wave energy for short dura-
tions on relatively gentle beach-face slopes (i.e., storm erosion on dissipative sandy beaches).
This indicates that XBSB with default settings is preferable to these conditions and may
require event-specific calibration for different beach states [17–20]. In addition, storm
clusters consisting of relatively small, isolated storm events can generate more significant
erosion than a single large storm [21,22], which may cause different model sensitivities in
the calibration process depending on the storm events. Thus, morphodynamic modelers
cannot expect that the optimum parameter set already calibrated from single storm data
can be applied to different storm events, even at the same site [23]. Furthermore, the degree
to which the model performance depends on different incident wave conditions in the
area model at a given parameter space remains unclear. Simmons et al., 2019 [7] suggested
that the characteristics of storm events had less variability in selecting optimum parame-
ters; thus, datasets covering spatial variation may be more important in terms of model
calibration. However, Rafati et al., 2021 [20] showed a correlation between the optimum
parameters and incident wave conditions, although all initial profiles differed. Several
studies [11,24,25] simulated storm morphological changes under complex bathymetry
where an area model is required but did not elucidate the model sensitivity to various
incident wave events.

The objective of this study was to examine the influence of event-specific calibration
data (single storm events and storm clusters) on the modeling of subaerial storm erosion
under complex bathymetry. A complex process-based model (XBeach2D, area model) was
employed for detailed analysis and quantitative comparison among the four storm datasets.
Each pre-storm bathymetry, hourly wave data, and water level observed at microtidal,
wave-dominant, and straight beaches in East Korea (Maengbang beach) were used for the
model setup. The analysis was conducted based on the Brier Skill Score (BSS) [26], and the
likelihood of BSS [6] was calculated using the observed and modeled bed-level changes.

The remainder of this paper is organized as follows. The study area and multiple
storm datasets are described in Section 2. The methodology used for the numerical setup,
model calibration, and detailed analysis is provided in Section 3. Section 4 comprehensively
describes the results based on a quantitative comparison. Section 5 presents a discussion
and conclusion of the study.
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2. Field Data
2.1. Study Area

Field observations and numerical simulations were conducted at Maengbang Beach
(37.40◦ N, 129.21◦ E), located between the Osip River (to the northwest) and the Maeub
River (to the southeast) on the east coast of Korea. This area predominantly consists of
crescentic bars, although the beach state [27] changes mainly under intense storm waves of
long durations (Figure 1). The study site is a straight and open coastline facing northeast
(NE; approximately 41.6◦). The length of the sandy beach is approximately 4.5 km, and the
beach width is 50 m on average, but the difference between the minimum and maximum
beach widths is approximately 100 m depending on the development location of the
crescentic bars; therefore, it has a large fluctuation range at each point. The average
slope of the upper shoreface (between –10 m depth and 0 m contours) was 0.025 (gentle),
while the beach face slope was 0.15 (steep). The median grain size in this area is seaward
fining from about 0.65 mm (near mean sea level, MSL) to 0.25 mm (nearshore), resulting
in approximately 0.4 mm on average. This beach is microtidal (mean high water level
(MHHWL) ~33.8 cm) and wave-dominant where wave incidence normal to the coastline
(NE direction) prevails [28]. However, easterly and northerly waves also significantly
affect the development of wave-induced currents, sediment transport, and the location of
crescentic sandbars.
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Figure 1. (a) Maengbang beach with crescentic bars; and (b) longshore uniform bar due to a series of
storms (image acquired from Google Earth). The area within the red rectangle denotes the location
where analysis of bathymetric data and numerical results is performed.

2.2. Storm Events

The study area is intermittently subjected to storm events driven by extratropical
low-pressure and typhoon [25,29]. The features of these two factors (e.g., the intensity and
path of typhoons and the distribution of atmospheric pressure causing strong winds) affect
the characteristics of individual storms, such as wave height, period, direction, duration,
and storm surge, resulting in different impacts on the beach/dune system [21,22] and
multiple sandbar systems [12,30]. Storm clusters, a series of storms with close intervals
between storms, can also occur owing to extreme atmospheric phenomena, leading to
similar or more severe erosion in comparison to a single storm event with higher wave
energy (longer return period) [21,22,30]. Additionally, the sequence of each storm within
consecutive storms could lead to different responses to beach/dune erosion, whereas the
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initial storm might have a significant impact on the response of the beach/dune system to
subsequent storms [31].

As defined in [22], this study uses a threshold wave height (Hs, threshold) of 2.5 m to
define an individual storm at Maengbang Beach and a time interval of 12 h between storms
(IN) as a threshold to differentiate each storm. However, a storm over Hs, threshold that
lasts longer than 6 h is considered an individual storm. It should be noted that if a storm
event with a water level (tide + storm surge) that exceeds MHHWL (0.34 m), and the storm
duration is less than 6 h, it is also considered a storm condition because the storm impact
can also be aggravated by storm surges. The recovery period was set as one month, the
same period as in [22], in light of the analysis of periodic bathymetry surveys conducted
over four years at this site. Therefore, storm events with a 12 h < IN < recovery period
belong to clustered storms. With the above definition of a single storm and storm cluster,
we use the storm power index (see [22] for more details) Spi as a function of discretized
storm duration (∆D) and wave height (∆Hi), to quantify the strength of a storm event:

Spi = ∑n
i=1

(
∆D× ∆H2

i

)
. (1)

