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Abstract: Estimating wave-breaking indexes such as wave height and water depth is essential
to understanding the location and scale of the breaking wave. Therefore, numerous wave-flume
laboratory experiments have been conducted to develop empirical wave-breaking formulas. However,
the nonlinearity between the parameters has not been fully incorporated into the empirical equations.
Thus, this study proposes a multilayer neural network utilizing the nonlinear activation function
and backpropagation to extract nonlinear relationships. Existing laboratory experiment data for the
monochromatic regular wave are used to train the proposed network. Specifically, the bottom slope,
deep-water wave height and wave period are plugged in as the input values that simultaneously
estimate the breaking-wave height and wave-breaking location. Typical empirical equations employ
deep-water wave height and length as input variables to predict the breaking-wave height and water
depth. A newly proposed model directly utilizes breaking-wave height and water depth without
nondimensionalization. Thus, the applicability can be significantly improved. The estimated wave-
breaking index is statistically verified using the bias, root-mean-square errors, and Pearson correlation
coefficient. The performance of the proposed model is better than existing breaking-wave-index
formulas as well as having robust applicability to laboratory experiment conditions, such as wave
condition, bottom slope, and experimental scale.

Keywords: wave breaking; breaking-wave height; breaking-water depth; multilayer neural network;
nonlinear relationships; machine learning

1. Introduction

When ocean waves propagate to the shoreline, the decrease in the water depth shortens
its wavelength and increases wave height. Upon reaching a physical limit, the wave breaks
without maintaining its form, which is defined as the “Wave-Breaking” phenomenon [1].
Wave breaking causes various events in the process of wave-energy (transported from deep
water) dispersion, such as impact waves, longshore currents, rip currents and sediment
transport, and also affects vessels and the stability of coastal structures [2]. Therefore,
information on wave breaking is essential for the design and maintenance of coastal
structures. In addition, it is considered a necessary factor for predicting and responding to
sediment transport and morphological changes in the nearshore area. Particularly among
the physical quantities related to wave breaking, the most important properties are the
wave height and water depth at the position of the breaking wave, which are defined as
the “Breaking-Wave Height” and “Breaking-Water Depth,” respectively. These quantitative
values, called wave-breaking indexes, indicate the starting point of the breaking wave and
the maximum wave height in the nearshore, and numerous studies have been conducted to
estimate these values [3–8]. However, owing to strong turbulent features and nonlinearity,
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observing and predicting coastal breaking waves is complex, and many studies are still
challenged by this subject [9,10].

Initial studies related to wave breaking began with the theoretical approach presented
by Michell [11] and McCowan [12]. Michell proposed the wave-steepness limit of the
deep-water wave value of 0.142 using the relationship between the water-particle motion
and wave celerity at the wave crest. McCowan proposed a ratio of 0.78 of the wave height
and water depth when the wave breaks while considering a solitary wave in deep-water.
Subsequently, Miche [13] applied the linear wave theory to the results drawn by Michell
and expressed the breaking-wave height under the monochromatic-regular-wave condition
by using the wavelength and water depth at the breaking point as input variables. After
that, Ippen and Kulin [14] also pointed out the inadequacy of the presented formula,
wherein the wave-breaking mechanism of a solitary wave was not suitable for estimating
the breaking-wave height and water depth of wind waves.

It was reported that various errors occurred in estimating the breaking-wave height
and water depth using the linear wave theory due to the nonlinearity of the waves by
the shallow-water-depth effect [8,15,16]. Therefore, numerous studies have attempted to
estimate empirical wave-breaking formulas for the breaking-wave height and water depth
in order to overcome these limitations. Hence, the breaking-wave height and water depth
were estimated in subsequent studies by reproducing various wave conditions in wave-
flume laboratory experiments and obtaining consecutive wave transformations depending
on the water depth [17–19]. Maruyama et al. [20], Stive [21], and Smith and Kraus [15] per-
formed wave-flume laboratory experiments by installing offshore structures resembling the
actual coastal terrain or by setting a sand bar (formed by sand moved out towards the open
sea by waves) as the topographical conditions. Numerous empirical wave-breaking formu-
las have been proposed based on wave-flume laboratory experiment data obtained under
various conditions, including the above [8,9,22–30]. However, consistent performance was
limited under generalized conditions as these empirical wave-breaking formulas depended
on certain laboratory experiment data. Furthermore, the methods and basic forms of the
breaking index used to develop the empirical wave-breaking formulas were different from
each other. In particular, the empirical wave-breaking formulas suggested by Goda [8],
Robertson et al. [9], Tadayon et al. [30], and others had a high degree of reproducibility
because the estimated breaking-wave height and water depth were plugged in as the
input values for the equations, but that makes them insufficient for coastal engineering
applications.

In this study, a method based on a multilayer neural network with a nonlinear acti-
vation function and backpropagation is proposed in order to estimate the breaking-wave
height and breaking-water depth by discovering the nonlinear relationship between the
deep-water wave condition, bottom slope and wave-breaking index [31]. For the improve-
ment of the applicability and usability compared to the previous wave-breaking formulas,
the newly proposed method is designed to simultaneously obtain breaking-wave indexes
(breaking-wave height and water depth). Additionally, there is no possibility of error from
the secondary transformation of raw wave data by directly utilizing the input and output
without nondimensionalization. Next, various experiment data for monochromatic regular
waves published in previous studies were collected and used for training the network. The
proposed neural network comprising the nonlinear activation function and backpropa-
gation can use all of the data acquired from various laboratories without distinguishing
between the experimental conditions. This gives the proposed model robust applicability
to laboratory experiment conditions. Finally, the performance of our proposed method is
evaluated in comparison with the existing breaking-wave-index formulas.

