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Abstract: A Boussinesq-type wave model is developed in this paper to simulate the interaction of
coastal waves with bottom-mounted porous structures. The governing equations are rewritten in
the conservative form to facilitate the use of hybrid finite volume (FV) and finite difference (FD)
method. Higher-order slope terms are also inserted into the equations to account for rapidly varying
bathymetry. The convective flux is approximated using the FV method, while the remaining terms
are discretized using the FD method in a uniform rectangle grid system. The time integration is
implemented using the third order Runge–Kutta method with an adaptive time step. A single
GPU parallel computation is also implemented to save computation costs. The numerical model
is validated against a series of experimental datasets, including data acquired in a new laboratory
experiment. The predictions are in overall agreement with the measurements, proving that the model
is capable of handling wave interaction with porous structures in the coastal region for a wide range
of scenarios.

Keywords: porous structure; coastal wave; Boussinesq equations; numerical simulation

1. Introduction

Artificial porous structures such as rubble-mound breakwaters and revetments are
commonly built to protect harbors, coastal buildings, beaches and shorelines from erosion.
These kinds of coastal structures partially reflect and partially dissipate wave energy
through wave-structures drag resistance and inertial resistance force, resulting in only part
of the wave transmission. The interaction of nonlinear, shallow water waves with porous
coastal structures is therefore an important subject in coastal planning and design.

With the aid of rapid advancements in computing power, numerical modeling ap-
proaches have been becoming increasingly popular when it comes to studying the hydro-
dynamics involved in wave interaction with porous structures. The state-of-the-art models
are those based on the Reynolds averaged Navier–Stokes (RANS) equations (e.g., [1–4] and
references therein). RANS-type models employ few simplifying assumptions compared to
other depth-integrated models, such as nonlinear shallow water equations, e.g., [5,6] and
Boussinesq-type equations, e.g., [7–10]. As a result, these models can predict the details of
wave-structure interaction processes. However, for three-dimensional phenomena such
as wave refraction and diffraction, solving the Navier–Stokes equations takes a long time.
Thus, these models are rarely used in practical applications. In recent years, a large amount
of progress has also been achieved using Smoothed Particle Hydrodynamics (SPH) models,
which are meshless and have comparable behaviors to RANS-type models (e.g., [11–13]).
These models still suffer from a huge computational burden that limits their practical
applications for modeling wave interaction with porous structures.
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In engineering applications, there is a tendency to use Boussinesq-type (BT) models
because these equations not only yield solutions for real waves such as nonlinear and ran-
dom waves, but also reduce the computational costs by approximating three-dimensional
problems to two-dimensional ones. The most convincing examples are the worldwide
applications of the commercial software pack MIKE21 BW [14] and the open source codes
Funwave [15] and Coulwave [16]. In the literature, BT equations have been extended to
simulate the wave propagation over porous beds (e.g., [17–20]) and in porous structures
(e.g., [7–10]). We focus on the latter, though these two approaches are essentially in the
same theoretical framework. The Boussinesq equations derived by Peregrine [21] have
been extended to consider wave motion in porous structures [7–9]. These works consider
the Forchheimer-type drag resistance but neglect the inertial resistance, which leads to the
discrepancy with the linear analytical solutions for waves normally incident on a porous
structure [22]. Lynett et al. [23] proposed a BT model for wave interaction with vertically
walled porous structures. The model consists of two components. In the open-water region,
the model employs the generalized Boussinesq equations originally derived by Wu [24].
Inside the porous breakwater, the model is based on the simplified Boussinesq equations of
Liu and Wen [9]. The matching conditions are imposed along the interface between the
open-water and porous regions. The numerical tests have shown good accuracy for solitary
wave interaction with vertical porous breakwaters. Vu et al. [10] have recently extended
Boussinesq equations of Madsen and Sørensen [25] to simulate wave propagation in a
porous medium, which takes into account both inertial and drag resistances. The governing
equations for porous and non-porous mediums have the same expression, which is easy
for numerical implementation. The verification of this model was conducted mainly for
solitary waves. In addition, all of the above BT models are numerically solved using the FD
method and are prone to numerical instabilities under certain circumstances, such as strong
wave nonlinearity, rapidly varying seabed, the presence of structures, breaking waves and
moving shoreline, as commonly reported in BT simulations (e.g., [26,27]).