The wave data observed at an acoustic wave and current profiler (AWAC at W1 in
Figure 1) at a water depth of 30 m from March 2017 to September 2020 produced four storm
datasets (S1, S2, C1, and C2), including the significant wave height Hs, peak wave period Tp,
and peak wave direction Dp (clockwise from true north). Figure 2 shows the time series of
wave height (solid blue line) and wave direction (green circle) collected before and after the
storm bathymetry for each storm condition. The period that satisfies the aforementioned
storm definitions indicates an individual storm condition (gray bar), classifying two single
storm events (S1 and S2) and two clustered storm events (C1 and C2).
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Figure 2. Time series of significant wave height (solid blue line) and wave direction (green circle)
collected between pre- and post-storm bathymetry for each storm condition (S1 (a); S2 (b); C1 (c); and
C2 (d)). The red circles indicate when typhoons affect the study area (Maengbang beach).
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Bathymetric surveys were conducted before and after each storm event using RTK-
GNSS (GX1230 and Viva GS16, Leica) for topography (MSL to MSL(+) 6 m) and high-
precision GNSS and echo sounder (AquaRuler 200S, MIDAS) for nearshore and foreshore
bathymetry (MSL (−) 25 m to MSL). Long-term topography and bathymetry surveys
are ongoing as part of the fundamental data provision for coastal erosion control and
countermeasures. Bathymetric data available for storm events showed that the depth of
closure (DoC) in this study was MSL(-) 10 m because even when five consecutive storms
impacted the study area (C1) with the largest storm power of 508 m2h, no morphological
changes occurred at the water depth. This study collected bathymetric datasets and
interpolated them into the numerical grid (see Section 3.1 for further details on the grid).
The analysis was performed in the central part of this study area (within the red rectangle in
Figure 1a), ranging approximately 1500 m in the alongshore direction to focus on relatively
natural sandy beach by neglecting other impacts that stem from engineering structures
(construction started in 2020 on the northwest side of Maengbang beach) and the sand
inflow by the Maeub River (Figure 1).

Figure 3 shows the subaerial volume changes according to the cumulative storm power
(dark triangles) for each event (S1 to C2). The subaerial beach in this study extends between
MSL to fixed boundaries (i.e., coastal road). The measured values are separately plotted
as the average erosion subaerial volume changes (∆V, light green triangles in Figure 3)
and outside of two standard deviations (∆V2σ , green bars in Figure 3) to differentiate the
average and extreme impacts of volume changes on storm events. The subaerial volume
change was calculated by subtracting the post-storm profile volume from the pre-storm
profile volume. For calculating average erosion subaerial volume change, this study used
62 (S1), 72 (S2), 60 (C1), and 83 (S2) erosive profiles out of 121 profile data. Although
the storm powers of individual storms consisting of storm clusters are similar or smaller
than those of single storms (Table 1), ∆V2σ , (dramatic erosion volume change) tends to
increase with cumulative storm power. However, ∆V (average erosion volume change)
exhibits no significant differences with varying cumulative storm power (12.8~17.1 m3/m)
compared to ∆V2σ (30.4~48.2 m3/m). These differences stem from the equilibrium profile
response [32–34], indicating that beach responses can differ according to precedent morphol-
ogy (e.g., beach width). Figure 4 shows the volume changes after storm events depending
on the beach width observed in the pre-bathymetry survey, illustrating that the initial
wide (narrow) beach width is likely to be more eroded (accreted). The present study area
generally follows the equilibrium concept, and accretions were observed regardless of
the storm power of each event when deviations of beach width were less than −10 m. In
addition, Figure 5 indicates that the shoreline changes in response to each storm condition
also tend to be correlated with the location of the nearshore crescentic sandbars. The mean
bathymetry (Figure 5a) calculated from the collected bathymetric data indicates the pre-
dominance of crescentic sandbars, as shown in Figure 1a, but the bar locations continuously
changed with time in response to storm events. For instance, the crests of the sand bar
located around MSL(-) 2 to 4 m (blue asterisks in Figure 5d) moved to MSL(-) 4 m (red aster-
isks in Figure 5d) after C1, turning the initial crescentic sandbar into a longshore uniform
sandbar. Consequently, compound processes by the equilibrium concept and crescentic
sandbars affect the beach response at this study site, but consecutive storm events mainly
impact extreme erosion. In the following section, we present further details on the classified
storm events and bathymetric surveys available for these events, which are summarized
in Table 1.
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Figure 3. Average subaerial volume changes according to cumulative storm powers (dark triangles).
The light green triangles and green bars indicate the average subaerial erosion volume change and
that outside of the two standard deviations, respectively.

Table 1. Summary of the classified storm events (S1 to C2) and bathymetric surveys available for
these events.

Storm
Event

Time
Interval
between

Bathymet-
ric Survey

(Days)

Pre-Storm
Survey

(Days before
Initial Storm

Starts)

Post-Storm
Survey

(Days after
Final
Storm
Ends)

Number
of

Storms

Each
Storm
Dura-
tion

(Hours)

Each
Storm
Power
(m2h)

Characteristics at Each Storm
Peak Hs

Cumu
lative
Storm
Power
m2h

Hs
(m)

Tp
(s)

Dp
(deg. N)

Water
Level
(m)

S1
2017-09-

08~10/26
(48)

44.6 1.8 1 38 490 490 4.5 10.2 57.1 −0.25

S2
2020-05-

07~05/28
(21)

11.7 6.8 1 59 506 506 4.2 11.5 47.6 0.19

C1
2019-08-

29~10/30
(62)