2. Related Works

The existing breaking-wave formulas use the deep-water wave data and bottom slope
as input variables and reproduce the breaking-wave height and wave-breaking location. In
this study, the accuracy and meaningfulness of these formulas were summarized, and the
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laboratory experiment data for the monochromatic regular wave from the previous studies
were applied to construct the neural network for estimating the breaking-wave height and
water depth. The variables proposed in this study are defined as follows: (1) H0, h0, and L0
indicate the deep-water wave height, water depth, and wavelength, respectively; (2) Hb
and hb denote the breaking-wave height and breaking-water depth, respectively; and (3) m
denotes the gradient of the bottom slope.

Le Mehaute and Koh [32] considered the deep-water wave steepness and bottom
slope parameters as input variables and predicted the nondimensionalized breaking-wave
height with the deep-water wave height using Equation (1). This equation was derived
using the data of the gentle slope, which has high utilization potential as it demonstrated
sound predictive performance in the majority of slope ranges [33]. Additionally, this
equation was the first trial that simultaneously considered the wave steepness and bottom
slope in calculating the breaking-wave height. Subsequently, this was partially modified
by Galvin [34] and Collins and Weir [35]. Data from wave-flume laboratory experiments
performed by Suquet [36], Hamada [37], and Iversen [17] were used to develop the equation,
and the data were within the following ranges: 0.02 < m < 0.2 and 0.002 < H0/L0 < 0.093.
From these datasets, the experimental results published by Iversen [17] were collected and
used in this study.

Hb
H0

= 0.76m1/7(
H0

L0
)
−1/4

(1)

Rattanapitikon and Shibayama [28] used 574 experimental data in the ranges 0 ≤ m ≤
0.38 and 0.001 < H0/L0 < 0.100 to validate the existing wave-breaking formulas. In
addition, they modified the terms that correspond to the bottom slope in the equations
developed by Komar and Gaughan [19], Goda [22], and Ostendorf and Madsen [24].

Rattanapitikon and Shibayama [38] supplemented approximately 100 large wave-
flume experimental data (0 ≤ m ≤ 0.29 and 0.003 < H0/L0 < 0.112) from Kajima et al. [39]
and Smith and Kraus [40] to propose the new forms of empirical equations that can predict
the breaking-wave height and water depth. The equations are presented in Equations (2)
and (3).

Hb
L0

= (−0.57m2 + 0.31m + 0.58)(
H0

L0
)

0.83
(2)

hb
L0

= (3.86m2 − 1.98m + 0.88)(
H0

L0
)

0.84
(3)

From the results of Rattanapitikon and Shibayama [38], the deep-water wave steepness
and bottom slope were used as input variables to estimate the breaking-wave height and
water depth using the nondimensionalized form by deep-water wavelength. The laboratory
experiment data used to fit the equation comprised 695 data generated from 26 wave-flume
laboratory experiments. In this study, 351 accessible data were used to construct a neural-
network model for predicting breaking-wave indexes (breaking-wave height and water
depth).

Xie et al. [29] restricted the wave-breaker type to “plunging” to improve the breaking-
water-depth-prediction accuracy. The new formula was developed based on the linear
wave theory, so it can significantly improve the applicability of the input wave condition.
However, the equation is too complicated and applicable only under certain wave-breaker
types (plunging). A semi-empirical formula in Equation (4) was proposed, which applied
242 data covering a range of 0.0125 ≤ m ≤ 0.2 and 0.0016 < H0/L0 < 0.092, acquired from
six sources, for fitting the equation coefficient. The proposed equation was verified using
their own 25 wave-flume laboratory experiments and eight plunging wave data from Lara
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et al. [41]. All of the experimental data were collected and used in the learning phase of the
proposed model and in its validation.

hb
L0m

= 0.4787
Ω

1−Ω
, Ω =

 4
(

H0
L0

)
4
(

H0
L0

)
+ m


4/3

(4)

Lee and Cho [42] used 860 data obtained from previous experimental datasets in the
ranges of 0.01 ≤ m ≤ 0.2 and 0.018 < H0/L0 < 0.1272. They applied them in order to
derive the linear relationship using several linear regression methods and a feed-forward
neural network. Moreover, the linear relationships of the breaking-wave height and water
depth nondimensionalized by deep-water wavelengths were derived and expressed in
terms of the deep-water wave steepness and bottom slope, as shown in Equations (5) and
(6).

Hb
L0

= 0.002 + 0.064m + 0.906
H0

L0
, (5)

hb
L0

= 0.003 + 0.011m + 1.128
H0

L0
(6)

The equations of Lee and Cho [42] fit very well on the linear relationship between deep-
water wave condition, bottom slope, and wave-breaker index. However, both equations
tend to overestimate the results for gentle bottom slopes (m ≤ 0.02). In addition, the linear
relation limits the performance when the nonlinearity of the wave is strong or when the
scale effect of the experiment is important. In this study, 433 data were collected and used
to construct the newly proposed model.

