
Citation: Xu, S.; Xue, Y.; Zhao, W.;

Wan, D. A Review of High-Fidelity

Computational Fluid Dynamics for

Floating Offshore Wind Turbines. J.

Mar. Sci. Eng. 2022, 10, 1357. https://

doi.org/10.3390/jmse10101357

Academic Editor: Constantine

Michailides

Received: 29 August 2022

Accepted: 19 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Review

A Review of High-Fidelity Computational Fluid Dynamics for
Floating Offshore Wind Turbines
Shun Xu , Yingjie Xue, Weiwen Zhao and Decheng Wan *

Computational Marine Hydrodynamics Lab (CMHL), School of Naval Architecture, Ocean and Civil Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
* Correspondence: dcwan@sjtu.edu.cn

Abstract: The design and development of floating offshore wind turbines (FOWTs) is an attractive
issue in the wind energy harvesting field. In this study, the research related to the high-fidelity
computational fluid dynamic simulations of FOWTs is comprehensively summarized and analyzed.
Specifically, the component-level studies including aerodynamics, aeroelasticity and hydrodynamics
are presented. The system studies with increasing complexity are performed, such as the simplified
aerodynamics, prescribed platform motions and fully coupled aero-hydrodynamics, as well as a
little knowledge relevant to the aero-hydro-elastic behaviors. This study emphasizes that some
efforts should shift to the research on strongly coupled aero-hydro-elastic performance of FOWTs
with the increasing rotor diameter. Moreover, further investigations of more realistic atmospheric
inflows and strong interactions between multi-FOWTs are required. This study aims to introduce
the hotspots of high-fidelity simulations of FOWTs to novel researchers, as well as to provide some
suggested solutions.

Keywords: floating offshore wind turbines; computational fluid dynamics; fully coupled perfor-
mance; actuator models; blade deformations

1. Introduction

In recent years, the development and utilization of offshore wind energy has become
a burning issue and many dedicated efforts have focused on it, which has led to great
advancements in offshore wind turbines in terms of scheme of design, build, operation and
maintenance. Compared to the onshore wind energy harvesting, the benefits of offshore
wind energy resources are obvious. For instance, abundant wind resources with higher
wind speed and lower turbulence intensity, less constraints for space resources, and no
visual and noise pollution, etc. [1]. The Global Wind Energy Council (GWEC) exhibits
an outlook of new wind power installations for next five years (2022–2026), it is expected
that the new installed offshore wind power in 2026 is 31.4 GW [2]. An increase of 48.8%
compared to 21.1 GW in 2021 for offshore wind power is estimated, which is significantly
higher than onshore wind power growth of 34.3%. If the good growth for offshore wind
power continues, the global offshore wind power will reach up to 228 GW by 2030 and
1000 GW by 2050 [3].

The offshore wind turbines can be divided into two categories, bottom-fixed offshore
wind turbines and floating offshore wind turbines (FOWTs). As their names suggest, the
foundations of bottom-fixed offshore wind turbines are fixed in the seabed, while the
support structures of offshore floating wind turbines are floating and connected to the
seabed through mooring lines. One of the primary constraints for bottom-fixed offshore
wind turbines is the applicability for water depth < 60 m [4]. When the water depth > 60 m
(the deep water), the costs of construction and installation of bottom-fixed foundations
increase intensely, which is not commercially applicable. However, more than 80% of
offshore wind resources are available in sea area with depth > 60 m. In order to address
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the cost issue of bottom-fixed wind turbines and pursue the capture of abundant wind
resources in the deep-sea area, the FOWTs have been designed and developed.

The FOWTs can be divided into three major categories based on the types of support-
ing platforms, that are, spar buoy, semi-submersible and tension leg concepts [5,6], and
sometimes also with a barge concept [7]. It is noteworthy that the mooring system can
cause considerable costs due to the fact that the length of mooring lines is approximately
4 times the water depth. Moreover, the technology of FOWTs is comparatively immature
than that of bottom-fixed offshore wind turbines. Consequently, the levelized cost of energy
(LCOE) of FOWTs is unaffordable for full commercial utilization [8]. It is expected that the
LCOE of bottom-fixed offshore wind turbines will decrease by 70% from 2015 to 2025, and
the similar convergence trend will occur for FOWTs in 2030 [9].

In the foreseeable future, the FOWTs are considered more cost-effective than bottom-
fixed offshore wind turbines in commercial operation with the significant technology
advancements. However, several key factors for the design of FOWTs remain in need of
more attention and effort. One of the key factors is the strong interaction between the
wind turbine and floating platform. Unlike the bottom-fixed offshore wind turbines, the
aerodynamics of FOWTs exhibits significant unsteady characteristics due to the floating
platform motions excited by incident waves [10]. Additionally, the hydrodynamics of
floating platforms is also significantly influenced by aerodynamic loads exerted on turbine
rotors transmitted by the tower. Figure 1 shows the distributed flow field induced by the
interactions between wind turbine and floating platform. It can be seen that the wind
turbine is forced into and out of its wakes periodically due to the presence of the periodic
pitch motion of floating platform, which will lead to the sophisticated characteristics of the
aerodynamic power.
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In addition to the strong interactions between aerodynamics and hydrodynamics of
FOWTs, another key factor is the aeroelastic due to the notable feature of the increasing
rotor diameter. As previously mentioned, the LCOE of FOWTs is more expansive than
that of the onshore wind turbines. The technology advancements in rated power for
offshore wind turbines will bring a considerable cost reduction, approximately 8.5%, and is
significantly better than the advancements in aerodynamics and floating platform design
and installation [12]. Consequently, the development trend of FOWTs towards a large size,
with the aim to be more commercially affordable, which makes the aeroelastic responses of
the wind turbine blades very prominent. It is known that the aerodynamic performance of
wind turbines is reduced by the aeroelastic responses. Additionally, the issues of fatigue
loads and structural failure for wind turbine blades are more urgent, particularly under
severe sea conditions. Therefore, with the great advancements of FOWTs towards large-
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scale and deep-sea, the fully coupled aero-hydro-elastic performance requires a more
systematic and comprehensive study to improve the reliability of FOWTs operated in
combined wind-wave environments.

The research of the FOWTs is composed of three parts: the prototypes, the scale-
down experiments and the numerical simulations, which are summarized in the previous
literature reviews [13,14]. With the great advancements of high-performance computers
(HPC), the numerical simulations for the FOWTs have gradually received a lot of attention.
Some analysis codes have been developed and used [15,16]. Among those codes, the low-
order modeling techniques incorporating the blade element momentum (BEM) theory [17]
and potential flow (PF) models [5] are commonly employed in the design of FOWTs. Despite
the low computational costs, those low-order modeling techniques cannot account for the
viscous effects, which are important for calculating the aerodynamics of wind turbine
blades, tower and hub, and the hydrodynamics of floating platform. Some correction
models are required for BEM to guarantee the desired numerical results [18]. In other
words, the ability of BEM on the predictions of aerodynamic loads needs further and
comprehensive investigation [19], especially for FOWTs that the inflow wind conditions
are more sophisticated due to the platform motions. In addition, the ability of potential-
based models is limited on the accurate predictions of underlying flow mechanisms and
its nonlinear dynamic characteristics, due to the fact that the flow separation around the
platform cannot be captured [20]. In contrast, the above issues can be addressed by applying
the high-fidelity computational fluid dynamics (CFD). Although the computational costs
of CFD are usually expansive, it is expected that the costs will become more affordable
due to the great advancements of HPC. Therefore, this study focuses on the applications of
high-fidelity CFD in the studies of fully coupled performance of FOWTs.

The remainder of this study is constructed as follows: Section 2 describes the component-
level studies of FOWTs, including aerodynamics, aeroelastic and hydrodynamics; in Section 3,
the system-level studies consisting of simplified and fully coupled contents are summa-
rized; the future recommendations are discussed in Section 4 and the conclusions are drawn
in Section 5.

2. Component-Level Studies
2.1. Aerodynamics

In CFD-related simulations for wind turbine aerodynamics, two approaches exist: the
actuator models, in which the wind turbine blades are represented by body force, and
the direct modeling, in which the wind turbine blades are represented by computational
and refined blade-resolved mesh. Representing wind turbine blades with actuator models
has many advantages, for instance, avoiding solution of surface boundary layer of blades,
saving the computational costs and easing the mesh generation. Generally, the actuator
models are composed of three categories: actuator disk (AD), actuator line (AL) and
actuator surface (AS), as shown in Figure 2. However, those actuator models are highly
dependent on airfoil data, which is invalid for the design and development of novel wind
turbine blades. By contrast, the direct blade-resolved modeling can easily handle this
issue, and provide the rich and detailed flow field on the blade surface. Therefore, the two
modeling methods are both widely used for the wind turbine aerodynamics.
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2.1.1. Actuator Disk Model

For a uniformly loaded disk, the body force fAD exerts on disk surface can be
expressed by:

fAD =
1
2

V2
re f CT (1)

where, Vre f is the reference velocity, CT is the thrust coefficient. It is important to note
that the determination of reference velocity Vre f is critical to calculate the thrust coefficient
CT . Obviously, for an undisturbed uniform inflow, reference velocity Vre f is evidently
inflow velocity U∞. However, for the turbulent inflow situation, for instance, wakes of
upstream wind turbines, this is not the case. This issue is usually addressed by introducing
an iterative process based on the one-dimensional momentum theory [22], with it, the
reference velocity Vre f can be expressed by the function of axial induction a:

Vre f = Vlocal/(1− a) (2)

where, Vlocal is the local velocity of disk surface. Additionally, the body force for a non-
uniformly loaded disk is also related with the radial position, but the body force over the
annulus remains constant (see Figure 2). The sectional coefficients of lift and drag are
used to calculate the body force of wind turbine blades. In addition to the uniform and
non-uniform loads of actuator disk, the rotational effects are also taken into account by
introducing the tangential forces [23].