24.6 14.8 5

39
27
18
32
10

508
218
167
363
94

1350

4.5
3.2
3.8
4.2
3.5

10.9
10.1
10.7
10.5
9.3

69.1
40.5
42.1
53.4
42.5

−0.03
0.34
0.17
−0.12
0.01

C2
2020-08-

20~09/18
(29)

14.2 3.5 3
5

12
42

60
129
478

667
3.9
4.4
4.7

9.3
10.4
11.4

87.8
63.0
46.2

0.83
0.39
0.06
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Figure 5. Compared to the mean bathymetry (a), migration of nearshore crescentic sandbars and
shoreline change in response to each storm event (b–e). Blue and red bars (asterisks) denote the shore-
line retreat (depth of bar crests pre-storm) and advance (depth of bar crests post-storm), respectively.
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2.2.1. S1

On 10 October 2017, Hs exceeded Hs, threshold (2.5 m), but this event was neglected for
a storm condition because it lasted only 3 h (D < 6 h). In addition, the first three storms
with more than 2 m wave height would have affected final profile changes. However, field
observation right after the three events was not conducted since repeated bathymetric
surveys with short-term intervals are impractical at most sites. Therefore, it is impossible
to investigate the effect of those events on profile change. We considered that those effects
do not have significant impacts on overall profile changes compared to the last intensive
event because of the short duration. There were also a few weeks for the beach to recover
even if it affected the changes. Consequently, we assumed that those first three events are
not remarkable on profile changes compared to the much higher wave energy with a long
duration and considered S1 as a single event.

The first single storm event (S1) recorded a storm power of 490 m2h with an incident
wave of 57.1◦ at the peak storm wave height, and it lasted for 38 h from 22 to 24 October 2017.
Average subaerial erosion volume change outside of the two standard deviations (∆V2σ) was
31.3 m3/m, while average subaerial erosion volume change (∆V) was 13.9 m3/m in response
to this single storm (Figure 3). Figure 5 shows that the length and amplitude of the crescentic
sandbars increased after the storm event, along with the tendency of out-of-phase coupling
with the shoreline (erosive megacusps facing the lee side of the sandbar embayment), which
has been found in many sandy beaches with crescentic bars [11,12,30,35].

2.2.2. S2

The second single storm event (S2) spanned 59 h, recording the most prolonged storm
duration among the individual storms in the collected storm datasets; therefore, it had
similar storm power of 506 m2h to that of S1, despite the slightly lower peak storm wave
height (4.2 m). The incident wave was predominantly normal to the shoreline (47.6◦) at
storm peak Hs. The average ∆V2σ and ∆V were 30.4 and 12.8 m3/m, comparable with
those of S1 (Figure 3). The locations of crescentic bars showed no significant change, while
cross-shore migrations of the sandbars were observed, deepening the depth of the bar crests
(Figure 5c). Interestingly, a similar out-of-phase relationship between the shoreline and
crescentic bars was discovered for S1, although both S1 and S2 had different hydrodynamics
and precedent morphologies during the storm events.

2.2.3. C1

The seven typhoons in 2019 directly and indirectly affected the country. Among them,
three typhoons that mainly affected the study area in September and October 2019 were of
two types in terms of wave direction [25] (ENE and NE waves (Table 1)), leading to five
storm events in a storm cluster (C1). A series of storms started with the largest storm power
(508 m2h) lasting 39 h with a peak storm wave height (4.5 m) comparable to the S1 event.
The first event in C1 was dominantly ENE wave groups under the effect of Typhoon Tapah,
which induced longshore sediment transport toward the northwest of the area [25]. The
second and third storm events in C1 induced by Typhoon Mitag recorded storm powers of
218 and 167 m2h due to relatively low wave height (≤3.8 m) and short duration (≤27 h)
compared to the S1 and S2 events. However, Typhoon Mitag passed directly through
the study site, reaching the MHHWL (0.34 m) owing to the storm surge. The next two
storms, with storm powers of 363 and 94 m2h occurred under the influence of Typhoon
Hagibis. The typhoon passed through the east coast of Japan, but it was classified as a super
typhoon (Korea Meteorological Administration, KMA) with a diameter of approximately
1400 km and a Category 5 on the Saffir-Simpson Hurricane Scale (SSHS). After the C1
event, dramatic erosion profiles were observed with the averaged ∆V2σ of 48.2 m3/m, while
∆V was 15.3 m3/m, which is slightly larger than single storm conditions (S1 and S2). This
result shows that the equilibrium profile response reduced the gap between the averaged
subaerial erosion volume (∆V) and that of S1 and S2. In addition, the cumulative impacts of
five consecutive storms (cumulative storm power of 1350 m2h) caused extreme erosion, but
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the amount of erosion was not proportional to the storm power owing to the equilibrium
beach response. Previous numerical results [25] showed that the first largest storm in C1
eroded this study area for the most part, and subsequent storm events had relatively small
impacts compared to the first one in terms of subaerial erosion, as reported by [22]. As
a result of a cluster of storms, the rhythmic beach bar transformed into a longshore bar,
although the state had a repeated pattern of erosive and accretive profiles near the MSL
(Figures 1b and 5d).