3. Methodology
3.1. Data

In this study, openly published wave-flume laboratory experimental data were used in
developing the new breaking-wave-index-prediction model that applies a neural network
with a nonlinear activation function and backpropagation to the estimation of the breaking-
wave height and water depth. Table 1 summarizes the source and experimental conditions
of 630 data collected from 31 previous studies. A substantial part of the data was obtained
from Gaughan [43] and Smith and Kraus [15], and these are indicated as “*” and “**” in
the Source column of Table 1, respectively. The remaining data were collected from Bowen
et al. [44], Weggel and Maxwell [45], Ozaki et al. [46], Van Dorn [47], Kirgoz [48], Ishida and
Yamaguchi [49], Sakai et al. [50], Ting and Kirby [51], Kakuno et al. [52], Yüksel et al. [53],
Hoque [54], Shin and Cox [55], Deo and Jagdale [56], Lara et al. [41], Mori and Kakuno [57],
and Xie et al. [29]. Each dataset consists of input values such as the deep-water wave height,
bottom slope, period or wavelength, and breaking-wave heights and water depths obtained
from wave-flume laboratory experiments with slopes distributed between 0.009–0.225.
Among the data from Iversen [17], Ishida and Yamaguchi [49], Yüksel et al. [53], and Xie
et al. [29], those that did not include the breaking-wave heights or water depths were
excluded from this study. The breaking-wave heights and water depths of 584 data used
in this study are plotted in Figure 1. In Figure 1, the data located independently in the
upper right corner are the results obtained from the experiments performed by Maruyama
et al. [20] and Stive [21] in a large wave flume within a movable bed condition. There are
various wave-flume laboratory experimental data other than the acquired data in this study.
In this study, we only utilized easily accessible data in order to facilitate the reproducibility
of the process and the results of this research for estimating the breaking-wave height and
water depth.
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Table 1. Summary of compiled laboratory datasets on breaking waves.

No. Source Bottom Slope
(m)

Period
(T [s])

Deep-Water
Wave Height

(H0 [cm])
H0/L0 No. of Cases

1 Munk (1949) * 0.01–0.07 0.86–1.98 4.2–11.6 0.007–0.092 16
2 Iversen (1952) ** 0.02–0.10 0.74–2.67 2.7–12.4 0.003–0.091 68
3 Morison and Crooke (1953) * 0.02–0.10 0.78–2.62 3.5–12.4 0.004–0.080 6
4 Singamsetti and Wind (1967) ** 0.03–0.20 1.03–1.73 6.6–16.0 0.017–0.080 95
5 Horikawa and Kuo (1967) ** 0.01–0.05 1.20–2.30 4.7–17.3 0.006–0.073 97
6 Bowen et al. (1968) 0.08 0.82–2.37 3.6–9.0 0.007–0.049 11
7 Komar and Simmons (1968) * 0.04–0.11 0.81–2.37 2.8–14.4 0.003–0.071 44
8 Galvin (1969) ** 0.05–0.20 1.00–6.00 2.7–9.8 0.001–0.050 19
9 Weggel and Maxwell (1970) 0.05 1.26–2.05 4.6–12.6 0.013–0.055 9

10 Saeki and Sasaki (1973) ** 0.02 1.30–2.50 5.3–10.3 0.005–0.039 2
11 Iwagaki et al. (1974) ** 0.03–0.10 1.00–2.00 3.1–11.4 0.005–0.073 23
12 Walker (1974) ** 0.03 1.17–2.33 1.0–8.0 0.001–0.038 15
13 Ozaki et al. (1977) 0.10 0.79–1.40 0.9–5.8 0.006–0.060 20
14 Van Dorn (1978) 0.02–0.08 1.65–4.80 3.7–13.2 0.001–0.031 12
15 Mizuguchi (1981) ** 0.10 1.20 10.0 0.045 1
16 Kirgoz (1982) 0.07–0.23 0.78–2.03 2.2–7.3 0.003–0.061 16
17 Visser (1982) ** 0.05–0.10 0.70–2.01 6.0–10.2 0.014–0.079 7
18 Ishida and Yamaguchi (1983) 0.10 0.68–1.50 2.7–7.6 0.008–0.095 6
19 Maruyama (1983) ** 0.03 3.10 137.0 0.091 1
20 Stive (1985) ** 0.03 1.80–5.00 16.0–121.0 0.031–0.032 2
21 Sakai et al. (1986) 0.02–0.03 1.78–2.21 12.2–23.7 0.016–0.048 19
22 Smith and Kraus (1990) ** 0.03 1.02–2.49 8.5–15.8 0.009–0.092 5
23 Ting and Kirby (1994) 0.03 2.00–5.00 8.9–12.7 0.002–0.020 2
24 Kakuno et al. (1996) 0.03–0.10 0.88–2.00 2.2–13.2 0.008–0.092 55
25 Yüksel et al. (1999) 0.10 1.10–2.05 10.0–19.1 0.022–0.065 10
26 Hoque (2002) 0.11 1.12–1.80 11.0–16.6 0.024–0.076 6
27 Shin and Cox(2003) 0.03 1.50–3.00 7.8–12.7 0.006–0.036 3
28 Deo and Jagdale (2003) 0.03–0.10 0.74–1.20 7.3–13.0 0.042–0.127 20
29 Lara et al. (2006) 0.05 1.20–4.00 5.0–15.0 0.006–0.073 12
30 Mori and Kakuno (2008) 0.03 1.60–3.80 11.6–16.3 0.012–0.046 3
31 Xie et al. (2019) 0.10 1.75–2.05 3.0–5.0 0.005–0.010 25