Once the body force calculated by the AD are obtained, as well as AL and AS, a
projection procedure is used to distribute the body force smoothly in the flow field, with
the purpose of reflecting the effects of wind turbine blades on flow field and eliminating
the numerical singularity. The Gauss smooth function is widely adopted for the smooth
projection procedure, and a desired and reasonable projection width is approximately
two times the mesh resolution around turbine blades [24]. Another iterative smooth
projection function is the discrete Delta function, where less cells are required to satisfy the
conservation of forces and moments [25].

Revaz and Porté-Agel [26] performed a comprehensive evaluation of AD compared
with an experimental test, the effects of several factors, i.e., projection parameter, model
formulation, hub, tower and grid resolution on wind turbine aerodynamics and wakes
were analyzed. Their findings revealed that projection parameter has a strong effect in
rotor plane and a lesser effect in streamwise direction. The effects of model formulation
are evaluated by comparing the numerical results between a simple AD which the loads
applied on rotor are uniform and an advanced AD which the loads are non-uniform and
determined by blade element theory. Both models exhibit accurate predictions for thrust,
power and wind turbine far wakes, but the advanced AD performs better in near wakes.
In addition, the velocity deficit is enhanced and aerodynamic predictions are decreased
due to the presence of hub and tower, which is referred to as the tower shadow effects.
The calculation results reach convergence when less cells are arranged along the radial
direction of the rotor, by approximately 10 cells. Furthermore, Micallef et al. [27] assessed
the ability of non-uniform loaded AD for the predictions of near wake expansion, they
importantly noted that the AD gives a reasonable prediction of wake expansion in the
radially outboard positions, but exhibits a poor situation for mid-board and inboard areas.
Li et al. [28] proposed a numerical model by incorporating the AD and an extended k-
epsilon turbulence model, as well as considering the effects of hub and tower. By comparing
with experimental data, the proposed model shows slightly better than the standard AD,
the prediction accuracy in the near wake region is improved and the overall prediction
accuracy for the wind turbine wakes is certainly promoted.

Some researchers also focus on the improvements of the AD, with the aim of achieving
easier operation or more reasonable predictions. Sørensen et al. [29] proposed an analytical
model for calculating the body forces of the AD, and the advantages of this model are that
the detailed knowledge of wind turbines are not required, but only the rated wind speed
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and power capacity are needed. Conversely, Naderi et al. [30] employed an improved
methodology for the AD to take into account all operational and geometrical characteristics
of wind turbines, including airfoil type, angular velocity, twist, and chord distribution.
Behrouzifar and Darbandi [31] developed an improved AD whereby the real thickness of
wind turbine blades is considered, without the need to find the specific grid thickness of
AD in the convergence tests, and thus the computational and temporal costs are reduced.
Moreover, in order to consider the three-dimensional (3D) flow effects in radial direction,
Amini et al. [32] introduced the 3D correction of aerodynamic coefficients into the AD.
Compared to the original aerodynamic coefficients, the corrected 3D coefficients exhibit a
better agreement with the experimental results.

2.1.2. Actuator Line Model

Different from the AD, the body force of wind turbine blades of AL is acting on the
rotational lines [33]. Figure 3 shows the velocity vectors of a two-dimensional airfoil section.
Obviously, the relative velocity Urel is determined by:

Urel =

√
U2

z + (Ωr−Uθ)
2 (3)

where, Uz and Uθ are the axial tangential velocity and tangential velocity of inflow wind,
respectively, Ω is the rotor speed, and r is the radial position. The body force fAL acting on
actuator lines is calculated by the following equation:

fAL = (L, D) =
1
2

ρU2
relc
(

CL
→
eL + CD

→
eD

)
(4)

where, L and D are the life and drag at radial position of r, ρ is air density, c is chord length
of the two-dimensional airfoil section, CL and CD are the lift and drag coefficients,

→
eL and

→
eD are unit vectors of lift and drag directions.
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Martinez-Tossas et al. [35] evaluated the ability of four Large Eddy Simulation (LES)
analysis codes by using the AL to predict wind turbine aerodynamics and wakes. It
was shown that the simulated results, i.e., velocity and force along the blades, velocity
and Reynolds stress distributions in wakes across the four LES codes exhibit excellent
agreement. Ravensbergen et al. [36] performed the wind turbine modeling based on the
AL with a variational multiscale framework applied for turbulence modeling. The model
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was firstly validated by NREL 5 MW wind turbine, and followed by the comparisons with
two wind tunnel experiments and a wind field measurement. Figure 4 shows the vortex
structures induced by the wind turbine, note that the wind turbine blades are modeled by
AL, while the hub and tower are modeled by computational refined meshes. The blade
tip vortices and hub vortices are obviously visualized, and the shed vortices of tower are
mixed with wind turbine wake vortices when they travel downstream.
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In addition to the stand-alone wind turbine modeling, the AL also shows its excellent
capability for the modeling of multiple wind turbines. By conducting the simulations of two
aligned NREL 5 MW wind turbines with the AL, Yu et al. [34] pointed out the non-negligible
influence of upstream wind turbine wakes on the downstream wind turbine aerodynamics,
and a reasonable spacing of two aligned wind turbines is approximately 7D (D is the
rotor diameter). Onel and Tuncer [37] also noticed the significant effects of upstream wind
turbine wakes on downstream wind turbine aerodynamics by presenting simulation cases
of two aligned wind turbines modeled by the AL. The downstream wind turbine suffers a
severe power loss of 86% under non-turbulent inflow, whereas this situation is alleviated
for turbulent inflow that the power loss is reduced to 64%. To provide the potential insight
for wind farm control strategy and power improvement, Draper et al. [38] performed the
numerical simulations for a stand-along wind turbine considering torque controller and
three wind turbines with two yaw settings, the numerical results show good agreement
with wind tunnel experiments.

Similar to the AD, some efforts are dedicated to improving the ability of AL for the
wind turbine modeling and obtaining the more desired results. Jha et al. [39] proposed
an advanced AL by introducing an actuator curve embedding (ACE) concept to eliminate
some inconsistencies in the body force projection process. Several examples are used to
assess and validate the behaviors of ACE concept and the good results are presented.
Xie [40] modified the standard AL by replacing conventional spatial-averaged velocity
sampling with an Lagrangian-averaged velocity sampling, as well as replacing Gauss
function by a piecewise function for the body force projection. The validated example of
NREL 5 MW wind turbine showed that the proposed model can effectively reduce spurious
numerical oscillations. Additionally, an advanced AL considering the corrections of tip
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and root loss, as well as 3D airfoil delayed stall, was conducted by Xue et al. [41] to better
capture the aerodynamics and wake characteristics of wind turbines. The hub and tower
are also modeled by the AL, and obviously, the advanced AL shows better agreement with
experiments, compared to the standard AL.

2.1.3. Actuator Surface Model

The AL was extended to AS by Shen et al. [42,43], in which the wind turbine blades
are represented by planar surfaces. Compared to the AL, the AS requires more detailed
airfoil data, including the distributions of pressure and skin-friction on the airfoil surface.
The body force fAS acting on actuator faces is expressed by:

fAL(ξ) = (L, D) =
1
2

ρU2
relc
(

CL
→
eL + CD

→
eD

)
Fdist(ξ) (5)

where, ξ is a distance factor of airfoil chord, Fdist(ξ) is determined by the fitting empirical
functions of chordwise pressure distributions, which can be obtained by using Xfoil, a
highly accurate tool to compute pressure-friction and skin-friction profiles on airfoils [21].