The specific objective of the present work is to document a numerical model based
on the extended version of the Boussinesq equations derived by Vu et al. [10] and a hy-
brid FV/FD shock-capturing scheme by the authors [27–29]. A wide range of horizontal
one-dimensional and two-dimensional test cases, including new flume experiments, are
simulated to demonstrate the capability of the Boussinesq equations, as well as the de-
veloped numerical scheme. Section 2 describes the numerical implementation. Section 3
presents the flume experiments and model validations. Finally, the conclusions are drawn
in Section 4.

2. Model Description
2.1. Governing Equations

Taking inertial and drag resistances into account, Vu et al. [10] have recently derived
a set of Boussinesq equations for wave propagation in porous medium, which reduces
to the equations of Madsen and Sørensen [25] in a non-porous medium. In their work,
the equations are in non-conservative forms and are solved numerically using the FD
scheme. To facilitate the use of the FV scheme, the Boussinesq equations are rewritten in the
conservative form after some mathematical manipulations (see [25,30]) under the Cartesian
coordinates (Figure 1).
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where η is the free surface elevation measured from the still water level, h is the still
water depth, d = h + η is the total water depth, g is the gravity acceleration, P = du and
Q = dv are fluxes with u = (u, v) is the depth-averaged velocity vector and B = 1/15 is the
dispersion parameter. β = λ + (1 − λ)(1 + κ) is the inertial resistance coefficient, with λ and
κ = 0.34 being the porosity of porous medium and the added mass coefficient; α is the drag
resistance coefficient calculated by

α = αl

(
1− λ

λ

)2 ν

d2
50

+ αt
1− λ

λ

1
d2

50
|u| (6)

where ν is the kinematic viscosity of water, and d50 is the size of the solid material. αl and
αt are coefficients representing the laminar and turbulent flow resistances, respectively.
The values of these two parameters depend on the porous material property, the Reynolds
number and the flow characteristics. The universal values are not available, and we calibrate
them using the experimental data (provided in Section 4) following the overwhelming
majority of previous studies, e.g., [1–10].
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It should be mentioned here that (i) λ = 1 and λ < 1 in Equations (1)–(3) represent wave
motion in porous and non-porous mediums, respectively, which simplifies the numerical
scheme, as noted before. Otherwise, additional efforts should be made to deal with
the matching conditions along the interface between porous and non-porous mediums
(see [9,23]); (ii) Higher-order slope terms, originally derived by Kim et al. [30], are inserted
into Equations (1)–(3) to improve model performance for rapidly varying topography.
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(iii) B = 1/15, instead of B = 1/18 recommended in [10], is used, since they have almost
indistinguishable numerical performance for the considered cases. (iv) Equations (1)–(3)
are valid only for bottom-mounted and vertical porous structure. (v) Bottom friction
is neglected.

2.2. Numerical Scheme and Boundary Conditions

The hybrid FV/FD shock-capturing scheme, originally proposed by the authors for
wave propagation in open water [27], is adopted to solve Equations (1)–(3). These equations
are almost identical to those presented in [27], except for extra terms related to porous
medium, and the numerical implementation is primarily straightforward. Furthermore,
the methods employed in [28] are used to deal with moving shoreline and breaking waves,
which are not well addressed in [27]. The main procedures are summarized herein for
clarity and completeness.

On a rectangular cell system, the convective flux terms are solved by the FV method,
and the rest of the terms in the equations are discretized using the FD method. The
hydrostatic construction technique is used during the implementation of the fourth-order
MUSCL (Monotone Upstream-Centred Schemes for Conservation Laws) with the Minmod
limiter function, which helps to capture the moving shoreline in an accurate and efficient
manner [28]. A central upwind scheme is then used to calculate the interface fluxes. The
third-order Runge–Kutta scheme with the adaptive time step is applied to performing
time integration. The time step ∆t is restricted by the Courant number Cr, which is set
to 0.20 for all simulations. The velocity components are obtained by solving the tridiagonal
system, resulting from discretizing the time derivative terms in Equations (2) and (3) with
the second-order finite difference formula [27]. The specific values of grid size ∆x will be
mentioned explicitly in each test case, which are found to be sufficient to yield numerical
stability and convergence for all the simulations in this study.