Total No. of Samples 0.01–0.23 0.68–6.00 0.9–137.0 0.001–0.127 630

* Data from Gaughan [43]. ** Data from Smith and Kraus [15].
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cally learns more appropriate weights and thresholds based on the structure of the related 
data on wave breaking, we proposed a multilayer neural network comprising a number 
of hidden layers, neurons per layer, and connections per unit with a nonlinear activation 
function and backpropagation. 

Figure 3 illustrates a multilayer neural network with three layers, where the input 
layer, denoted as z, represents multiple factors (the bottom slope and deep-water wave 
height and period) that affect the wave breaking, and the output layer, denoted as a, refers 
to the breaking-wave height and breaking-water depth.  

We used the sigmoid activation function [58], which transforms the weighted sum of 
the input into an output from neurons in a hidden layer of the network as follows: 

Figure 1. Breaking-water depth and breaking-wave height obtained from 584 laboratory datasets.

A total of 584 data were classified as training and test data at a ratio of approximately
3:1 such that the bottom slope and deep-water wave height and period data could be
distributed evenly according to the experimental conditions. Thus, the amount of data for
training and testing was approximately 455 and 129, respectively. Figure 2 presents the
outer and inner circles as the training data and test data, respectively, in addition to the
composition of the experimental conditions for acquiring each wave datum.



J. Mar. Sci. Eng. 2022, 10, 50 6 of 16

J. Mar. Sci. Eng. 2022, 10, 50 6 of 17 
 

 

 
Figure 1. Breaking-water depth and breaking-wave height obtained from 584 laboratory datasets. 

A total of 584 data were classified as training and test data at a ratio of approximately 
3:1 such that the bottom slope and deep-water wave height and period data could be dis-
tributed evenly according to the experimental conditions. Thus, the amount of data for 
training and testing was approximately 455 and 129, respectively. Figure 2 presents the 
outer and inner circles as the training data and test data, respectively, in addition to the 
composition of the experimental conditions for acquiring each wave datum. 

 
Figure 2. Composition of components according to each wave condition. Outer and inner circles 
represent 455 training data and 129 test data, respectively: (a) Bottom slope is classified into three 
groups, i.e., Gentle (𝑚 ≤ 0.02), Moderate (0.02 < 𝑚 < 0.10), and Steep (𝑚 ≥ 0.10). (b) Wave period 
is classified into two groups, i.e., Short (𝑇 ≤ 1.50 s), and Long (𝑇 > 1.50 s). (c) Deep-water wave 
height is classified into two groups, i.e., Low (𝐻 < 0.1 m), and High (𝐻 ≥ 0.1 m). 

3.2. Multilayer Neural Network for Estimating Wave-Breaking Index 
To abstract the more useful features by creating a multi-level and multi-neuron neu-

ral network, called the fully connected Deep Neural Network (DNN), which automati-
cally learns more appropriate weights and thresholds based on the structure of the related 
data on wave breaking, we proposed a multilayer neural network comprising a number 
of hidden layers, neurons per layer, and connections per unit with a nonlinear activation 
function and backpropagation. 

Figure 3 illustrates a multilayer neural network with three layers, where the input 
layer, denoted as z, represents multiple factors (the bottom slope and deep-water wave 
height and period) that affect the wave breaking, and the output layer, denoted as a, refers 
to the breaking-wave height and breaking-water depth.  

We used the sigmoid activation function [58], which transforms the weighted sum of 
the input into an output from neurons in a hidden layer of the network as follows: 

Figure 2. Composition of components according to each wave condition. Outer and inner circles
represent 455 training data and 129 test data, respectively: (a) Bottom slope is classified into three
groups, i.e., Gentle (m ≤ 0.02), Moderate (0.02 < m < 0.10), and Steep (m ≥ 0.10). (b) Wave period is
classified into two groups, i.e., Short (T ≤ 1.50 s), and Long (T > 1.50 s). (c) Deep-water wave height
is classified into two groups, i.e., Low (H0 < 0.1 m), and High (H0 ≥ 0.1 m).

3.2. Multilayer Neural Network for Estimating Wave-Breaking Index

To abstract the more useful features by creating a multi-level and multi-neuron neural
network, called the fully connected Deep Neural Network (DNN), which automatically
learns more appropriate weights and thresholds based on the structure of the related data
on wave breaking, we proposed a multilayer neural network comprising a number of
hidden layers, neurons per layer, and connections per unit with a nonlinear activation
function and backpropagation.