2.2.4. C2

Two typhoons, Maysak and Haishen, made landfall on the east coast of Korea and led
to three storm events in a storm cluster (C2), causing considerable loss of sediment despite
the short storm duration (5 and 12 h, respectively) during the first two storms. However,
wave heights during the storms were sufficiently high to cause coastal erosion, and the
water level (0.83 and 0.39 m) exceeded MHHWL (0.34 m) as a result of the storm surge.
Although the storm duration of the first storm in C1 was less than 6 h, it was regarded
as a storm because the water level (0.83 m) outweighed the MHHWL. The third storm in
C1 with a storm power of 478 m2h recorded the highest peak storm wave height (4.7 m)
with mainly a NE wave direction for a period of 42 h, which was relatively long compared
to the previous two storms. Consequently, severe erosion profiles were discovered with
the averaged ∆V2σ of 43.9 m3/m, while ∆V was 17.1 m3/m, similar to the C1 event. Ex-
treme erosion was observed only when deviations of beach width before C1 were wider
than −5 m. Although the individual storm powers in the cluster storm (C2) were lower
than those of the single storm events (S1 and S2), ∆V after C2 was larger than that of S1
and S2. As shown in Figures 3 and 4, a storm cluster composed of several storms with
small storm powers (C2) could result in more damage (e.g., coastal erosion) than that
from a single storm with a larger storm power (S1 and S2) [21,22]. Crescentic sandbars
migrated in the longshore direction mainly due to the ENE and E storm waves of the first
two storms in C2, and the relationship between the shoreline and sandbars was mixed
with out-of-phase and in-phase couplings (accretive megacusps facing the lee side of the
sandbar embayment).

3. Methodology
3.1. Numerical Setup

The four aforementioned storm events were modeled in the study area using a two-
dimensional horizontal (2DH) XBSB (version 1.23.5527, XBeachX) that can simulate the
hydrodynamics and morphological changes in relatively narrow areas (e.g., beaches, dunes,
and barrier islands) during storm wave events. To model these areas in the XBSB, hydro-
dynamics such as short wave, long wave, and roller energy with wave and water level
input as boundary conditions were calculated first. Subsequently, morphodynamics, such
as sediment transport and resultant bed-level changes, were simulated. This study used
the JONSWAP spectrum with parametric variables (Hs, Tp, Dp, and directional spreading)
observed in AWAC (Figure 1) for the wave boundary condition. The water level time series
measured from the Korea Hydrographic and Oceanographic Agency’s Donghae Port Tidal
Observatory (37.49◦ N, 129.14◦ E) was also applied to the model boundaries. However,
the hydrodynamic conditions used were only forced at the model boundary in the case of
wave heights greater than 1 m for all simulations (S1–C2). In addition, the morphological
acceleration factor (morfac) of 10 was used. This selective condition is intended to reduce
the high computational cost derived from the relatively long intervals between pre- and
post-bathymetric surveys (Table 1) and to simulate the erosive processes [36,37].

Figure 6 shows a curvilinear and non-equidistant grid established for 2D modeling,
extending approximately 1.2 and 5.5 km in the cross-shore and alongshore directions,
respectively. The range of both directions was expected to be consistent with the offshore
boundary located at AWAC (Figure 1) and to cover the shadow zone as an easterly storm
wave propagated. The size of the grid cell in the cross-shore direction varied with the
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area of interest as high (2–5 m) and coarse (10 m) resolutions at beach/nearshore and
in the vicinity of the offshore boundary, respectively. The grid size in the alongshore
direction was nearly regular at a resolution of 12 m. The initial bottom boundary condition
was set up with pre-storm bathymetric data, and grid cells that correspond with the
locations of hard structures (i.e., rocks, coastal roads, and breakwaters) were considered as
non-erodible layers.
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(MSL(-) 10 m) in the cross-shore direction, denotes the location where analysis of bathymetric data
and numerical results was performed.

3.2. Model Calibration

The XBeach model has a few empirical equations with numerous parameters that can
be calibrated because of the lack of understanding of hydromorphodynamics
(e.g., grain stabilization, wave breaking, and swash zone processes) and model simplifica-
tion (e.g., uniform sand assumption, phase-averaged mode, and depth-averaged model).
To improve the model performance under these limitations, physically based calibra-
tions [8,19,38] and a heuristic equation [39] to complement the missing physics have been
applied to the modeling of morphological changes caused by storm events in many studies.
Moreover, the model has been supplemented by additional physics [20,40–42] to overcome
the poor prediction skill derived from intrinsic limitations in XBSB. However, despite
considerable efforts, the adjustment of free parameters suitable to the specific sites and
events in modeling using the manual ‘trial-and-error’ method or the GLUE process [6,7]
is unavoidable.