The unique feature of a shock-capturing Boussinesq model is its ability to capture
breaking waves as discontinuities by deactivating dispersive terms. In the computation,
the ratio of wave height to water depth ε (estimated approximately by η/h) and the local
wave angle ‖∇η‖ are computed for each cell. If at least one of the criteria is satisfied, the
corresponding cells are labeled as breaking waves and dispersive terms are deactivated.
Dispersive terms can only be reactivated once ε reduces to below a certain threshold ε < 0.35.
This hybrid wave breaking criteria does not need to track breaking fronts and admits the
steady jumps or initial discontinuities [28].

Three ghost cells are employed to enclose the entire computational domain. For the
reflective wall, the tangential and normal velocity components on ghost cells are determined
from the inner domain by imposing symmetric and anti-symmetric conditions with respect
to the solid wall [27]. For incident wave boundary, the variables on the ghost cells are
given according to the theoretical wave solutions, i.e., solitary wave theory, linear wave
theory and cnoidal wave theory in the present study, as known quantities. In this way,
wave signals are sent into the computational domain to mimic wave generation from a
paddle-type wavemaker. A spongey layer is also placed at the front of solid walls to absorb
wave energy once necessary [14].

2.3. GPU Implementation

Boussinesq equations are phase resolving, and usually require a large number of
discrete grids to obtain detailed intra-wave hydrodynamics and high resolution of coastal
structures. To meet the stability requirement, the time step is usually in the order of
O(T/100, where T is the typical wave period). Thus, BT simulation is computationally
demanding at fine resolutions in practical applications, although it is much cheaper than
RANS simulation. Recently, Fang et al. [29] successfully ported their BT model [27] to a
single GPU via CUDA C. The massive computation tasks (e.g., fluxes evaluation, MUSCL
reconstruction) were coded as kernel functions and executed on the GPU device. To achieve
better performance, the model uses a CR (Cyclic Reduction) technique to solve massive
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tridiagonal linear systems and overlapped tiling/shared memory to reduce global memory
access and enhance data reuse. Compared to the serial code, the maximum speedup ratios
for single- and double-precision calculations are 55.56 and 32.57, respectively for tested
cases. We adopt the same procedure for GPU parallel computation, further details of which
can be found in [29]. High computation efficiency is another advantage of the present BT
model, and to the authors’ knowledge, only a few BT models have been accelerated by the
GPU technique to date [31–33].

3. Physical Wave Flume Experiments

Previous laboratory datasets used to validate the BT model mainly concern solitary
wave and statistical wave height of short waves, while time series of the free surface
elevation of dispersive waves are less reported. New laboratory experiments are thus
conducted to provide a larger dataset. Figure 2 shows the sketch of the experimental setup.
The wave flume is 34.55 m long, 0.8 m wide and 1.0 m deep. A piston-type wavemaker is
installed on one end of the flume and a sponge layer is placed at the other end to absorb
wave energy. The water depth is kept constant and equal to 0.4 m. A 0.4 m wide and 0.64 m
high porous vertical breakwater is built with a metallic mesh filled with glass spheres
and positioned 22.8 m from the mean position of the wave paddle. The spheres have a
diameter of 0.05 m and a porosity of 0.35. Five tests are listed in Table 1, consisting of three
regular wave cases and two solitary wave cases with different water dispersions (denoted
by dimensionless water depth kh, k is wave number) and nonlinearities (denoted by H/h,
H is wave height). Eight capacity-type wave gauges are positioned at x = 20.1, 20.9, 21.7,
22.1, 22.5, 23.65, 24.05, 24.65 m to collect free surface elevation along the wave flume. The
sampling rate is 50 Hz.
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Table 1. Test cases in flume experiments.

Case No. Wave Type H (m) T (s) h (m) kh H/h

R1 Regular wave 0.072 1.0 0.5 1.72 0.18
R2 Regular wave 0.072 1.2 0.4 1.30 0.18
R3 Regular wave 0.076 2.5 0.4 0.53 0.19
S1 Solitary wave 0.046 - 0.4 - 0.12
S2 Solitary wave 0.086 - 0.4 - 0.22