Figure 3 illustrates a multilayer neural network with three layers, where the input
layer, denoted as z, represents multiple factors (the bottom slope and deep-water wave
height and period) that affect the wave breaking, and the output layer, denoted as a, refers
to the breaking-wave height and breaking-water depth.
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We used the sigmoid activation function [58], which transforms the weighted sum of
the input into an output from neurons in a hidden layer of the network as follows:

1.0
1.0 + e−x (7)

The activation function is nonlinear and may be referred to as nonlinearity in the layer
or the network design. The function takes any real value as an input and outputs values in
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the range of 0 to 1. The larger the input (more positive), the closer the output value will be
to 1.0, whereas the smaller the input (more negative), the closer the output will be to 0.0.

Backpropagation is operated in order to determine the optimal learning result by
propagating the error in the reverse direction, unlike the feed-forward neural network.
First, the input is transmitted to the final output during the feed-forward process. Second,
the error and cost function are determined at the final output layer. Thereafter, in the
backpropagation process, the errors between the expected outputs and actual values
obtained from the final step are propagated in the reverse direction, and each weight and
bias value of the neurons is updated.

Such optimizers for training neural networks are responsible for finding the free
parameters (usually denoted as weights) of a cost function that, typically, includes a perfor-
mance measure evaluated on the training set and additional regularization terms. Adaptive
moment (Adam) is an update to the root-mean-square propagation (RMSProp) optimizer,
wherein momentum [59] is incorporated, i.e., in addition to storing an exponentially de-
caying average of the previous squared gradients, Adam also employs an exponentially
decaying average of the previous gradients. Loss denotes the loss function that is employed
at the training time and is given by the mean-squared error (MSE) as follows:

1
n ∑(y− ŷ)2 (8)

The MSE is calculated as the average of the squared differences between the estimated
(ŷ) and actual values (y). The epoch and batch size for the experiment were 317 and 1,
respectively, and the learning rate was 0.0001. All data were normalized using the z-score
for standardization to put different variables on the same scale.

In contrast to the previous empirical equations, the raw wave-period value was
plugged in as the input values instead of deep-water wavelength because the dimension
between the input and output did not need to be considered. Moreover, that eliminated
the possibility of errors resulting from the dispersion relation equation, which is used to
convert deep-water wavelength to wave period, induced by the linear wave theory.

3.3. Evaluation Metrics

The bias (B), root-mean-square errors (RMSE), and Pearson correlation coefficient (R)
were used as the evaluation metrics to verify a newly constructed breaking-wave-index-
prediction model. B and RMSE indicate the difference between the actual value xi and the
value estimated through the model yi, and R numerically expresses the similarity between
the two values. The model performance is considered high when the absolute value of
B is small, the RMSE value is small, and the R value is close to 1. There is no absolute
standard, but an R value of 0.8 or higher generally implies a suitable correlation between
the estimations of the prediction model and real values. x and y indicate the average of xi
and yi, respectively, and n refers to the amount of data.

B =
∑n

i xi − yi

n
, (9)

RMSE =

√
∑n

i (xi − y)2

n
, (10)

R =
∑n

i (xi − y)(yi − y)√
∑n

i (xi − x)2 ∑n
i (yi − y)2

(11)

4. Results

In this study, 129 test data, excluding the data used to train the network, were used to
evaluate wave-breaking-index-estimation performance. The results showed that B, RMSE,
and R of the breaking-wave height and water depth were 0.004, 0.019, and 0.894 and
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0.005, 0.021, and 0.921, respectively. These results were compared with the approach of
modeling the linear relationship using multiple regression analysis. In contrast to previous
breaking-wave formulas that nondimensionalized the wave height and water depth, this
newly proposed model utilizes real values of deep-water wave height, period, bottom
slope, breaking-wave height, and breaking-water depth. This makes it possible to estimate
more accurate inference results by excluding the errors from the secondary transformation
of the raw wave data. Therefore, the existing breaking-wave formulas were reorganized to
evaluate and compare the performance of the proposed model and the previous breaking-
wave formulas for estimating the breaking-wave height and water depth (Table 2).

Table 2. Reorganized previous breaking-wave formulas for the performance comparison.

Target Authors Modified Formulas Abbreviation

Hb

Le Mehaute and Koh (1967) Hb = 0.76(H0/L0)
−1/4m1/7 H0 CA_Hb_1

Rattanapitikon and
Shibayama (2006) Hb =

(
−0.57m2 + 0.31m + 0.58

)
(H0/L0)

0.83 L0 CA_Hb_2

Lee and Cho (2021) Hb = (0.002 + 0.064m + 0.906H0/L0)L0 CA_Hb_3

hb

Rattanapitikon and
Shibayama (2006) hb =

(
3.86m2 − 1.98m + 0.88

)
(H0/L0)