Simmons et al. (2017) [6] conducted a GLUE test at collision and overwash profiles
in Lido Di Classe, Italy, using adjustable parameters frequently reported in the literature
to find key sensitive parameters. Simmons et al., 2019 [7] used three key parameters
(facua, gamma, and bedfriccoef ) to identify the influence on calibration datasets in modeling
subaerial beach storm erosion on three embayed beaches in Australia. Similarly, other
studies [2,43] have predicted subaerial beach erosion by storm events using these three
parameters. However, this study excluded bedfriccoef for model calibration as it is proved
to be relatively insensitive compared to the other two parameters (facua and gamma) in the
collision regime [2,43–45], which is consistent with the present study area.
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XBSB provides two formulations (Roelvink, 1993 [46] and Daly et al., 2012 [42], here-
after called ‘Rv93′ and ‘RvDaly’, respectively) for the dissipation due to short wave breaking
that is important for the prediction of wave transformation and run-up in the surf and
swash zone. Briefly, the Rv93 formulation adopts a probabilistic approach depending on
local waves and depths with two sensitive parameters (gamma and alpha). In contrast, the
RvDaly formulation uses a deterministic approach, in which the occurrence of wave- and
depth-induced breaking is determined as the breaking and reformation criteria (gamma and
gamma2). Daly et al. (2012) [42] showed that wave dissipation simulated by the probabilistic
function is underestimated in areas where the water depth rapidly varies (i.e., bar-trough
system), while the discrepancy in hydrodynamics simulated by both formulations is negligi-
ble in areas with a plane slope [47]. Several studies have shown that the model performance
of the RvDaly formulation is better than that of Rv93 in predicting hydrodynamics on
a barred beach [48] and near a hard structure [49]. In addition, a previous study [25,50]
showed better results with RvDaly formulation in simulating bed level changes triggered
by the C1 event at this study site based on BSS estimation. Therefore, this study adopted
four key parameters (facua, alpha, gamma, and gamma2) with the RvDaly formulation and
combined each parameter to produce 96 parameter sets (Table 2). It should be noted
that the default values of free parameters are used except for the parameters listed in
Table 2. Consequently, this study simulated a total of 384 cases (96 parameter sets with four
storm events) to identify the effect of event-specific calibration data in spatiotemporally
variable bathymetry.

Table 2. Parameter descriptions and values used for calibration processes.

Parameter Description Values

facua * Adjustable parameters for parameterizing both
wave skewness (facSk) and asymmetry (facAs) 0.10, 0.15, 0.20, 0.25

alpha * Wave dissipation coefficient for short wave breaking 1, 2

gamma *
Breaker parameter in RvDaly formulation, with
larger values of gamma encouraging less wave

dissipation (See [44] for details)
0.42, 0.52, 0.62

gamma2 *
Reformation parameter in RvDaly formulation, with

larger values of gamma2 encouraging less wave
dissipation (See [44] for details)

0.25, 0.30, 0.35, 0.40

D50 D50 sediment diameter applied to the model domain 0.4 mm
D90 D90 sediment diameter applied to the model domain 0.7 mm

bedfriccoef Bed friction coefficient defined as Chezy value,
influencing mean flows and long waves 40 m1/2/s

break Type of breaker formulation roelvink_daly [42]
form Type of sediment transport formulation soulsby_vanrijn [51]

* Only these four parameters were combined to produce 96 parameter sets for storm events (S1–C2).

3.3. Assessment of Event-Specific Calibration Data

A quantitative comparison of the simulated and observed bed level changes for
384 cases (96 (parameter combinations) × 4 (storm conditions)) was conducted based on
the BSS [26]:

BSS = 1−
[
(|zc − zm|)2/(zi − zm)

2
]
, (2)

where zc, zm, and zi denote the computed, measured, and initial bed level, respectively. This
metric can be classified as follows: 0.8 ~ 1.0 (excellent), 0.6 ~ 0.8 (good), 0.3 ~ 0.6 (reasonable),
0 ~ 0.3 (poor), and < 0 (bad). The likelihood of a BSS [6] is defined as

LBSS = BSSi/
n

∑
i=1

BSSi, (3)

where n is the total number of calibration sets for each storm case (n = 96), and BSSi is a
BSS of an individual model run. This study calculates the BSS with bed elevation data
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above the MSL because evaluating morphological changes in the subaerial beach is more
useful for practical and protective purposes in coastal engineering projects than those in
the offshore region. Therefore, many studies have focused on the measured data above
the MSL in calibrating and validating the XBeach model [6,7,18,19]. The area for BSS
evaluation contains 121 profile data, which span approximately 1.5 km and above MSL in
the alongshore and cross-shore direction, respectively. BSS is a direct proxy for quantifying
the model performance at a given reference prediction (i.e., observed bed level changes),
with higher values indicating more accurate prediction (maximum BSS = 1). Although
BSS represents the objective model performance with a numerical value for a parameter
combination, Lbss quantitatively explains the weight of individual skills in the whole model
skill distribution by rescaling the sum of the likelihood to one (higher values indicate higher
skill than others). It should be noted that Lbss is set to 0 when the BSS of a model run is less
than 0, as in [6]. This study uses both metrics to quantitatively analyze the general model
performance, sensitivity of each parameter set, and reliable parameter ranges for varying
storm events.

4. Results
4.1. Influence of Event-Specific Datasets on Model Calibration

Figure 7 shows the ratio of the erosion/accretion profile and model skills under all
storm conditions to investigate XBSB’s limitation to simulate the accretion process within
given parameter combinations (Ns = 96). Figure 7a indicates that the erosion profiles were
relatively dominant after S2 and C2 (59.5% and 68.6%, respectively), whereas the erosion
and accretion profile ratios after S1 and C1 were nearly half. Although the cumulative
storm powers of C1 and S1 were the largest and smallest, respectively, the number of
erosion profiles was disproportional to the cumulative storm power. Figure 7b and c show
the ratio of model skill corresponding to BSS ≥ 0.3 (reasonable) out of 96 simulations for
each storm event. We considered erosion, accretion, and all profiles (Np = 121, both erosion
and accretion profiles) for calculating each ratio under the given parameter combinations.
The ratios of model skill (BSS ≥ 0.3) in the erosion profile were 87.5% (S1) and 63.5% (S2),
showing good performance in varying parameter sets. However, the ratios of parameter
combinations with a BSS higher than 0.3 were reduced to 44.8% (C2) and 13.5% (C1).
This indicates that 84 parameter sets showed good model results in S1, whereas only
13 parameter sets presented reliable results in C1. These results imply that relatively
low ratios in clustered storm events signify poor overall model performance or limited
applicability to specific parameter sets within a given parameter range. Additionally, many
parameter sets show consistency with erosion profiles, but the reasonable model skill is
less than 5% in all profiles because none of the parameter combinations exceeded the BSS
of 0.3 in accretion profiles. Consequently, this study focused on erosive areas for further
analysis because XBSB calibrated from either erosive or accretive events has limitations in
simultaneously predicting erosion and accretion cases.

