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Abstract: Within the context of the harmful side-effects of chemical pest control applications, the present
study investigated the insecticidal effect of three commercial biopesticides, the fungal Metab (Beauveria
bassiana, Metarhizium anisopliae) and Lecan (Lecanicillium lecanii), as well as raw zeolite, against Tribolium
confusum Jacquelin du Val (Coleoptera: Tenebrionidae), also known as the confused flour beetle. To this
end, we sprayed Tribolium confusum adults with suspensions of the said biopesticides, at three different
dosages (250 ppm, 500 ppm, and 1000 ppm) on Avena sativa L. and Linum usitatissimum L. hull and no
hull seeds. The data were analyzed in terms of three- and four-way ANOVA model, and the overall
survival was determined while using the Kaplan–Meier method. The mortality of Tribolium confusum
adults was recorded and analyzed in correlation with the following parameters: dose, product (seed),
days, and treatment as factors. At the end of the experiment, all of the biopesticides were effectively
pathogenic, but there was variation in their effectiveness in terms of the T. confusum mortality that they
caused, depending on the product (seed). The type of seed can play a role in the pathogenicity or
effectiveness of the biopesticides. Additionally, our results showed that the mortality percentage was
dependent on the dose and treatment of the commercial biopesticides.
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1. Introduction

Oat (Avena sativa L.) and flax (Linum usitatissimum L.) are two of the most important crops in
temperate areas and, economically, they are ranked as two of the eight most important crops in the
world [1,2]. Oat seed use for human consumption has progressively increased, thanks to its dietary
benefits [2]. Moreover, flax seed is used for oil production as well as in food industries due to its
nutritional merits, essential Polyunsaturated fatty acids, and rich supply of soluble dietary fiber [1].
The seed weight of both species is negatively influenced by stored pest infestation.

Insects are major pests of stored products. Stored-product insects are responsible for affecting
the quality, quantity, and commercial value of dried stored agricultural commodities, accounting for
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significant post-harvest losses that range from 9% in developed countries to up to 20% in developing
countries [3]. Coleopterans are among the most common storage pests. Tribolium confusum Jacquelin
du Val (Coleoptera: Tenebrionidae), also known as the confused flour beetle, is a cosmopolitan
polyphagous species whose adults and larvae are responsible for severe economic damage in stored
products, feeding on several dried foods, including flours, chocolate, fruits, and grains. Infestation
results in reduced weight and quality of the product and marketability difficulties. Tribolium spp.
also produces carcinogens, the quinones, which can cause allergies and dermatitis, among other
disorders [4]. Although T. confusum cannot penetrate intact kernels, it might cause significant damage
when the kernel is damp or broken [4]. The control of stored product pests is usually carried out with
the application of chemicals to prevent post-harvest losses. However, chemicals are responsible for
various problems, including environmental pollution, toxicity to humans and animals, as well as the
development of pest resistance [3]. There is a growing need for the exploration of biological control
methods within Integrated Pest Management (IPM), to keep pest populations to safer levels while
safeguarding the environment and human health [3].

Various biological control agents, including fungi, bacteria, as well as inert dust, are being
considered for supplementing or replacing chemical insecticides, which cause toxicity to non-target
organisms. Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), which has been
widely tested, has been proven to be effective against several stored product insect species in
both laboratory and field tests [5–15], thus showing promise for commercial use. Metarhizium
anisopliae (Metschinkoff) Sorokin (Hypocreales: Clavicipitaceae) too, which is a globally distributed
mitosporic haploid fungus, is pathogenic to many important agricultural pests [16,17]. All of the
above entomopathogenic fungi have proven efficacy against many insect pests of stored grains and
grain products. The entomopathogenic fungus Lecanicillium lecanii (Zimmermann) Zare & W. Gams
[previously known as Cephalosporium lecanii] (Hypocreales: Cordycipitaceae) [18,19], is capable of
infecting various insect pests, has a broad geographical distribution, and, therefore, also appears to be
promising for commercial development.

Another potential biological agent is zeolite, which has been relatively less studied for its
control against stored product pests. Zeolite has been investigated for its potential insecticidal effect
against Sitophilus oryzae L. (Coleoptera: Curculionidae) and Tribolium castaneum Herbst (Coleoptera:
Tenebrionidae) adults (also known as the rice weevil and the red flour beetle, respectively) [20]. Zeolite
is a crystalline hydrated aluminosilicate of alkali or alkaline earth metals. Natural zeolite forms
following the reaction of ash layers and volcanic rocks with alkaline groundwater [21,22].