0.84 L0 CA_hb_2

Xie et al. (2019)
hb = (0.4787 Ω

1−Ω

)
mL0,

Ω = {4(H0/L0)/(4(H0/L0) + m)}4/3 CA_hb_1

Lee and Cho (2021) hb = (0.003 + 0.011m + 1.128H0/L0)L0 CA_hb_3

The proposed model shows better performance for each breaking-wave height and
water depth than the three existing breaking-wave formulas in Figure 4. The analysis
showed that no significant difference in performance was observed between the proposed
model and previous breaking-wave formulas. Excluding the equations of Rattanapitikon
and Shibayama (CA_Hb_2 and CA_hb_2) in Figure 4, the results of the others were con-
sidered to have suitable predictive performances as the absolute values of B for both the
breaking-wave height and water depth were less than or equal to 0.005.
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A scatterplot of the entirety of the test data is presented in Figure 5 to obtain a more
precise comparison between the proposed model and the linear regression equations
(CA_Hb_3 and CA_hb_3) using the feed-forward neural network with the linear activation
function from Lee and Cho [42]. The equations of Lee and Cho (CA_Hb_3 and CA_hb_3)
present, on average, the lowest B absolute value for all the targets, but they have a higher
RMSE value and a lower R value compared to the proposed model. This is presumed to
be because, as seen in Figure 5a,b, the equations of Lee and Cho (CA_Hb_3 and CA_hb_3)
presented irrational estimations for some data. A total of three data were considered to
correspond to this issue. Two data were obtained from the study of Galvin [34] and the
other from that of Ting and Kirby [51]. These data are the low-scale condition with a period
equal to or greater than 4 s. This implies that the equations of Lee and Cho (CA_Hb_3
and CA_hb_3) were ineffective in the estimation of breaking-wave parameters in certain
conditions. In contrast, the proposed model produced a reasonable prediction performance
for the test data under all conditions. It was presumed that this study tried to separate
the training and test data as equally as possible by reflecting the data conditions so that
the proposed model could properly learn the inherent irregularities in the wave-flume
laboratory experimental data. Such an attempt contributed to enhancing the versatility of
the proposed model.
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wave height, (b) breaking-water depth.

Meanwhile, the equations of Le Mehaute and Koh (CA_Hb_1) and Xie et al. (CA_hb_1)
present an acceptable performance in predicting the breaking-wave height and water depth,
respectively. However, only one wave-breaking parameter could be obtained from these
equations, which have less practicality and applicability than the proposed model. In
contrast, the equations of Rattanapitikon and Shibayama (CA_Hb_2 and CA_hb_2) show a
lower RMSE value and higher R value, but an equal or larger B absolute value as compared
to those of the proposed model for breaking-wave parameters. In conclusion, regarding
B as the criteria with the highest priority for assessing the equation accuracy, since the
amount of training data is small, and reflecting the practical applicability, the proposed
model is better than the existing breaking-wave formulas.

A new dataset was constructed from the test data while excluding the data used
for the formation of the previous breaking-wave formula, and the performance analysis
was performed using the same method as before for a fair comparison and evaluation
of the proposed and conventional methods. In contrast to the above case, wherein the
entire test dataset was applied, only the statistics-based, nonlinear equations (CA_Hb_2
and CA_hb_2) and the linear regression equations (CA_Hb_3 and CA_hb_3) using the
feed-forward neural network, which can calculate both breaking-wave parameters, were
compared. The amount of newly structured data for comparatively evaluating the methods
was 55 and 34 for the studies of Rattanapitikon and Shibayama [38] and Lee and Cho [42],
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respectively. Their compositions according to the bottom slope and deep-water wave height
and period are presented in Figure 6.
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The performances of a multilayer neural network and the equations of Rattanapitikon
and Shibayama (CA_Hb_2 and CA_hb_2) for 55 test data out of 129 (data used to calculate
the Rattanapitikon and Shibayama equations excluded) are provided in Figure 7. Figure 8
presents the breaking-wave height and water depth predictions obtained using the pro-
posed model and the Rattanapitikon and Shibayama equations by applying the new dataset
specified above. First, the performance for estimating breaking-wave height was compared
in Figure 7a–c. The proposed model demonstrated a higher performance for B compared to
the empirical equation of Rattanapitikon and Shibayama (CA_Hb_2). This was identified
in the majority of the predicted values from the empirical equation that remained below
the perfect agreement line, while the predicted values of the proposed model in Figure 8a
were similar to the perfect agreement line in all areas. The proposed model and empirical
equation had similar results for RMSE and R. The performances for the breaking-water
depth were evaluated using Figure 7d–f. Unlike the breaking-wave height results, the
values of B obtained using the proposed model and the empirical equation (CA_hb_2) were
similar. In contrast, the empirical equation exhibited higher performance in terms of the
RMSE and R. This is presumably because, as shown in Figure 8b, the predicted values of
the empirical equation did not significantly deviate from the perfect agreement line in the
majority of the areas, but the proposed model tended to overestimate when the observation
value was less than or equal to 0.1 m.

Figure 9 presents the statistics of the error metric for the proposed model and the
equations of Lee and Cho (CA_Hb_3 and CA_hb_3), which were calculated using 34
data out of 129 (the data used to calculate the Lee and Cho equations were excluded).
Figure 10 provides a comparison between the estimations for the breaking-wave height and
water depth that were obtained with the proposed model and the empirical equations by
employing the previously introduced new dataset. First, the estimations for the breaking-
wave height were compared in Figure 9a–c. The proposed model exhibited a slightly
higher performance for B than the equation of Lee and Cho (CA_Hb_3). For the remaining
evaluation indicators, the empirical equation demonstrated a higher performance. Next,
the predicted results for the breaking-water depth were compared in Figure 9d–f. Unlike
the results mentioned earlier, the equation of Lee and Cho (CA_hb_3) provided a smaller B
absolute value than the proposed model. However, the RMSE and R values of the proposed
model were superior to those of the former.
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The proposed model did not demonstrate a significantly higher performance than
the previous breaking-wave formulas as the amount of data used for the training was
noticeably small, and the targets with observation values less than or equal to 0.1 m were
overestimated, as pointed out above. That can be confirmed through Figures 8 and 10.