4. Results and Discussion
4.1. Dam Break on a Porous Structure

The first test case is to simulate the experiments of dam break on a porous structure
conducted by Liu et al. [1]. The water tank used in the experiments is 0.892 m long, 0.44 m
wide, and 0.58 m high. Crushed rocks with a mean diameter of d50 = 0.0159 m and porosity
λ = 0.49 were placed in the center of the water tank to form a 0.29 m long and 0.58 m tall
dam. The reservoir has an initial water height of 0.25 m and is separated from the porous
dam by a 0.02 m thick gate. The numerical setup is the same as the experimental setup and
is illustrated in the first panel of Figure 3, which corresponds to the initial state at t = 0 s.
The simulation domain is discretized into cells of ∆x = 0.005 m. The drag coefficients of
αl = 4000, αt = 4.2 are calibrated by running trial-and-error simulations to achieve the best
agreement between numerical results and experimental data.
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To evaluate the agreements between numerical results and experimental data for a
given quantity v, the Willmott index [34] is used. This index is introduced as

Wv = 1−

n
∑

j=1
[y(j)− x(j)]2

n
∑

j=1
[|y(j)− x|+ |x(j)− x|]2

(7)

where x(j) is the measured data point, y(j) is the computation result, and x is the mean
value of series y(j). Perfect agreement is indicated by W = 1, whereas W = 0 indicates
complete disagreement.

Figure 3 compares the simulated water level with the experimental data. The overall
processes such as upward jet as the water body crashes into the porous medium (t = 0.2 s),
the reflection of dam break flow from the right end of water tank (t = 1.4~1.8 s) and the
trend of water seeping porous structure are reasonably predicted by the BT model. It
is noted that water close to the bottom moves earlier than the water at the free surface
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when the gate is opened manually in the experiments. However, the depth-integrated
BT model cannot reproduce this process and leads to significant inconsistencies with the
measurements at t = 0.2, 0.4, 0.6 and 0.8 s. Better agreements are achieved as the flow
evolves (t = 1.0–2.2 s). The RANS simulation results using REEF3D in [4] are also shown
in Figure 3 as a comparison. The mean value of the Willmott index from the present
simulation and RANS simulation are 0.953 and 0.962, respectively. RANS simulations
present better predictions, as expected, except for the disagreements at the initial stage due
to the reasons mentioned above. After t = 0.8 s, the simulation results of the present BT
model are comparable to the predictions of RANS simulations. BT models based on the FD
method fail to simulate this test case, since they are unable to treat the water discontinuity
at t = 0 s, which demonstrates the merits of the shock-capturing hybrid scheme adopted in
the present study.

4.2. Solitary Wave Passing through Porous Breakwaters

Two cases from the new experiments (S1 and S2 in Table 1) are first simulated to
show the model performance in terms of solitary wave interaction with porous structure.
The numerical flume is the same as the physical flume shown in Figure 2. The grid size
is 0.01687 m, and αl = 800, αt = 9.0. A 3.0 m-wide sponger layer is placed at the end of the
numerical flume to absorb wave energy.

Figures 4 and 5 show the comparison of the computed free surface elevation with the
experiment data, respectively. For case S1, the wave gauges located in front of the porous
structure (G1–G3) clearly record two peaks, corresponding to the incident and reflected
waves from the porous structure. The BT model captures the arrival time of both reflected
and transmitted waves, but it overestimates the amplitude of the secondary wave at G1
and G2. Adjacent to the porous wall at G5, these two peaks merge into one with a large
amplitude, about 1.5 times that of the incident amplitude. The solitary wave shape is well
maintained on the leeside of the breakwater at G6–G8, where the wave amplitude is largely
dissipated by 71% due to the presence of porous breakwater. Case S2 is more nonlinear
than Case S1, but a similar evolution process is observed. For this case, the dimensionless
transmission amplitude is reduced to 0.21, which is inconsistent with previous findings
that large nonlinearity causes a smaller transmission coefficient [23,35]. In summary, the
waveform and phase are predicted very well for both cases.

Regarding a solitary wave passing through porous structures, previous studies in
the literature mainly concerned with the transmitted and reflected wave amplitude. We
further simulate six cases from the experiments of Vidal et al. [35], where transmission and
reflection coefficients are available and have been extensively used for model validation.
Table 2 summarizes the material property and dimension of porous breakwaters from the
experiments. In the simulation, a grid size of 0.025 m is used, and the drag coefficients are
set to αl = 800, αt = 3.0. Figure 6 compares the transmission coefficients Kt from the current
simulation with the experimental data, and they are in good agreement. The reflection
coefficients Kr are also plotted in the figure. As nonlinearity increases, the decreasing trend
of Kt and the increasing trend of Kr are well predicted by the BT simulation.