Sibuet et al. [44] applied the AS to the aerodynamic predictions of wind turbines,
and validated its ability for aerodynamic modeling against experiment measurements
and other numerical methods. They also claimed its applicability in modeling wind
turbine aerodynamic wakes. To further consider more details of wind turbine blade
geometry and the effects of nacelle, Yang and Sotiropoulos [45] developed a new AS for
wind turbine modeling. The new model was firstly validated by a stand-alone nacelle
with the wall-resolved LES results, and then followed by lab-scale wind turbine and a
hydrokinetic turbine. These validate examples demonstrated that the new AS has the
ability to accurately capture the wake characteristics of wind turbines. They also presented
a systematic study for wake characteristics of a utility-scale wind turbine under various
operational conditions [46]. The results illustrated that the wake meandering, which is
responsible for downstream wind turbine operations, is attributed by the coexistence
of large-scale atmospheric turbulence structures and shear instabilities of wind turbine
wakes. Foti et al. [47] investigated the flow over a model wind turbine by using the above
proposed AS for wind turbine blades and nacelle, and compared the results with wind
tunnel experiments. Apart from the model wind turbine, they also examined the effects of
nacelles on aerodynamics and wakes of a large wind farm by the novel AS with and without
the nacelles [48]. It was found that the nacelles have a significant influence on wind turbine
power fluctuation and turbulence intensity in wakes, as well as the wake meandering.
Moreover, the AS has been employed as a validation and verification tool. Except for the
extensively validated time-averaged quantities, Li and Yang [49] also assessed the ability of
AD for the dynamic predictions of wind turbine wakes by the well-validated AS.

2.1.4. Direct Modeling

The wind turbine blades are fully resolved by fine grids called direct modeling, which
is a high-fidelity method in CFD simulations and significantly different with the afore-
mentioned actuator models. There are no requirements for the direct modeling method
to pre-obtain the lift and drag coefficients of airfoil sections, and the 3D effects of radial
flow are automatically considered. Compared to the actuator models, the direct modeling
method can capture more flow details on blade surfaces and show its excellent ability for
the design and development of novel wind turbine blades.

Sutrisno et al. [50] importantly noted the unstructured mesh of wind turbine blades
probably can lead to significant error results for wind turbine aerodynamic characteristics,
whereas more accurate numerical results are obtained by the structured mesh. Conse-
quently, in order to guarantee excellent mesh quality and perform better numerical simula-
tions of flow pass the wind turbine rotor and wakes, the structured multiblock hexahedral
mesh was used by Regodeseve et al. [51] to represent a wind turbine, as shown in Figure 5.
In addition, the computational domain is large enough to consider the development of
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wind turbine wakes, and the rotor rotation is simulated by sliding mesh technique. A
comprehensive comparison with the experiment measurements was concluded, and as
expected, the CFD predictions shows a good consistency. Wang et al. [52] also applied the
sliding mesh in commercial code STAR-CCM+ to investigate the effects of different tilt
angles on the wind turbine aerodynamics. It was found that the tilt angle has significant
impacts on the aerodynamic performance of wind turbines, and the best tilt angle is of 4◦.
Zahle et al. [53] performed investigations for the interactions between rotor and tower by
using the overset mesh technique. The computations are in accordance with experimen-
tal data and successfully reproduce the strong rotor-tower interactions characterized by
increasing transient loads on wind turbine blades.
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Figure 5. Computational domain: (a) structured multiblock hexahedral mesh; (b) complete wind
turbine (blades, hub, nacelle, and tower); (c) root of the blade; (d) tip of the blade; (e) trailing and
leading edge at the tip; (f) boundary layer [51]. Reproduced with permission from Regodeseve et al.,
Energy; published by Elsevier, 2020.

Li et al. [54] also examined the wind turbine aerodynamics using overset mesh tech-
nique, and two turbulence models, Reynolds-Averaged Navier-Stokes (RANS) equations
and Detached Eddy Simulation (DES), were used for a comparison purpose. Although the
time-averaged forces and moments of the two turbulence models exhibit a little discrepancy,
a significant increase in transient responses is predicted by DES. Purohit [55] evaluated
the accuracy of LES and unsteady RANS (uRANS) turbulence models on wind turbine
rotor and wake aerodynamics. They concluded that the LES can better capture the flow
separation than the uRANS when the wind turbine is under the stall operational condition.
Sedano et al. [56] assessed the ability of Improved and Delayed Detached Eddy Simulation
(IDDES) model on a model wind turbine aerodynamics. Compared to the DDES model, the
IDDES shows a trend closer to the experimental data, with almost the same computational
costs. Additionally, in order to investigate the distinctions between model-scale and full-
scale wind turbines, Pinto et al. [57] simulated the wind turbine aerodynamic behaviors in
full and mode scale based on a commercial code. The power and thrust coefficients were
compared with experiments for the model scale and other numerical codes for the full
scale. It was concluded that the present CFD predictions are generally in line with available
numerical results, but showed a good match with experimental data.
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Due to the experimental measurements not being easily available, the high-fidelity
direct modeling for wind turbine aerodynamics is adopted for the validation of other
relative lower-fidelity numerical methods. Bangga [58] validated a new code, namely B-GO,
using BEM for wind turbine aerodynamics against the blade-resolved CFD computations.
The comparisons demonstrated that the developed code has an excellent ability for the
predictions of wind turbine aerodynamics. Carreno et al. [59] compared the BEM and free
vortex wake (FVM) with 3D CFD simulations for the aerodynamics of a wind turbine with
two blades. Their findings proved that the radial local thrust on turbine blades predicted
by FVM is more accurate than that of the BEM.

2.2. Aeroelasticity

For the aeroelastic analysis of wind turbines, both the aerodynamic models to deter-
mine the forces exert on turbine blades and the structure models to determine the structure
dynamics are required. Figure 6 shows the commonly used aerodynamic and structure
models for aeroelastic modeling of wind turbine blades. Regarding the aerodynamic mod-
els, we are more focused on the high-fidelity modeling for wind turbine aerodynamics, for
instance, the CFD-related actuator models and the direct modeling that have been described
and discussed in Section 2.1. The structure models used in wind turbine aeroelasticity are
categorized to two groups, 3D finite element method (FEM) and 1D equilibrium beam
model (EBM). Undoubtedly, the 3D FEM is capable of providing more accurate structure
deformations by using the shell or solid elements to discretize the composite blades, but we
suffer expensive computational costs in doing so. In the 1D EBM, the blades are discretized
to a series of beam elements by three discretization methods, specifically, model approach,
multi-body dynamics (MBD) and 1D FEM. In order to construct the 1D EBM for the aeroe-
lastic analysis, the cross-sectional analysis model is employed to obtain the cross–sectional
properties of blades, for instance, the cross-sectional stiffness and radial distribution of
blade mass. In this study, we are more inclined to the introduction and discussion of the
three discretization methods, more theoretical details about the cross-sectional analysis
model can refer to [60].
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2.2.1. One-Dimensional Equilibrium Beam Model

The 1D EBM can be used efficiently to model the structures of wind turbine blades,
owing to the slender characteristics of wind turbine blades. Roughly, the 1D EBM consists
of two categories, linear beam models and nonlinear beam models. The Euler-Bernoulli
beam model [61] and Timoshenko beam model [62] are the two widely used linear beam
models. Compared to the Euler-Bernoulli beam model, the cross-sectional shear effects
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of turbine blades are accounted for the in the Timoshenko beam model. However, for the
slender structures of turbine blades, the difference of the calculated deformations by the
two beam models shows little distinction. The linear beam models have an assumption of
small deformations, which is unreasonable and invalid for the wind turbines experience
the situations of large deformations, such as the extreme wind conditions. Consequently,
the nonlinear models have been proposed to consider the geometrically nonlinear charac-
teristics of wind turbine blades and address the issue of large deformations. One of the
well-known nonlinear beam models is the geometrically exact beam theory (GEBT) [63].
Except the rigid cross-sectional assumption, the GEBT does not contain other assumptions
and the displacement-strain relationship can be used for significant displacement and
rotation, which is suitable for the analysis of geometrically nonlinear beams.

As mentioned in Figure 6, three discretization methods can be used to discretize the
beam model into a series of beam elements, i.e., modal approach, MBD and 1D FEM. The
modal approach is computationally efficient by representing the deformations of turbine
blades based on the superposition of modes. Due to the linear superposition assumption of
the modes, the modal approach is not appropriate for the large and nonlinear deformations
of wind turbine blades, and the solution accuracy depends on the prescribed modal shapes.
Additionally, the flutter analysis is excluded in modal approach because of the reduced
degrees-of-freedom of beam elements. The MBD discretizes the blade structure into a
series of independent beam elements, each of which is constrained by force or motion
relationships. Compared to modal approach, the MBD suffers more computational costs,
but the flutter analysis is considered and thus more accurate results are guaranteed [64].
The 1D FEM discretizes the blade into a series of beam elements that are connected through
the internal force and displacement at the nodes, and solves the deformation in combination
with boundary conditions. Among the three discretization methods, 1D FEM can more
accurately describe blade deformations and a little more computational costs are required
compared to the MBD. Consequently, the 1D FEM has been widely used in the aeroelastic
analysis of wind turbine blades [65].