The results in the case where the sigmoid activation function is not applied (denoted
as NonAF) for the modeling of the linear relationship in the same network architecture in
order to compare the performances with and without the consideration of the nonlinearity
between the floor slope, deep-water wave height, and period and the breaking-wave height
and water depth, which correspond to the results of training the linear relationship, are
listed in Table 3. Based on the aggregate statistical values presented in Table 3, the linear
model derived from our proposed network architecture (NonAF) can be observed to exhibit
a slightly higher performance compared to the proposed model. Such a result was obtained
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because the proposed model tended to overestimate all of the targets with observation
values less than or equal to 0.1 m, as shown in Figure 11a,b. In contrast, for observation
values greater than 0.1 m, no significant difference in performance between the models
was observed. However, this does not imply a linear relationship between the input wave
characteristics and wave-breaking parameters. The main reason for this is that most of the
input wave characteristics were disproportionately from a one-dimensional, small-scale
wave-flume laboratory experiment rather than field conditions. In addition, the results
of previous studies have demonstrated that wave breaking is an extremely unpredictable
phenomenon. Most of all, the amount of data used for training and testing was insufficient.
These aspects are expected to improve as data acquisition is updated in the future.

J. Mar. Sci. Eng. 2022, 10, 50 12 of 17 
 

 

Figure 8. Comparison of the proposed model and Rattanapitikon and Shibayama formulas 
(CA_Hb_2 and CA_hb_2) against the relative complement of the dataset used in the Rattanapitikon 
and Shibayama formulas in the test dataset: (a) breaking-wave height, (b) breaking-water depth. 

Figure 9 presents the statistics of the error metric for the proposed model and the 
equations of Lee and Cho (CA_Hb_3 and CA_hb_3), which were calculated using 34 data 
out of 129 (the data used to calculate the Lee and Cho equations were excluded). Figure 
10 provides a comparison between the estimations for the breaking-wave height and wa-
ter depth that were obtained with the proposed model and the empirical equations by 
employing the previously introduced new dataset. First, the estimations for the breaking-
wave height were compared in Figure 9a–c. The proposed model exhibited a slightly 
higher performance for B than the equation of Lee and Cho (CA_Hb_3). For the remaining 
evaluation indicators, the empirical equation demonstrated a higher performance. Next, 
the predicted results for the breaking-water depth were compared in Figure 9d–f. Unlike 
the results mentioned earlier, the equation of Lee and Cho (CA_hb_3) provided a smaller 
B absolute value than the proposed model. However, the RMSE and R values of the pro-
posed model were superior to those of the former. 

The proposed model did not demonstrate a significantly higher performance than 
the previous breaking-wave formulas as the amount of data used for the training was 
noticeably small, and the targets with observation values less than or equal to 0.1 m were 
overestimated, as pointed out above. That can be confirmed through Figures 8 and 10. 

 
Figure 9. Results of the performance analysis of the proposed model and the Lee and Cho formulas 
(CA_Hb_2 and CA_hb_2) against the relative complement of the dataset used in the Lee and Cho 
formulas in the test dataset: (a) B, (b) RMSE, and (c) R for breaking-wave height; (d) B, (e) RMSE, 
and (f) R for breaking-water depth. 

Figure 9. Results of the performance analysis of the proposed model and the Lee and Cho formulas
(CA_Hb_2 and CA_hb_2) against the relative complement of the dataset used in the Lee and Cho
formulas in the test dataset: (a) B, (b) RMSE, and (c) R for breaking-wave height; (d) B, (e) RMSE, and
(f) R for breaking-water depth.

J. Mar. Sci. Eng. 2022, 10, 50 13 of 17 
 

 

 
Figure 10. Comparison of the proposed model and the Lee and Cho formulas (CA_Hb_3 and 
CA_hb_3) against the relative complement of the dataset used in the Lee and Cho formulas in the 
test dataset: (a) breaking-wave height, (b) breaking-water depth. 

The results in the case where the sigmoid activation function is not applied (denoted 
as NonAF) for the modeling of the linear relationship in the same network architecture in 
order to compare the performances with and without the consideration of the nonlinearity 
between the floor slope, deep-water wave height, and period and the breaking-wave 
height and water depth, which correspond to the results of training the linear relationship, 
are listed in Table 3. Based on the aggregate statistical values presented in Table 3, the 
linear model derived from our proposed network architecture (NonAF) can be observed 
to exhibit a slightly higher performance compared to the proposed model. Such a result 
was obtained because the proposed model tended to overestimate all of the targets with 
observation values less than or equal to 0.1 m, as shown in Figure 11a,b. In contrast, for 
observation values greater than 0.1 m, no significant difference in performance between 
the models was observed. However, this does not imply a linear relationship between the 
input wave characteristics and wave-breaking parameters. The main reason for this is that 
most of the input wave characteristics were disproportionately from a one-dimensional, 
small-scale wave-flume laboratory experiment rather than field conditions. In addition, 
the results of previous studies have demonstrated that wave breaking is an extremely un-
predictable phenomenon. Most of all, the amount of data used for training and testing 
was insufficient. These aspects are expected to improve as data acquisition is updated in 
the future. 