Table 2. Test cases of Vidal et al.’s experiments [35].

Case h (cm) H/h Structure Width (cm) d50 (cm) λ

(a) 30.0 0.06–0.26 20 1.43 0.44
(b) 30.2 0.06–0.23 20 2.43 0.44
(c) 30.0 0.07–0.27 40 1.43 0.44
(d) 31.7 0.06–0.24 40 2.43 0.44
(e) 30.1 0.07–0.33 20 3.15 0.42
(f) 30.1 0.07–0.32 40 3.15 0.42
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Figure 5. Comparison of free surface elevation between present simulation (solid line) and experi-
mental data (dashed line) for Case S2 (H/h = 0.22).
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Figure 6. Reflection and transmission coefficients versus wave nonlinearity for solitary waves passing
through porous breakwater of Vidal et al.’s experiments [36].

4.3. Regular Wave Passing through Porous Breakwaters

In this section, numerical simulations are conducted for regular wave cases (R1–R3
in Table 1) to test the model’s ability to describe short dispersive wave interaction with
porous structures. A grid size of ∆x = 0.02 m is used to discretize the computational
domain. A 3.0 m-wide sponger layer is placed at the end of the numerical flume to absorb
wave energy.

Figures 7–9 compare the time series of computed and measured free surface elevation
at eight wave gauge locations, five in front of the porous structure and three leeward of
the breakwater. For all cases, both the wave shape and phase are reproduced by the BT
model with a high degree of accuracy. The incident waves are partially reflected from the
porous structure, which interacts with the incident waves and creates a standing wave
pattern in front of the structure (G1–G5). These wave profiles are very well caught during
the simulation, including the initial state and the subsequent quasi-steady wave pattern.
On the leeward side of the porous breakwater, the wave profiles calculated at locations
G6–G8 correspond to the incident wave that is damped by the porous structure. The wave
shape and phase are also predicted very well by the BT model for three cases. The mean
values of the Willmott index from the present simulation are 0.972 (Case R1), 0.982 (Case
R2) and 0.946 (Case R3), showing reasonable prediction accuracy.
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4.4. Wave Passing through Porous Breakwater in a Wave Basin

In order to examine the model performance for three-dimensional problems, numerical
results are compared with the experimental measurements conducted by Lara et al. [36] in
a wave basin. The sketch of the experiments and 15 wave gauges are shown in Figure 10.
Table 3 lists the locations of 15 wave gauges. The wave basin is 18.2 m long, 8.6 m wide and
1.0 m high. A porous breakwater 4.0 m long, 0.50 m wide and 0.6 m high is built with the
porous materials with λ = 0.51 and d50 = 1.5 cm. The breakwater is placed perpendicular to
the direction of wave propagation at a distance of 10.5 m from the wavemaker. The water
depth is kept constant and equal to 0.4 m. Two wave conditions have been selected for
simulation. First, a solitary wave of 9 cm in height is tested (H/h = 0.225). Then, cnoidal
waves with H = 9 cm and T = 4 are generated. The computational domain is discretized
with a grid size of ∆x = 0.05 m and ∆y = 0.0336 m. The values of the drag coefficients are
αl = 800 and αt = 3. As in the experiments, the two lateral sides and the right end of the
wave basin are treated as solid walls in the simulation.

The simulated interaction processes between solitary wave and porous structure
are presented in Figure 11. As can be seen from this figure, wave damping and wave
transmission resulting from wave penetration through the porous structure, wave reflection
from porous structure and side walls, wave diffraction and wave run-up on structure
result in a complicated wave field. The solitary wave is approaching the porous structure
at t = 5.0 s and t = 6.0 s. The incident wavefront is separated by the structure and the
transmitted wave in the unblocked region, as seen at t = 7.0 s. The solitary wave climbs
up the structure at the same time, and the subsequent run down is observed at t = 7.25 s.
The panels corresponding to t = 7.85 s and t = 8.45 s show the wave transmitted through
and beyond the structure approaching the end of the wave basin and the first partially
reflected wave from the structure traveling toward the wavemaker. The end wall of the
wave basin reflects the waves, and these waves propagate towards the structure at t = 10.0 s
and t = 11.5 s. The second time wave interaction will occur subsequently (not shown in
Figure 11).
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Figure 10. Setup of breakwater and wave gauges of Lara et al.’s experiments [36].