Gözcü and Verelst [66] studied the effects of fidelity levels of structure models on wind
turbine load responses using the MBD and Timoshenko beam. The results showed that
the load responses converge quickly to that of highest fidelity structure model with the
increasing bodies, and indicated the significant effects of geometric nonlinearity for wind
turbine blades. However, the low-fidelity BEM model was employed in the above study
to calculate the wind turbine aerodynamics. For the certain and normal conditions, the
low-fidelity BEM model combined with 1D structure model can capture correct aeroelastic
responses for small wind turbines. However, for the situations of large wind turbines with
significant blade tip deformations, the ability validation of those engineering models is
of great needed and the high-fidelity models are suggested. Sayed et al. [67] evaluated
the impacts of various fidelity levels of aerodynamic models on the aeroelasticity of DTU
10 MW wind turbine. The BEM model and CFD method incorporated with MBD solver
SIMPACK were used, and Timoshenko beam was employed to represent the structures
of rotor blades. It was found that the power and thrust predicted by the BEM-related
aeroelastic model are smaller than that of CFD-related model. In addition, the effects of
aerodynamic model fidelity are more pronounced for higher wind speeds. Li et al. [68] also
presented a high-fidelity aero-servo-elastic framework for wind turbines by incorporating
the CFD overset mesh technique and the MBD. The interactions between turbulence inflow,
aeroelastic responses of turbine blades and the drivetrain dynamics were investigated.
Similarly, Guma et al. [69] conducted a high-fidelity model for the aeroelastic responses
of a 2 MW NM80 turbine subjected to turbulence inflow conditions by incorporating the
CFD method for aerodynamics and the MBD for structure deformations. Different CFD
modeling approaches with increasing complexity were performed to investigate its effects
on wind turbine aeroelasticity. Grinderslev et al. [70] performed the aeroelastic simulations
for a 2.3 MW wind turbine using CFD-based model with the MBD. Three inflow conditions,
including the axisymmetric flow, the highly sheared flow and highly yawed-sheared flow,
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were employed. Their results were compared to BEM-MBD model and validated through
field experiments. According to their analysis, the further validations of BEM-based model
for complex flows are recommended through high-fidelity model.

Except the MBD-related models for aeroelastic analysis of wind turbine blades, some
researchers have also focused on the 1D FEM-based models. Sayed et al. [71] conducted a
high-fidelity CFD-CSD (computational structure dynamics) aeroelastic analysis for the DTU
10 MW wind turbine. The CFD solver FLOWer was utilized to calculate the aerodynamic
loads and the CSD solver Carat++ was employed to predict the structure deformations
based on the 1D FEM. Figure 7 shows the CFD surface mesh and CSD structure mesh. The
numerical results reflected that the aerodynamic loads are reduced due to the aeroelastic
deformations of turbine blades. Additionally, to investigate the coupling effects between
aerodynamic models and structure models on the aeroelastic responses, the proposed CFD-
CSD framework was compared with the CFD-MBD and BEM-MBD frameworks. Three
years later, they presented a validated and comprehensive aeroelastic analysis based on
the previous proposed framework [72]. The rotor power and thrust were enhanced due to
the contribution of radial force induced by the edgewise deformations. The tower effects
were discussed, in which the deformations and forces were decreased when blades passed
the tower. Dose et al. [73] developed an aeroelastic tool for wind turbines by coupling
CFD code OpenFOAM with the inhouse developed structure code BeamFOAM. The blade
structures were represented by GEMT to account for the large deformations and discretized
by finite elements. Their goal was to investigate how the blade deformations affect the
wind turbine aerodynamic responses, i.e., rotor power, thrust, and cross-sectional forces.
The results also demonstrated the same conclusion that the significant effects of blade
aeroelasticity on aerodynamic response, especially for the yawed inflow conditions.
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Due to the reasonable accuracy of the AL for wind turbine aerodynamics and its
mature property, the turbine blade is regarded as a line which perfectly match the theory
of the EBM, the AL-related aeroelastic analysis model has been developed and utilized
recently for the aeroelasticity of wind turbines, namely the elastic actuator line (EAL).
By combining the AL and a modal approach structure solver, Della et al. [74] presented
an aeroelastic model for wind turbines. The distinction of one-way and two-way loose
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coupling methods between the fluid and structure solvers was discussed. Overpredicted
results are found for rotor power and blade deformations when using the one-way coupling
method, indicating the necessity of utilizing the two-way coupling method. Yu et al. [75]
proposed a new EAL analysis model by combining the AL and 1D FEM to predict the
aeroelastic responses of wind turbines rapidly. The influence of blade deformations and
tower effects on wind turbine aerodynamic performance were examined and discussed.
Moreover, the results indicated that the above effects on downstream wind turbine are
more significant. Furthermore, Ma et al. [76] developed an aeroelastic framework for wind
turbines based on the combination between the AL and the nonlinear beam model with
finite elements. The study focused on the aeroelastic wake behaviors of NREL 5 MW wind
turbine and found that the vorticity and velocity recovery in far wakes are underpredicted
due to the absence of blade deformations. Meng et al. [77,78] examined the fatigue loads
on downstream wind turbines by the EAL model. The complex atmospheric inflow was
considered, and two in-line wind turbines and a wind farm with nine wind turbines were
performed. A significant enhanced fatigue damage for downstream wind turbines was
discovered, compared to that of upstream wind turbines.

2.2.2. Three-Dimensional Finite Element Method

The required accuracy of aeroelastic responses for wind turbines has a great impact on
the selected structure models. To pursue more precise and detailed results of wind turbines,
the 3D nonlinear FEM is a more suitable option. The 3D FEM structure models are broadly
divided into two categories [79], the shell element model and the solid element model, as
shown in Figure 8. The shell element model is usually used to predict the cross-sectional
deformations of turbine blades. However, if the detailed stress or damage estimation of
turbine blades are desired, the solid element model is commonly adopted.
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To handle the aeroelastic design of a high power wind turbine, Tojo and Marta [81]
developed a fluid-structure interaction (FSI) solver in OpenFOAM. The blade structures
were represented by solid hexahedral elements and the blade rotation was addressed
by a single rotating framework. They noted that the aeroelastic responses of wind tur-
bines is definitely a problem and should be considered when the turbine size increases.
Zhangaskanov et al. [82] performed an investigation of the aeroelastic performance of
NREL Phase VI wind turbine based on a FSI solver, which is also implemented in Open-
FOAM. The turbine blade structures were represented by the solid element model. The
simulation results showed a good agreement with experiments, outlining the accurate
prediction ability of the high-fidelity CFD-CSD framework for aeroelastic analysis of wind
turbines. Peeters et al. [80] studied the structure deformations of a wind turbine blade
under static loads, both the shell element model and the solid element model were used
to model the wind turbine blade. Compared to the experiment measurements, the differ-
ences of the two models were minor, reflecting the sufficient prediction accuracy of blade
structure deformations under the specific load case for the shell element model.

Similar with the comparison between the solid and shell element models, Guma et al. [83]
conducted a comparison between the beam model and the shell element model for the
aeroelastic analysis of a small wind turbine by applying the coupling between the CFD
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solver FLOWer and the FEM solver Kratos. The results indicated that the beam model is
sufficient to predict the blade deformations for a wind turbine blade under uniform inflow
conditions. However, when the complexity of simulation cases increased, i.e., the full wind
turbine under turbulent inflow conditions, the shell element model is required to give more
reasonable results. Shkara et al. [84] investigated the interactions between elastic blades
and tower by combining a CFD solver and a FEM solver. The structure of blades and tower
were discretized through shell element model. It was concluded that the rotor azimuthal
position has a significant effect on the structure dynamic responses of tower. Additionally,
they also performed the same simulations using the BEM-MBD aeroelastic framework, and
higher flapwise and edgewise deformations of turbine blades were predicted. Apart from
the rotor-tower interaction, Santo et al. [85] also presented the effects of tilt angle and yaw
misalignment on the aeroelastic performance of wind turbines. They observed that the
blade deformations are significantly affected by tilt angle due to its contribution to gravity,
and a reduction in blade axial displacement is observed.

2.3. Hydrodynamics

Four types of floating platforms are used to support the wind turbines: spar buoy,
semi-submersible, tension leg and barge concepts, as illustrated in Figure 9. The spar buoy
platform adopts a vertical cylindrical structure characterized by simpler design, higher
stability and lower wave-induced motions. The drawbacks of the spar buoy platform
are the difficulty in transportation and installation due to the deep draft, as well as the
high fatigue loads for tower. The larger floating structure and wider water-line area are
adopted by semi-submersible platform to maintain the structure stability. Compared to
the spar buoy platform, the operational water depth of semi-submersible platform is not
limited because of its low draft and towing convenience. But the complex structures of the
buoyancy floater, pontoon and supporting brace are difficult to design and manufacture [5].
With respect to the tension leg platform, the buoyancy of the floater is balanced with the
gravity and the tension forces of three or four vertical mooring cables connected from the
floater to the seabed. The tension leg platform has the advantages of simpler structure,
lower fatigue loads and wave-induced motions, whereas the particularly rigorous design
of tensional mooring cables is recommended. The main structure of barge platform is
a square platform with shallow draft and wider waterline area. The advantages of this
kind of platform are less complexity and lower costs, however, it is sensitive to external
environment and not suitable for extreme sea conditions.
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Due to the mature design of floating oil and gas platforms, three commonly used
approaches, Morison equation (ME), PF method and CFD method are employed for the
hydrodynamic performance of FOWTs. The ME cannot account for the effects of floating
platforms on the incident wave field [13], which limits its application in the hydrody-
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namics of floating platforms. Additionally, the ability of the PF method for predicting
the hydrodynamic responses of floating platforms dominated by viscous force remains
questionable, i.e., the complex flow issues of wave climbing and slamming. Compared
to the ME and PF methods, more physical flow mechanisms such as fluid viscosity, wave
diffraction, radiation, wave climbing and slamming can be captured by CFD method based
on the solution of Navier-Stokes equation. Generally, hydrodynamic studies with CFD
method for these platforms are more focus on loads and motion responses induced by
incident waves and vortices. Figure 10 shows the definition of six degrees-of-freedom
(6-DOF) for FOWTs, including three translational components (surge, sway, heave) and
three rotational components (roll, pitch, yaw). Robertson et al. [87] noted that the surge
and pitch frequencies of floating platforms are usually underestimated due to the absence
of fluid viscosity and other related physical quantities. Consequently, the predictions of
hydrodynamic performance of floating platforms by CFD method are more accurate and
detailed information of flow field is available.
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In hydrodynamic modeling, the commonly used mesh generation technologies for
CFD are dynamic mesh technique [89] and overset mesh technique [90]. Each method
has its own advantages and specific limitations. For example, the accuracy and numerical
stability of dynamic mesh technique are affected by the mesh quality, which is poor for
the situations of significant motions of floating platforms. In contrast, the mesh quality of
floating platforms with significant motions is guaranteed by the overset mesh technique,
whereas the mature experience of researchers in mesh generation and more computational
costs are required.