Figure 8 shows a comparison of the BSS calculated for each storm event, and the
corresponding points on both axes are plotted when different storm conditions with the
same parameter set are used. When calibrated by single storm events (S1 and S2), many
given parameter sets showed better model performance (Figure 8a) than those with cali-
bration by cluster storm events (C1 and C2 in Figure 8b). In other words, the dependable
model performance under cluster storm conditions was found to be more limited than that
under single storm conditions. Each point also indicates the applicability of a parameter
set calibrated for one storm event to a different storm event. When the calibrated set with
BSS above 0.3 in C1 or C2 is applied to S1 or S2, most parameter sets lead to reasonable
model predictions with BSS above 0.3 (Figure 8c–f). However, a BSS below 0.3 can be found
in C1 or C2, although the calibrated set by S1 or S2 shows a BSS above 0.3 (Figure 8c–f).
Reliable model skills in any storm event tend to be produced as BSS is higher than 0.3 in
clustered storm events (i.e., BSSs above 0.3 plotted on both axes are mainly observed if BSSs
calculated in C1 or C2 are higher than 0.3). In contrast, a random parameter set calibrated
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by a single storm condition has a relatively low probability of exhibiting high model per-
formance under any condition. This finding suggests that the XBeach area model in XBSB
is event-specific in terms of calibration data, and the optimum parameter set calibrated
by relatively lower cumulative storm power (e.g., S1 and S2 in the present study) could
not be applied to the modeling of different storm events, even at the same site. One can
expect that severe wave conditions would have small variability in selecting the optimum
parameter values, resulting in acceptable model performance. Therefore, the modeler can
have different levels of certainty to determine an optimum parameter set, depending on the
cumulative storm power. This is important because a random parameter combination that
does not represent real physical processes can generate good model performance, which
leads to incorrect decision making in the calibration process.
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Figure 7. Ratio of erosion (blue) and accretion (red) profiles out of the total number of profiles
(Np = 121) (a) and the ratio of model skill, corresponding to BSS ≥ 0.3 out of 96 simulations
(Ns = 96) for single storm (b) and cluster storm (c) events. These ratios are calculated in erosion
(blue), accretion (red), and all 121 profiles (green), respectively. It should be noted that none of the
BSS calculated in accretion profiles exceeds the threshold value (0.3).
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Figure 8. Comparison of BSS calculated in each storm condition (S1 and S2 (a), C1 and C2 (b),
S1 and C1 (c), S1 and C2 (d), C1 and S2 (e) and S2 and C2 (f)) when the BSS on the x-axis is higher
than 0. It should be noted that BSS is plotted as 0 if BSS on the y-axis is 0 or lower for clarity. The red
dashed line indicates the threshold value of reasonable model performance [26] (BSS = 0.3).
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Figure 9a shows the likelihood distributions of each storm event cumulated in de-
scending order (i.e., higher likelihood is first cumulated). The Kolmogorov–Smirnov (K-S)
D statistic [6,52] was used to analyze quantitative model sensitivity to parameter combina-
tions depending on storm conditions. The K–S D statistic is calculated by the maximum
distance between the cumulative likelihood curve condition and the uniform likelihood
distribution and ranges from 0 to 1 with the higher value indicating more sensitive model
results within the same parameter space under respective storm conditions. It should
be noted that the uniform likelihood distribution (dashed line in Figure 9a) denotes the
same BSS value in all 96 parameter sets (i.e., no variation of BSS depending on random
parameter combinations).

1 

 

 

Figure 9. (a) Cumulative likelihood distributions in each storm condition with the K–S D statistic;
and (b) model sensitivity based on K–S D to the cumulative storm power and the average erosion
volume change outside the two standard deviations (∆V2σ); Hmax and N indicate the maximum storm
wave height during each storm event and number of storms in a cluster, respectively; higher K–S D
indicates a higher model sensitivity to parameter sets.

A relatively small number of parameter sets in clustered storm events tended to occupy
a higher BSS among the total BSS distribution (Figure 8), which means that with fewer
parameter combinations, the cumulative distribution in those events was higher than that
in single storm events (Figure 9a). Under the complex bathymetry in the present study, C1
was ranked as the most sensitive condition for model performance at a given parameter
range based on the K–S D statistic, while C2, S1, and S2 were ranked in subsequent order.
Figure 9b compares the quantitative measures of the model sensitivity with each cumulative
storm power and the observed ∆V2σ. As shown in Table 1 and Figure 3, the cumulative
storm powers and ∆V2σ values proportionally increase with the number of storms in each
event. Similarly, the model sensitivity to parameter sets positively correlates with the
cumulative storm power and ∆V2σ, although the maximum storm wave heights during all
storm conditions are comparable (Table 3). In particular, reliable model results tend to be
limited to a small number of parameter sets as the observed ∆V2σ increases. In the selection
of an event-specific dataset for calibration, the modeler has certain ambiguity regarding
which storm event to select when individual storm powers of a cluster storm are less than
or similar to a single storm power, as applicable to the present study. Consequently, if one
event-specific dataset contains extreme erosion volume changes due to cumulative storm
power compared to a single storm event, a clustered storm event is required to obtain
reliable model results in that study area. Interestingly, the wave direction and pre-storm
beach state were all different depending on the storm conditions (Table 1 and Figure 5). In
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addition, S1 and C1 had relatively longer time intervals between the bathymetric surveys
than S2 and C2. Incident wave directions and survey intervals considerably impact the
calibration parameters because they are closely related to hydro-morphodynamics during
the XBeach simulation. However, these factors at the study site were not correlated with
model sensitivity to parameter combinations (i.e., the K–S D value in Figure 9), as shown in
Table 3. Hence, the cumulative storm power or resultant severe beach erosion may be a
prior consideration in the area model of XBSB in selecting the calibration data compared to
other factors because of its relatively low sensitivity.