Table 3. Locations of wave gauges.

Gauge No. x (m) y (m) Gauge No. x (m) y (m)

1 15.0 7.0 9 22.0 1.5
2 15.0 1.0 10 21.5 0.5
3 19.5 1.0 11 23.0 0.5
4 19.5 3.0 12 23.5 4.0
5 20.0 4.0 13 25.0 2.0
6 21.0 4.5 14 22.5 7.0
7 21.5 3.5 15 19.5 7.5
8 22.5 2.5

A further comparison of the time series of free surface elevation at 15 wave gauges with
experimental data is presented along with the RANS type simulation using REEF3D [4] in
Figure 12. The incident wave and the reflected wave from the end of the wave basin can
be seen at G1. G2 records the incident wave, the partially reflected wave from the porous
structure and the reflected wave from the end of the wave basin in sequence. Both G3 and
G4 record a secondary crest, as they are positioned just 1.0 m from the porous structure
and are quickly affected by wave reflection. G5 and G6 are located around the head of the
porous structure and have a similar variation trend. Wave gauges G7–G11 and G13 are
placed on the leeside of the porous structure. The amplitude of the transmitted wave at
these locations is greatly damped by the porous structure. In contrast, the second peak
formed by the reflected wave from the end of the domain has a relatively larger amplitude.
G12 is located further behind the structure head and the incident wave consists of the
unaffected part of the wave and the part transmitted through the structure. It also records
the reflected waves from the basin wall. G14 and G15 are fully exposed to the incident
wave and are less affected by the porous structure. The current BT simulations agree
well with the experimental data, with the deviations mainly observed in the phase of the
reflected waves. This lag is attributed to discrepancies in several measurements, including
the breakwater geometry, its installation location in the basin and slight variations in the
wave gauge locations [36]. The developed BT model shows a high degree of accuracy in
predicting the free surface time series with the mean value of W = 0.949, achieving almost
identical performance to that of REEF3D (W = 0.952).
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The simulated three-dimensional wave field for the cnoidal wave case is plotted in
Figure 13. Figure 14 compares the time series of simulated free surface elevation with
the laboratory measurements and the OpenFOAM simulations [3]. Unlike the previous
isolated solitary wave case, cnoidal waves are sent into the wave basin continuously. Wave
reflections from porous structures and three sidewalls, the interaction of incident and
reflected waves and the interaction between these waves and porous structure are thus
more complicated. Overall, the BT model captures the wave shape and amplitude at
all wave gauge locations with reasonable accuracy, although less satisfactory results are
observed towards the end of the simulation. The capability of the BT model to predict
three-dimensional dispersive problems is proved. The mean value of the Willmott index
from the present simulation and RANS simulation are 0.902 and 0.906, respectively, for this
case, illustrating almost equivalent performance. It is reported that 20 s are simulated in
less than 17 h using 128 processors (2.6 GHz) for OpenFOAM simulations [3]. It only takes
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5.3 min using two processors (3.6 GHz) with the aid of NVIDIA GeForce GTX 970 card for
the present BT simulation.
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Figure 14. Time series of surface elevation for cnoidal wave propagation through porous breakwater [3].

5. Conclusions

A set of extended Boussinesq equations [10] is numerically solved using a hybrid
FV/FD scheme proposed by the authors [27,29] to simulate wave propagation through
coastal porous structures. The present work is also regarded as a functional extension
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of our previous BT model developed for open-water problems [27], since the equations
are roughly the same. A wide range of numerical simulations are carried out to test the
capability of the Boussinesq equations, as well as the adopted numerical scheme. To this
end, new experiments for solitary wave and regular wave interaction with a porous wall
are also conducted in a wave flume.

The simulation of dam break flow in a porous abutment shows the merit of the
proposed shock-capturing scheme. BT models based on the FD method do not resolve the
initial discontinuity state, let alone the subsequent evolution process. A series of vertical
two-dimensional and horizontal two-dimensional test cases for solitary wave and regular
wave are further simulated. The computed results are found to be in generally good
agreement with the experimental data, even compared with the RANS type simulation
results in the literature. We thus conclude that the developed BT model is capable of
handling wave interaction with porous structures in the coastal region for a wide range
of scenarios after careful calibration of the porosity-related coefficients. GPU parallel
computation further reduces the computation time greatly and enhances model capabilities
in practical applications.
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