The extreme waves caused by typhoon have a huge impact on the dynamic responses
on floating platforms, which is characterized by structure instability and incomplete-
ness [91]. Consequently, the mooring system is required to limit the dynamic responses
and guarantee the structure stability of FOWTs. The numerical analysis methods of moor-
ing systems can be roughly divided into static method, quasi-static method and dynamic
method [92]. The static method considers only the constant loads, such as gravity, buoyancy,
steady current and wind, as well as mean wave-drift forces. The quasi-static method is
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proposed since there is no absolute static state. It assumes that within a given time step,
the motion of the system is uniform and linear between two static positions, and the loads
of the system are constant. Quallen et al. [93] combined the quasi-static claw mooring
model with the CFD solver CFD-Ship Iowa v4.5 to perform the free decay of a OC3 spar
buoy platform. The dynamic method is used to obtain more accurate results of loads and
significant displacements, including finite difference model (FDM), finite segment model
(FSM), finite element model (FEM) and lumped mass model (LMM) [94]. The difference
between FDM and FEM is the form of governing equation. Specifically, the FDM is based
on a differential form, while the latter is based on an integral form. Moreover, if the reso-
lution of lumped mass method is sufficient, it will exhibit the same solution as FDM and
FEM [95]. For the analysis methods of mooring system, the quasi-statics model has high
computational efficiency but with a limited accuracy that cannot reasonably address the
problems of dynamic coupling and nonlinear deformations of mooring cables. In contrast,
the dynamic analysis model has a higher accuracy and wider applications, but suffers more
computational costs.

2.3.1. Spar Buoy Platform

The free decay of a spar buoy FOWT was performed by Beyer et al. [96] through
the coupling between the multi-body system (MBS) software SIMPACK and the CFD.
The pressure distribution on the platform surface caused by pitch motion was analyzed
based on the body-fitted mesh. Quallen and Xing [97] performed a full-system, two-phase
CFD simulation of a OC3 spar buoy FOWT with the crowfoot mooring system. The
predicted maximum values of velocities of surge and pitch are decreased by 32.7% and
31.4%, respectively, compared to that of FAST, arising from the large mooring tension forces
to keep the platform stability. Liu and Yu [98] investigated the dynamic behaviors of a spar
buoy FOWT under JONSWAP-based wave group conditions generated by the envelope
amplitude approach. The surge and pitch motions increase slightly with the increase
in wave group, whereas the heave motion increases significantly. In addition, the low-
frequency resonance response is easily excited by the wave group. Nematbakhsh et al. [99]
conducted nonlinear simulations of a spar buoy FOWT under extreme sea conditions using
the STAR CCM+. They drew a conclusion that higher aspect ratio spars will cause lower
mean surge and pitch responses, but also may lead to a nonlinear trend in the standard
deviations in pitch and heave.

With the incoming currents, the vortex-induced loads will cause the 6-DOF motions
which called vortex-induced motions (VIM). The application of helical strake is a commonly
used method to reduce the VIM of spar buoy platform. Zhao et al. [100] discussed the
effectiveness of helical strake on suppressing VIM of spar buoy platform based on an
in-house CFD code naoe-FOAM-SJTU [101]. Similar with the helical strake, the dynamic
responses of spar buoy platform are also reduced by heave plate. Wang et al. [102] simulated
the forced oscillation of heave plates with different shapes and holes using dynamic mesh
technique. It was indicated that the damping coefficient of fractal plate is obviously
larger than that of regular ones, besides, the plate with nonlinear holes exhibits better
hydrodynamic performance. Subbulakshmi and Sundaravadivelu [103] performed the
CFD simulations of a spar buoy platform with single and two heave plates and compared
with experiments. Zheng et al. [104] investigated the dynamic responses of a OC3 spar
buoy FOWT with the heave plate. They drew a conclusion that the amplitudes of heave and
yaw are decreased by 52.259% and 46.836% due to the damping effects of the heave plate.

2.3.2. Semi-Submersible Platform

Semi-submersible platform is a burning research topic in recent years. Dunbar et al. [105]
developed a CFD solver based on OpenFOAM including the 6-DOF equation for float-
ing platforms. The developed CFD solver was applied to free decay tests of heave and
pitch of a semi-submersible FOWT. They found that there is greater discrepancy between
the predicted results of CFD and FAST in first few periods of heave decay, which is at-
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tributed to the viscous effects. Cheng et al. [106] performed the free decay tests of a OC4
semi-submersible platform based on an in-house code naoe-FOAM-SJTU. The restraint of
mooring cables was taken into account. The results of free decay simulations of platform
surge and pitch are shown in Figure 11. It was indicated that the effects of fluid viscous on
platform hydrodynamics can be reflected using the CFD method. Huang et al. [89] also
performed the free decay tests of the OC4 semi-submersible platform, and the numerical
results showed a good agreement with experimental data.
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The hydrodynamic loads of a OC4 semi-submersible platform were predicted by
Benitz et al. [107] using the OpenFOAM and compared with experimental measurements.
The shadowing effects and transverse forces from vortex were successfully captured under
the current-only and wave-only conditions. Zhao et al. [100] studied the heave and pitch
responses of a parked wind turbine mounted on the OC4 semi-submersible platform under
various wind speeds. Tran and Kim [90], respectively, used the CFD method with overset
mesh technique and the PF method to simulate the hydrodynamic responses of a OC4
semi-submersible platform under regular waves. The comparisons of the effects of various
turbulence models on numerical results were conducted with the baseline reference of
experimental data. Rivera-Arreba et al. [108] also used the CFD and the second-order
PF methods to examined the hydrodynamics of a OC5 semi-submersible platform. Their
main conclusion was that the PF method underestimates the amplitude of platform heave
response by 40% compared to that of CFD method.

To investigate the effects of nonlinear waves on floater hydrodynamics, Liu and
Hu [109] conducted CFD simulations of a semi-submersible platform under extreme
sea conditions where the strongly nonlinear waves and wind loads are both considered.
Wang et al. [110] focused on the uncertainty assessment of CFD predictions for the OC6
semi-submersible platform under nonlinear incident waves. Compared to second-order PF
theory, the higher difference frequency wave excitations are captured by the CFD method,
particularly for the surge response. In order to predict the nonlinear wave loads on a semi-
submersible FOWT under regular and irregular waves, Li and Bachynski [111] developed
a CFD model and an engineering model based on PF theory. They outlined that more
accurate estimations of high-order wave forces can be captured by the CFD model, and
the difference of wave loads between the CFD predictions and experiments is less than
10% under the regular wave conditions. By using two CFD analysis tools ReFRESCO and
ComFlow, Bandringa and Helder [112] studied the deterministic breaking wave impact on
a semi-submersible platform.

Nowadays, the research of VIM for semi-submersible platforms is a burning issue
and many efforts have been dedicated to it. Tan et al. [113] investigated the VIM of a
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multi-column floating platform with 3-DOF. The results revealed that the current heading,
column aspect ratio, the sharp and rounded corners have significant effect on the vortex,
and subsequently, affect the VIM of the platform. Kim et al. [114] examined the large period
vortex-induced motion of a deep-draft paired-column semi-submersible platform at differ-
ent heading angles based on the DDES turbulence model. Compared to the experimental
measurements, the CFD predictions showed a satisfied accuracy. Zhao et al. [115,116] con-
ducted the VIM of a semi-submersible platform with different square columns based on a
well-validated in-housed code VIM-FOAM-SJTU. The results showed that the pontoon can
effectively reduce the VIM of the platform.