Table 3. Performance of the proposed model and the NonAF model. 

Target Relationship B RMSE R 

𝐻  
Proposed Model 0.004 0.019 0.894 

NonAF 0.000 0.017 0.912 

ℎ  
Proposed Model 0.005 0.021 0.921 

NonAF 0.000 0.021 0.916 

Figure 10. Comparison of the proposed model and the Lee and Cho formulas (CA_Hb_3 and
CA_hb_3) against the relative complement of the dataset used in the Lee and Cho formulas in the test
dataset: (a) breaking-wave height, (b) breaking-water depth.



J. Mar. Sci. Eng. 2022, 10, 50 13 of 16

Table 3. Performance of the proposed model and the NonAF model.

Target Relationship B RMSE R

Hb
Proposed Model 0.004 0.019 0.894

NonAF 0.000 0.017 0.912

hb
Proposed Model 0.005 0.021 0.921

NonAF 0.000 0.021 0.916
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hydrodynamic and environmental issues, so numerous theoretical studies and wave-
flume laboratory experiments were conducted in order to acquire the prediction accuracy 
and knowledge of wave breaking. However, the nonlinearity between parameters, such 
as the bottom slope, deep-water wave height, and period, has not been fully incorporated 
into the existing empirical equations. Therefore, this study proposed a multilayer neural 
network utilizing a nonlinear activation function and backpropagation in order to inves-
tigate the effects of nonlinearity. From 31 sources, 630 data were collected to construct the 
proposed network for estimating the breaking-wave index. After excluding the data that 
were inapplicable for analysis, 584 data were used for training and testing the newly pro-
posed model. Approximately 80% of the total data (455) were randomly selected for train-
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Consequently, the performance of the proposed model was better than the existing 
breaking-wave-index formulas as well as being robustly applicable to laboratory experi-
ment conditions, such as wave condition, bottom slope, and experimental scale. Further-
more, the proposed method directly predicted the breaking-wave height and water depth 
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Figure 11. Comparison of the proposed model and the NonAF model against the test data: (a)
breaking-wave height, (b) breaking-water depth.

5. Discussion and Conclusions

The breaking wave is a significant factor for predicting and responding to the coastal
hydrodynamic and environmental issues, so numerous theoretical studies and wave-flume
laboratory experiments were conducted in order to acquire the prediction accuracy and
knowledge of wave breaking. However, the nonlinearity between parameters, such as the
bottom slope, deep-water wave height, and period, has not been fully incorporated into the
existing empirical equations. Therefore, this study proposed a multilayer neural network
utilizing a nonlinear activation function and backpropagation in order to investigate the
effects of nonlinearity. From 31 sources, 630 data were collected to construct the proposed
network for estimating the breaking-wave index. After excluding the data that were
inapplicable for analysis, 584 data were used for training and testing the newly proposed
model. Approximately 80% of the total data (455) were randomly selected for training
the model, and the remaining data (129) were used to evaluate the performance. The
bottom slope, deep-water wave height, and period were plugged in as the input variables
that simultaneously estimated the breaking-wave height and wave-breaking location. The
estimated breaking-wave-index performances were evaluated using error metrics and
compared with the existing wave-breaking formulas.

Consequently, the performance of the proposed model was better than the existing
breaking-wave-index formulas as well as being robustly applicable to laboratory experi-
ment conditions, such as wave condition, bottom slope, and experimental scale. Further-
more, the proposed method directly predicted the breaking-wave height and water depth
with nondimensionalization. The input and target variables of the proposed model were
not nondimensionalized and directly estimated the breaking-wave height and water depth.
So, it can exclude errors from the secondary transformation of raw wave data and improve
the prediction performance. However, it tended to overestimate the breaking-wave height
and water depth in the case of observation values less than or equal to 0.1 m. The proposed
method is expected to show significantly better performance compared to the existing
method if there is sufficient data. Therefore, in future studies, more wave-flume laboratory
experiments will be performed under various conditions in order to obtain the data of
the bottom slope, deep-water wave height and period, and breaking-wave height and
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water depth. In addition, the spatial distribution of continuous water surface elevation
is important for accurately estimating the breaking-wave height and water depth. How-
ever, it is difficult to obtain that information using conventional acoustic sensors. Thus, if
continuous wave measurement in space and time is possible through visual intelligence
of experimental video, more data can be obtained, so more accurate wave-breaker-index
estimation and high applicability can be expected.

Contribution Points

• The accuracy of estimating the breaking-wave height and water depth was improved
by fully incorporating the nonlinear relationship between deep water wave condition,
bottom slope, and wave-breaker index.

• Furthermore, a single model was proposed for simultaneously estimating the breaking-
wave height and water depth by setting the input variable as deep-water wave data.
This gave invaluable usability to the proposed model in this study.

• The performance of the proposed model is robustly applicable to laboratory experi-
ment conditions, such as wave condition, bottom slope, and experimental scale.

• The newly proposed model directly utilizes breaking-wave height and water depth
without nondimensionalization; thus, applicability can be significantly improved and
excludes errors from the secondary transformation of raw wave data.
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