Table 3. Comparison between model sensitivity based on K–S D and other factors based on observations.

Storm Events S2 S1 C2 C1

Number of storms 1 1 3 5
K–S D 0.14 0.23 0.29 0.45

Cumulative storm
power (m2h) 506 490 667 1350

Maximum Hs (m) 4.2 4.5 4.7 4.5
∆V2σ

(
m3/m

)
30.4 31.3 43.9 48.2

Dp (deg. N) 47.6 57.1 87.8, 63.0, 46.2 69.1, 40.5, 42.1, 53.4, 42.5
Interval between

bathymetric
survey (Days)

21 48 29 62

4.2. Parameter Sensitivity

To analyze the model sensitivity with key parameters, the present study investigated
the likelihood values of each parameter (facua, alpha, gamma, and gamma2) that produced
96 parameter sets for each storm condition. Figure 10 shows the sum of the likelihood values
for each calibration parameter. All likelihood values are summed if a value is constant
regardless of the parameter values. For instance, all likelihood values corresponding to
facua of 0.1, even with different combinations of other parameters (alpha, gamma, and
gamma2), are summed, with large differences in the sum indicating high model sensitivity
to a certain parameter.
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Consequently, facua is found to be the most sensitive parameter in modeling storm
erosion, while other parameters relevant to wave dissipation have no remarkable differ-
ences in the sum of likelihood within the given parameter spaces. They are largely affected
by the variation in facua value because of their lower sensitivity than facua. In other words,
any value of these three parameters at a given parameter range can result in a similar
model performance with different parameter combinations. Several studies [8,17,19,20]
also showed a higher sensitivity of facua than other parameters and therefore used it
differently from incident wave conditions and precedent bathymetries in the calibration
process. Similarly, higher likelihood values tend to be densely distributed in facua of
0.15 and 0.2 in storm clusters (C1 and C2), resulting in a higher sum of the likelihood, while
the model performance of the default value (facua = 0.1) is comparatively poor under all
conditions. The distribution of the sum of likelihood flattens for single-storm conditions
(S1 and S2) because likelihood values have relatively low variance throughout facua values.
Consequently, the sensitivity of facua is found to be proportional to the cumulative storm
power, indicating that a larger storm power may narrow down the parameter space of
facua to produce reliable model results. The best performance (based on the highest sum of
likelihood) in this study area is derived from higher values of facua (0.15 and 0.2 in storm
cluster and single storm conditions, respectively) than its default.

Figure 11 shows the additional analysis of the other three parameters (alpha, gamma,
and gamma2) at fixed facua values and indicates that the model sensitivities of each param-
eter vary with increasing facua values. These three parameters were found to be highly
dependent on the changing facua values owing to the large influence of facua on sediment
transport induced by incident waves. Parameter alpha shows a tendency to be negatively
correlated with the wave shape parameter. A higher alpha reduces beach erosion by in-
ducing significant wave dissipation before they reach the shoreline, compensating for the
excessive erosion caused by the lower facua. In contrast, higher gamma and gamma2 trigger
beach erosion by letting waves break at shallower depths and reforming the breaking
waves earlier, complementing the extensive accretion derived by higher facua. However,
the interrelated feature between parameters weakens as excessive beach accretion occurs
with the highest facua of 0.25, and any parameter combination results in poor model results
at this point. Thus, the facua range for calibration processes can be readjusted to lie between
0.1 and 0.2 for other XBeach applications of erosive events at the present site. Overall,
the wave shape parameter has a predominant effect on modeling subaerial storm erosion
compared to the other three key parameters.
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Figure 11. Sum of the likelihood of three key parameters (alpha, gamma, and gamma2) at each fixed
facua. The higher sum of likelihood indicates that higher BSS values are distributed at the parameter
value. In addition, large variance of the sum of likelihood distribution indicates a high model
sensitivity within given parameter combinations and incident wave conditions.