2.3.3. Tension Leg Platform

Compared to spar buoy and semi-submersible platforms, the CFD studies of the
tension leg platform are relatively few. Nematbakhsh et al. [117] found that the tension
leg platform exhibits an obvious nonlinear characteristic under waves with large height.
Compared with the linear assumption, lower platform surge is captured by CFD method
due to better consideration of nonlinear effects. Dai et al. [118] conducted CFD simula-
tions of a tension leg platform to calculate the global drag force. It was found that the
discrepancy between CFD predictions and experimental measurements is less than 10%.
Moreover, the mean drag coefficient is significantly contributed by the front column and
pontoon. Nam et al. [119] performed the experiment and CFD simulation to study the
relative wave elevation responses of a tension leg platform. A series of tests focused on
the modeling of drift force and the occurrence of wave-in-deck were presented, and the
nonlinear characteristics of relative wave elevation were analyzed.

2.3.4. Barge Platform

The dynamics responses of a barge platform under regular waves were simulated
by Beyer et al. [120] using the coupled MBS-CFD method. The results of wave elevation,
platform motion and mooring tension forces were found in good agreement with the
experiment. The moonpool has been designed and installed on barge floating platform,
with the benefit of improved seakeeping, reduced construction costs and increased potential
multi-purpose applications [121]. Kristiansen et al. [122] simulated the moonpool resonance
of a barge platform and captured the flow separation induce by fluid viscous near the
moonpool. They found that the moonpool significantly contributed to the viscous damping.

3. System-Level Studies

For the system-level studies of FOWTs, four aspects with increasing research complex-
ity are presented: the simplified aerodynamics to examine the influence of aerodynamic
loads on platform hydrodynamics, the prescribed platform motions to investigate the
unsteady aerodynamic performance, the fully coupled aero-hydrodynamics and the aero-
hydro-elastic behaviors considering the blade deformations.

3.1. Simplified Aerodynamics

The aerodynamic loads exerted on wind turbines are regarded as the quantities in-
dependent of time, with the aim of studying the platform hydrodynamics of FOWTs in
a simplified scenario. Namely, the interference between the wind turbine and the float-
ing platform in real time is not taken into account. Nematbakhsh et al. [123] studied the
dynamic responses of a tension leg FOWT using a single-phase flow CFD method. The
aerodynamic loads of wind turbine were simplified as the stationary thrust. Similarly, Zhao
and Wan [124] investigated a OC4 semi-submersible platform under various wind speeds.
They found that, for the low wind speed scenarios, the aerodynamic loads increase with
wind speeds, and consequently, led to the significant dynamic responses of the platform.
However, the simplified aerodynamics cannot reflect the strongly coupled feature between
the wind turbine and the floating platform, so it is suited to be used in the preliminary
analysis stage of hydrodynamic performance of FOWTs.
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3.2. Prescribed Platform Motions

The aerodynamics of wind turbines affected by the platform motions is referred to as
unsteady aerodynamic performance. The prescribed platform motions of surge, pitch and
yaw are presented here due to their significant effects on the unsteady aerodynamics of
wind turbines. The sine and cosine functions with amplitude and frequency are usually
employed to define the prescribed platform motions. For example, the platform surge can
be represented as:

Xsurge = Acos
(

2π

T
t
)

(6)

where A is the surge amplitude, T is the surge period, t is the time. The velocity of surge
motion can be expressed as:

Usurge = −A
(

2π

T

)
sin
(

2π

T
t
)

(7)

The change in relative wind speed due to platform surge will affect the aerodynamic
performance of wind turbines, which can be expressed as:

Urel = Ure f −Usurge = Ure f +
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A2π

T

)
sin
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t
)

(8)

In order to analyze the effects of platform surge motion with various amplitudes
and frequencies on the unsteady aerodynamic performance of wind turbines, Tran and
Kim [125] performed the numerical simulations of a FOWT based on the unsteady BEM
and CFD method with overset mesh technique. It was observed that the gap distances
among the blade-up vortex tubes is variable due to contributions of platform surge motion
and strong vortex-wake interactions, as shown in Figure 12. As the wind turbine moves
backward or forward, these interaction effects tend to decrease or increase. In addition,
the vortex-wake interactions are stronger with the increase in amplitude and frequency of
surge motion. The results also showed that the pressure distributions on rotating blades
are sensitive to the direction (forward or backward) of the platform surge. Chen et al. [126]
utilized the IDDES turbulence model and the overset mesh technique in STAR CCM+ to
investigate the effects of surge motion on the aerodynamics and wake instabilities of a
FOWT. The flow separation on the blade suction surface was presented, and the separation
position moving towards leading edge due to the larger relative wind speed induced by the
higher frequency of surge motion. Kopperstad et al. [127] observed that a barge concept
FOWT experiences faster wake recovery due to the large oscillation amplitude of the surge
motion. Kyle et al. [128] investigated the vortex ring state of a FOWT under prescribed
surge motion. The vortex ring state was observed due to the tip vortex interaction and the
root vortex recirculation. Different from the above studies for a stand-alone FOWT with the
prescribed surge motion, Rezaeiha and Micallef [129] studied the aerodynamic performance
of two wind turbines based on the incorporation of the AD and the CFD method. The
upstream one was oscillated with prescribed surge motion, and the downstream one was
fixed and positioned 3D away from the upstream one. A low-frequency oscillating mode of
the downstream rotor was observed, where the period approximately 10 times the surge
period of upstream rotor.

For the prescribed pitch motion, Tran and Kim et al. [130] found that the aerodynamic
power outputs of the wind turbine are 5.7 MW and 10 MW at the different pitch motion
amplitudes of 1◦ and 4◦, which are enhanced by 14% and 100%, respectively. However,
Lei et al. [131] pointed out the effects of pitch motion on aerodynamic power of a vertical
wind turbine are relatively smaller by employing the CFD method with IDDES turbulence
model and overset mesh technique. Specifically, the results revealed that the increased
amplitude and frequency of pitch motion are benefit to increase power coefficient, whereas
the increase is less than 5%. Fang et al. [132] observed that amplitudes of rotor thrust and
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torque decrease with the decreased frequency of pitch motion. Moreover, the blade-wake
interactions are more evident with the higher amplitude and frequency of pitch motion.

J. Mar. Sci. Eng. 2022, 10, 1357 19 of 32 
 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 
Figure 12. Visualization of instantaneous vorticity contours of the FOWT with the prescribed surge 
motion: (a) t = 0Tsurge; (b) t = 1/8Tsurge; (c) t = 2/8Tsurge; (d) t = 3/8Tsurge; (e) t = 4/8Tsurge; (f) t = 5/8Tsurge; (g) 
t = 6/8Tsurge; (h) t = 7/8Tsurge [125]. Reproduced with permission from Tran and Kim, Renewable En-
ergy; published by Elsevier, 2016. 

For the prescribed pitch motion, Tran and Kim et al. [130] found that the aerodynamic 
power outputs of the wind turbine are 5.7 MW and 10 MW at the different pitch motion 
amplitudes of 1° and 4°, which are enhanced by 14% and 100%, respectively. However, 
Lei et al. [131] pointed out the effects of pitch motion on aerodynamic power of a vertical 
wind turbine are relatively smaller by employing the CFD method with IDDES turbulence 
model and overset mesh technique. Specifically, the results revealed that the increased 
amplitude and frequency of pitch motion are benefit to increase power coefficient, 
whereas the increase is less than 5%. Fang et al. [132] observed that amplitudes of rotor 
thrust and torque decrease with the decreased frequency of pitch motion. Moreover, the 
blade-wake interactions are more evident with the higher amplitude and frequency of 
pitch motion. 

Compared with the surge and pitch motions, the investigations of unsteady aerody-
namic performance induced by platform yaw motion are relatively few. Cai et al. [133] 
performed the simulations of a FOWT with the prescribed yaw motion, the wind shear 
and tower shadow effects were considered. Leble and Barakos [134] pointed out that the 
discrepancies of rotor thrust and power between the fixed wind turbine and the floating 
one with yaw motion are 2.5%, indicating the insufficient influence of the yaw motion on 
unsteady aerodynamics. Liu et al. [135] studied the unsteady aerodynamics of a FOWT 
under three different platform motions including surge, pitch and heave, respectively. 

The effects of surge and pitch motion on unsteady aerodynamics of wind turbine 
were compared by Li et al. [136] based on the unsteady AL in OpenFOAM. It was con-
cluded that the effects of surge motion on aerodynamic performance are more obvious. 
Tran and Kim [88] outlined that the unsteadiness of wind turbine aerodynamics induced 
by platform pitch motion is approximately 12–16 times that of yaw motion. Lin et al. [137] 
performed the simulations of a FOWT with the coupled surge motion and pitch motion. 
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Compared with the surge and pitch motions, the investigations of unsteady aerody-
namic performance induced by platform yaw motion are relatively few. Cai et al. [133]
performed the simulations of a FOWT with the prescribed yaw motion, the wind shear
and tower shadow effects were considered. Leble and Barakos [134] pointed out that the
discrepancies of rotor thrust and power between the fixed wind turbine and the floating
one with yaw motion are 2.5%, indicating the insufficient influence of the yaw motion on
unsteady aerodynamics. Liu et al. [135] studied the unsteady aerodynamics of a FOWT
under three different platform motions including surge, pitch and heave, respectively.

The effects of surge and pitch motion on unsteady aerodynamics of wind turbine were
compared by Li et al. [136] based on the unsteady AL in OpenFOAM. It was concluded
that the effects of surge motion on aerodynamic performance are more obvious. Tran
and Kim [88] outlined that the unsteadiness of wind turbine aerodynamics induced by
platform pitch motion is approximately 12–16 times that of yaw motion. Lin et al. [137]
performed the simulations of a FOWT with the coupled surge motion and pitch motion.
The wake asymmetry was observed due to the complicated platform motions, and the wake
expansion was promoted with the increase in wind speeds. Chen et al. [138] importantly
noted that rotor power of the FOWT is reduced by 10% due to the coupled surge and pitch
motions, compared to that of only the pitch motion.

Undoubtedly, in the initial design stage of FOWTs, it is suitable and valid to perform
the FOWT behaviors with the prescribed platform motions. The underlying mechanisms
of the wind turbine aerodynamics influenced by platform motions can be captured and
analyzed through the unsteady characteristics of aerodynamic performance.
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3.3. Fully Coupled Aero-Hydrodynamic Performance

Compared with the prescribed platform motions, the fully coupled aero-hydrodynamic
behaviors of FOWTs excited by inflow wind and incident wave are more physical. In order
to examine the contribution of aerodynamic loads to the dynamic responses of platform
surge, Ren et al. [139] performed the simulations of a tension leg FOWT under the com-
bined wind-wave conditions in Fluent. The surge motion was released, whereas the other
5-DOF were fixed. Liu et al. [140] investigated the dynamic responses of a semi-submersible
FOWT with 3-DOF including surge, heave and pitch. The arbitrary mesh interface (AMI)
and sliding mesh technique were employed to handle the relative movement between the
rotating wind turbine and the platform. It was found that the mooring tension forces are
significantly enhanced by the large response of the platform surge.

Regarding the 6-DOF simulations of FOWTs, Quallen and Xing et al. [97] employed a
CFD solver CFDShip-Iowa V4.5 to address the 6-DOF motions of the FOWT. A variable-
speed generator-torque controller is introduced to regulate the power generation. The
increased mooring forces are beneficial to keep the FOWT in a more favorable variable-
speed control region. Zhang and Kim [141] conducted a fully coupled CFD analysis for
a semi-submersible FOWT using the STAR CCM+ incorporated with the overset mesh
technique. Figure 13 shows the fluid domain of the FOWT, together with the mesh distri-
bution. Their findings revealed that the rotor thrust is increased by 7.8% for the FOWT
compared to the onshore wind turbine, whereas the rotor power is decreased by 10%,
which may be attributed to the small windward area and the relative wind speed caused
by tilted platform.
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Tran and Kim [142] constructed a computational model to simulate the fully coupled
aero-hydrodynamics of a semi-submersible FOWT. The results between CFD and the FAST
code of surge response showed a large discrepancy of 19.6%, whereas the heave and pitch
responses were closer among the two different frameworks. However, they particularly
noted that unsteady aerodynamic performance of FOWTs predicted by the FAST code
remains further investigations due to the great discrepancy when employing different
aerodynamic methods. Specifically, the discrepancies of thrust coefficient for BEM and
GDW are 24.0% and 33.3%, compared to that of the CFD. Additionally, the blade tip
vortices and the vortices shedding from the hub, tower and platform are visualized, as
shown in Figure 14. Zhou et al. [143,144] investigated the dynamic behaviors of a FOWT
under three type incident waves, i.e., focused wave, irregular wave and reconstructed



J. Mar. Sci. Eng. 2022, 10, 1357 21 of 32

focused wave. The hydrodynamic characteristics of the FOWT excited by irregular wave
and reconstructed focused wave are similar, whereas they showed a great discrepancy
compared to that of focused wave. In addition, tower bending moment and mooring
tension forces presented dynamic responses at multiple frequencies, corresponding to
the first, second and higher-order frequencies of the natural frequency of the structure,
indicating the nonlinear properties of the system.
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Figure 14. Instantaneous iso-vorticity contours for the semi-submersible FOWT with 6-DOF
motions [142].

However, the blade-resolved modeling for the numerical simulations of fully coupled
aero-hydrodynamics of FOWTs are computationally expensive. In order to save the com-
putational costs, Cheng et al. [106] developed a novel CFD solver FOWT-UALM-SJTU by
incorporating the unsteady AL considering the platform motions and an in-house CFD
solver naoe-FOAM-SJTU for floating platform hydrodynamics. Figure 15 shows the im-
plement of the unsteady AL to the in-house CFD solver naoe-FOAM-SJTU. The FOWT
composed of NREL 5 MW wind turbine and a semi-submersible platform was employed
as the research object, and its coupled responses were investigated.

Huang et al. [145,146] also employed the unsteady AL to represent the wind turbine
based on the developed CFD solver FOWT-UALM-SJTU. The interference effects between
wind turbine and spar buoy platform under combined wind-wave excitation were fully
investigated by performing cases with various platform DOF and turbine states. As shown
in Figure 16, the blade tip vortex is captured and visualized. Moreover, the platform surge
and pitch responses increase significantly due to the aerodynamic loads exerted on the
wind turbine, whereas the heave response is reduced due to the vertical component of
rotor thrust. Zheng et al. [104] also employed the unsteady AL to conducted the coupled
dynamic responses of a spar buoy FOWT with heave plate.
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Figure 16. Instantaneous vortex structures of the spar buoy FOWT modeled by the unsteady AL:
(a) t = 0; (b) t = 1/4Twave; (c) t = 2/4Twave; (d) t = 3/4Twave [146]. Reproduced with permission from
Huang et al., Journal of Marine Science and Application; published by Springer Nature, 2019.

3.4. Fully Coupled Aero-Hydro-Elastic Performance

In order to investigate the rotor-wake interactions of FOWTs, Steven et al. [147] inte-
grated the FVM to an aeroelastic numerical framework with the strongly two-way coupled
communications between fluid and structure domains. Due to the lack of aeroelastic ex-
perimental measurements for FOWTs, the validations were conducted separately against
the aerodynamic performance and structure deformations of experimental data. After
that, the validated aeroelastic framework was applied to study the rotor-wake interactions
and the related aeroelastic characteristics of FOWTs under a series of operational condi-
tions [148]. Although the FVM is capable of accurately predicting the aerodynamics of
wind turbines under the complex operational conditions, the flow separation on the blade
surfaces is not reasonably captured due to the absence of fluid viscosity. Its applications
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for FOWT aerodynamics need further validation, particularly for the situations with more
complex aeroelastic simulations. Hence, a high-fidelity CFD analysis tool is necessary for
the investigations of aero-hydro-elastic performance of FOWTs.

By combining the high-fidelity CFD solver developed for FOWT aero-hydrodynamics
and a structure solver MBDyn, Liu et al. [149] investigated the aeroelastic characteristics of
a FOWT with prescribed surge motion. Specifically, the blade structure deformations are
solved by the structure solver MBDyn based on the forces exert on turbine blades which
is predicted by the fluid solver pimpleDyMFoam. Subsequently, the blade deformations
are delivered to the fluid solver and represented through the updated mesh. In addition to
demonstrate the negative effects of blade deformations on aerodynamic performance, they
also conducted a simulation to study how the platform surge motion affects the dynamics
of flexible turbine blades. It was found that the variations of rotor thrust and power are
enhanced when imposing the surge platform motion. After that, they developed a fully
coupled aero-hydro-elastic tool for the FOWTs under combined wind-wave conditions [150].
The capability of the developed tool was demonstrated by a semi-submersible FOWT
dynamic responses in terms of blade deformations, aerodynamic performance, platform
motions and tension forces of mooring cables.

Due to the computationally expensive costs for the blade-resolved CFD simulations,
Huang et al. [151,152] developed an aero-hydro-elastic framework for FOWTs by integrat-
ing the AL to in-house CFD code naoe-FOAM-SJTU. The AL was modified to account for
the induced velocities caused by platform motions and blade deformations. The blade struc-
tures were represented by the beam model and discretized by the 1D FEM. The proposed
framework was validated by previous published numerical results. Then they investigated
the dynamic responses of a stand-alone FOWT and the two tandem-arranged FOWTs with
blade deformations. The results showed that the time-averaged values of rotor power and
thrust are decreased due to the presence of blade deformations, whereas the fluctuation
amplitudes are enhanced. The blade deformations of downstream FOWT are smaller than
that of upstream FOWT, and more stable vortexes are found when the blade deformations
are presented.