4.3. Predicition of Profile Changes after Storm Events with an Optimum Parameter Set

The other three key parameters (alpha, gamma, and gamma2) showed a comparative
insensitivity of model performance compared with facua, as shown in Figures 10 and 11.
In all storm events, the most reliable model results are mainly found when facua of 0.15 is
used despite equifinality (i.e., various parameter sets can reach the same desired results)
induced by different parameter combinations, especially in single storm conditions in this
study. If the modeler can produce reliable model performance with only one key parameter
(e.g., facua) with the remaining parameters as default, it is a very practical way for many
XBeach applications on site, regardless of any calibration dataset, also leading to a low
computational cost. Figure 12 shows the simulated profile with a calibrated key parameter
(facua of 0.15) after each storm event (S1 to C2) in comparison with the observed profile
changes. As shown in Figure 3, the observed profiles show an equilibrium profile response
with different volume changes according to the initial beach state. The erosion tendency in
response to storm waves was reduced when the initial beach width was narrow.
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The area model with the selected parameter set (facua = 0.15, alpha = 1, gamma = 0.52,
and gamma2 = 0.3) captured the equilibrium concept well. However, the sediment trans-
port does not move up to the subaerial region, even though the model prediction does
not produce considerable change in the accretion profiles. This led to poor model perfor-
mance when considering all profiles alongshore for BSS estimation, as shown in Figure 7b
and c. However, the differences in the amount of erosion regarding the initial beach
width are well predicted despite slight overestimation of profile changes when small
erosion occurs (middle panel in Figure 12). Employing the area model instead of the
profile model eliminates the uncertainties induced by profile-specific calibration in such
complex bathymetry. Furthermore, choosing the least number of calibration parameters
reduces the equifinality induced by various calibration combinations within event-specific
calibration data.

5. Discussions and Conclusions

The present study adopted a process-based numerical model (XBeach area model)
with a phase-averaged wave mode to examine the influence of event-specific calibration
data on subaerial storm erosion with four adjustable parameters (facua, alpha, gamma, and
gamma2). Field data and numerical simulations were conducted at Maengbang Beach,
located on the east coast of Korea, where complex bathymetry and shoreline undulation
are common. According to the definition of the storm power index, a function of wave
height and storm duration, four storm events (two single storms and two clustered storms)
impacted the study area during the field survey period, resulting in different changes in the
shoreline, volume, and location of crescentic bars. Although beach erosion was observed
with similar averaged subaerial volume changes after all storm events, drastic erosion
volume changes were observed after storm clusters owing to accumulated storm impacts.
Meanwhile, the volume changes tended to vary with the initial beach states in response
to incident storm waves (i.e., a wider beach width before storm events indicates greater
vulnerability to storm impacts).

The key parameters in XBeach should be adjusted to simulate appropriate hydro-
and morphodynamics for a specific area of interest, leading to site- and profile-specific
calibration processes. In such a complex hydro-morphodynamic environment, the area
model is preferable to the profile model because it eliminates the possible uncertainty
induced by profile-specific calibration. A comparison of the BSS calculated for each storm
event revealed that a similar and good model performance was produced by a larger
number of parameter combinations under single storms. In contrast, for clustered storm
events, the limited number of calibration sets led to reliable model skill (i.e., higher model
sensitivity to different parameters). Parameter sets calibrated by storm clusters have a
higher probability of leading to high model skills under any storm condition. In addition,
the level of model sensitivity to each storm event was positively correlated with cumulative
storm power and severe erosion volume change. Reliable model results tend to be limited
to a small number of parameter sets as the observed ∆V2σ and cumulative storm power
increase. These results suggest that datasets containing drastic erosion volume changes due
to cumulative storms are required for the selection of a relatively representative parameter
set for the area of interest.

Additional analysis was conducted to investigate the model sensitivity to the four
selected parameters under different storm conditions. Parameters relevant to wave dissipa-
tion (alpha, gamma, and gamma2) were largely affected by the variation in facua
(i.e., relatively insensitive compared to facua), and the relative insensitivity led to sim-
ilar model performance from all different combinations of the three parameters. Therefore,
the model sensitivity to each storm event under the four parameter combinations was
consistent with that influenced only by facua. Consequently, the calibrated values of the
three parameters tended to change to compensate for over- or underestimation of erosion
volume when calibrated with facua, and the most reliable results were mainly obtained at
facua of 0.15 for both single and clustered storm conditions in this study site.
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Finally, the predicted profile changes with a single parameter set for each storm case
were compared with the observed values. The parameter set was composed of a facua of 0.15,
with the remaining parameters as default (alpha = 1, gamma = 0.52, and gamma2 = 0.3), owing
to the comparative insensitivity of the rest. The area model with the chosen parameter set
captured equilibrium profile response well, despite poor performance on accretion profiles
because sediment transport toward the above MSL was limited in the phase-averaged
wave mode [53]. Other studies [54–56] have also pointed out the underestimation of run-up
prediction in XBSB owing to the absence of short wave motions in the mode. To solve the
problem in XBSB, Pender and Karunarathna (2013) [17] used particular parameter sets for
accretive conditions as opposed to erosive conditions. Kombiadou et al., 2021 [19] applied
the correction of run-up height and adjustment of the swash zone slope to predict accretion
profiles. These results imply that XBSB requires different calibrations and corrections to
model the accretion process by complementing the limitations of the surfbeat mode.

Contribution Points:

1. The cumulative storm power and resultant erosion volume closely correlated with
the overall model sensitivity compared to other features in the datasets (e.g., wave
directions, pre-storm beach state, and the time interval between bathymetric surveys)
at the study site. This result may help modelers decide which factors preferentially
have to be considered in calibration in the area model under complex bathymetry.

2. The analysis of model sensitivity to different storm events guides the selection of
event-specific data for model calibration.

3. XBSB can simulate the equilibrium profile response with reduced uncertainty and
equifinality induced by the trial of various parameter combinations.

4. This study highlights the effect of event-specific calibration of a process-based model
in realizing better prediction and forecasting of coastal erosion, thereby resulting in
more effective hazard mitigation. Therefore, the results of this study will benefit not
only researchers but also government agencies involved in disaster management.
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