4. Future Recommendations
4.1. Fully Coupled Aero-Hydro-Elastic Performance

The FOWT is a complex multi-integrated system consisting of wind turbine blades,
hub, nacelle, tower, floating platform and mooring system. The design and development
of FOWTs requires multi-disciplinary knowledge, and the strong interactions between
components are significant. As mentioned in Section 3.3, a lot of efforts are dedicated to
investigate the fully coupled aero-hydrodynamics of FOWTs, which is a sophisticated and
challengeable issue for the high-fidelity CFD simulations and essential for the aero-hydro-
elastic behaviors. However, to the best of the author’s knowledge, the CFD research for the
aero-hydro-elastic performance of FOWTs is so scarce that the aeroelastic characteristics
of FOWTs are not systematically examined and analyzed. Therefore, some efforts should
shift to the aero-hydro-elastic performance of FOWTs, particularly for the situations of
large-scale blades and severe sea conditions.

The structure models can be introduced into the aero-hydrodynamic framework to
account for the blade deformations of FOWTs. The 3D FEM incorporated with the blade-
resolved modeling for aerodynamics is the highest-fidelity aeroelastic analysis method,
with it, the detailed stress and strain of blade structures are captured. However, it is
noteworthy that mismatch between fluid domain mesh and structural domain mesh, mesh
update due to blade deformations and computational costs are the matters of focus. The
1D EBM incorporated with the blade-resolved modeling for FOWTs is an option to save
the computational resources to some extent. Furthermore, the blade-resolved modeling
replaced by the AL and combined with the 1D EBM namely the EAL aeroelastic framework
is the most suitable choice for saving the computational costs in the CFD-related simulations
of aero-hydro-elastic behaviors of FOWTs. Overall, the desired results and the affordable
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computational costs are the main considerations when selecting the aerodynamic model
and structure model for the construction of aero-hydro-elastic framework of FOWTs.

4.2. Complex Atmospheric Inflow

The development of FOWTs towards large-scale is unstoppable, leading to the more
complex atmospheric inflow conditions over the wind turbine rotor. One of the distinct
features for atmospheric inflow is the wind shear, which is characterized by the increasing
wind speed with height. Although the wind shear can be taken into account in some studies
of high-fidelity CFD simulations for FOWTs [145,153], it is still an oversimplified situation.
Specifically, the turbulence characteristics of atmospheric inflow, highly correlated with the
fatigue loads and structure failure of wind turbines, are not considered. Moreover, due to
the absent contribution of large-scale atmospheric turbulence, the wake meandering effects
are not reproduced, which are characterized by significant lateral oscillations and have a
remarkable impact on inflow conditions of downstream wind turbines.

Two turbulence models are suggested by International Electrotechnical Commission
(IEC) standard to generate the atmospheric inflow conditions for wind turbines, the Mann
spectral tensor model [154], hereafter denoted “Mann model”, and the Kaimal spectral
and exponential coherence model [155], hereafter denoted “Kaimal model”. Li et al. [156]
investigated the effects of atmospheric inflow conditions on the aerodynamics of a semi-
submersible FOWT based on the Kaimal model, the results revealed that the rotor power
is more unstable due to the presence of atmospheric turbulence. However, the above
two engineering models are concluded from small onshore wind turbines, their applica-
tions for large FOWTs needs further validation. By generating the atmospheric inflow
conditions for spar buoy FOWT based on the two engineering models and high-fidelity
LES, Doubrawa et al. [157] noted that fatigue loads of the spar buoy FOWT in high-wind
scenarios are overpredicted by the two engineering models and vice versa. Nybø et al. [158]
also emphasized that the aforementioned two engineering models may lead to incorrect
estimations for FOWT dynamic responses. Moreover, the atmospheric stability is not taken
into account in the two engineering models, which is recognized as a key factor for the
wake recovery of wind turbines. Consequently, some efforts should be focused on the LES
to generate more reasonable and realistic atmospheric inflow conditions and to further
validate the applicability of the above two engineering models for FOWTs.

4.3. Wake Interactions between Multi-FOWT

In reality, the FOWTs are presented in the form of a floating wind farm with the
purpose of commercial operation. Due to the constraints of sea area and mooring cables,
the downstream FOWTs will inevitably operate in the wakes of upstream FOWTs, called
the wake effects, which may reduce the power outputs and increase the fatigue loads.
Additionally, the floating wind farm suffers more power deficit attributed by low turbulence
intensity of high-quality wind resources, compared to that of an onshore wind farm.
Therefore, the investigations for muti-FOWT are required to carry out the underlying
physical mechanisms of wake interactions, for the purpose of reducing the power deficit
and fatigue loads of floating wind farm.

Rezaeiha and Micallef [129] studied the wake interactions of two tandem FOWTs
using the CFD analysis incorporated with the AD. Three different surge amplitudes of
upstream FOWT were carried out and the power performance of the two floating rotors as
well as the wake interactions were examined. It was found that the mean power outputs
of the both floating rotors are slightly enhanced, and a faster wake recovery is observed
due to the enhanced flow mixing caused by surge motion of upstream FOWT. Recently,
Zhang et al. [159] conducted a comprehensive study for two FOWTs based on the blade-
resolved modeling, the rotor power, torque and platform motions were analyzed. However,
the studies for wake interactions between multi-FOWT are still particularly rare. For the
deployment of commercial floating wind farm, more detailed investigations for the wake
effects between multi-FOWT are urgently required.
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5. Conclusions

In this study, high-fidelity CFD simulations for the dynamic responses of FOWTs
are comprehensively summarized and analyzed. The component-level studies including
aerodynamics, aeroelasticity and hydrodynamics are presented. The system-level studies
consisting of simplified aerodynamics, prescribed platform motions and fully coupled aero-
hydrodynamics are performed, as well as a rare studies for aero-hydro-elastic performance
of FOWTs. In addition to the fully coupled aero-hydro-elastic behaviors of FOWTs, another
two future research directions are suggested, i.e., the complex atmospheric inflow and the
wake interactions of multi-FOWT.

For the wind turbine aerodynamics, the blade-resolved modeling is the most precise
method, where the detailed flow field on blade surfaces is captured, but suffers expensive
computational costs. The parametric modeling of wind turbine blades is considered
to significantly save computational resources, which is referred to actuator models and
composed of the AD, the AL and the AS. Among the three actuator models, the AL is
incorporated with the 1D EBM for the aeroelastic analysis of wind turbines. The AL-related
aeroelastic framework can reasonably predict the blade deformations under the specific
and normal cases. However, if more detailed results of blades deformations are desired,
such as the stress and strain of blade structures, the blade-resolved modeling with the 3D
FEM is suggested. The hydrodynamic studies of floating platforms are more focused on
loads and motion responses induced by incident waves and vortices, and the nonlinear
characteristics of dynamic responses are captured.

The research of simplified aerodynamics used to study the effects of aerodynamic
loads on dynamic responses of floating platforms is comparatively few, compared to that
of prescribed platform motions to investigate the unsteady performance of wind turbine
aerodynamics. Among the 6-DOF of floating platforms, the prescribed surge and pitch
motions with various amplitudes and frequencies are extensively studied, as well as the
yaw motion occasionally. Subsequently, for a more physical situation, the combined wind-
wave conditions are employed for the fully coupled aero-hydrodynamic performance of
FOWTs. The structure model is introduced into the aero-hydrodynamic framework with
the aim of considering the blade deformations of FOWTs. However, the relevant research
for high-fidelity CFD simulations of the aero-hydro-elastic behaviors of FOWTs is still rare.

In order to capture more wind energy and reduce the LCOE, the scale of FOWTs
becomes larger. However, some issues are significantly caused by the large rotor diameters.
One is the blade structure deformations which is not systematically examined and ana-
lyzed in the high-fidelity CFD frameworks for FOWTs. Another is the modeling of more
realistic atmospheric inflow by LES rather than the employment of engineering synthetic
wind model. Moreover, the complex wake interactions between multi-FOWT should be
investigated to figure out the underlying mechanisms of wake effects and to improve the
overall power outputs of the multi-FOWT. Consequently, in order to improve the opera-
tional performance and structural reliability of FOWTs, as well as the commercialization
of floating wind farms, the high-fidelity investigations for aero-hydro-elastic behaviors
of FOWTs, modeling of more realistic atmospheric and wake interactions of multi-FOWT
are indispensable.
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Nomenclature

GWEC Global Wind Energy Council
FOWTs floating offshore wind turbines
LCOE levelized cost of energy
HPC high-performance computers
BEM blade element momentum
PF potential flow
CFD computational fluid dynamics
AD actuator disk
AL actuator line
AS actuator surface
3D three-dimensional
LES Large Eddy Simulation
ACE actuator curve embedding
RANS Reynolds-Averaged Navier-Stokes
uRANS unsteady Reynolds-Averaged Navier-Stokes
DES Detached Eddy Simulation
IDDES Improved and Delayed Detached Eddy Simulation
DDES Delayed Detached Eddy Simulation
FVM free vortex wake
FEM finite element method
EBM equilibrium beam model
MBD multi-body dynamics
GEBT geometrically exact beam theory
CSD computational structure dynamics
EAL elastic actuator line
FSI fluid-structure interaction
ME Morison equation
6-DOF six degrees-of-freedom
FDM finite difference model
FSM finite segment model
FEM finite element model
LMM lumped mass model
MBS multi-body system
VIM vortex-induced motions
AMI arbitrary mesh interface
IEC International Electrotechnical Commission
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