This is the first paper evaluating the potential of this commercial biopesticides for the control of
stored product pests. The objective of the present study was to investigate the insecticidal effect of
three commercial biopesticides against adults of the confused flour beetle, Tribolium confusum Jacquelin
du Val (Coleoptera: Tenebrionidae), on the hull and no hull seeds of A. sativa and L. usitatissimum,
as well as the extent to which the presence of a hull, or lack thereof, in the seeds affects the insecticidal
effect of these products.

2. Materials and Methods

2.1. Insects

The initial batch of T. confusum, counting 1000 individuals, was obtained from infested wheat
in the prefecture of Achaia, Greece. Insects were mass produced in an environmentally controlled
chamber (25 ± 1 oC, 65 ± 5% Relative Humidity, Light:Night 12:12) (PHC Europe B.V /Sanyo/Panasonic
Biomedical MLR-352-PE), where they were maintained in 0.25 L glass jars with 200 g of sterilized
and pesticide-free corn flour. The jars were covered with a sterilized muslin cloth. After two weeks,
the original adults were removed by sieving. Each jar was then observed daily to collect the progeny
that were placed in separate jars, in accordance with their age.
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2.2. Biopesticides

Metab is a commercial biopesticide from the companies Microspore Hellas and Sacom Hellas,
(Athens, Greece), which contains B. bassiana and M. anisopliae at concentrations of 11.5 × 107 conidia/mL
and 6.5 × 107 conidia/mL respectively. Lecan is a commercial biopesticide, also from the same
companies, which contains L. lecanii at 4.22 × 107 conidia/mL. The above commercial biopesticides are
registered for pest biocontrol in Europe, but they have not been tested against T. confusum.

A commercial zeolite formulation was also used in the bioassays (bulk/raw zeolite). The bulk zeolite
that is meant for soil amendment was diluted in an aqueous solution with ddH2O. The above-mentioned
process was completed inside a laminar flow chamber (Equip Vertical Air Laminar Flow Cabinet Clean
Bench, Mechanical Application LTD, Athens, Greece).

2.3. Experimental Protocol

Laboratory-reared mixed sex adult insects (25 ± 1 oC, 65 ± 5% R.H., L:N 12:12) (PHC
Europe/Sanyo/Panasonic Biomedical MLR-352-PE) (< 1 week old) were used for this study. Each batch
of adults was collected from rearing jars and then placed in 9-cm diameter Petri dishes with 10 g of
sterilized product, after they had been starved for 1 h. To test its pathogenicity against T. confusum, each
biopesticide was directly sprayed on the adults and the product in the same petri dish, at three different
doses, 250 ppm, 500 ppm, and 1000 ppm, with a 2.5 mL aqueous suspension, while using a Potter
spray tower (Burkard Manufacturing Co. Ltd., Rickmansworth, Hertfordshire, U.K.) at 1 kgf cm−2.
The products were hull and no hull seeds of A. sativa and L. usitatissimum. One hundred T. confusum
adults were used for each dose (10 adults in 10 replications) and the experiment was replicated twenty
times. The control involved adults and product that had been merely treated with ddH2O. Petri dishes
were observed after 7, 14, 21, and 28 days after the spraying.

2.4. Fungal Identification Method

The Petri dishes were observed at 7, 14, 21, and 28 days for dead individuals that were collected
while using sterilized forceps. The collected dead individuals were immediately submerged in 95%
ethanol for 1 min., washed in sterile distilled water for 5 min., allowed to dry, and then placed on
moistened filter paper. Cadavers were kept at 25 °C for 5–7 days in the dark, and those that showed
signs of fungal infection were noted as infected. These infected individuals were transferred to a
Petri dish containing a piece of moistened cotton to promote the outgrowth and sporulation of the
respective fungi. External mycelial growth on cadavers was identified while using a stereomicroscope
ZEISS Stemi 508 (Carl Zeiss Microscopy GmbH, Jena, Germany) at 2× magnification, and conidia
that were retrieved from the cadavers were recognized using a microscope ZEISS Primo Star (Carl
Zeiss Microscopy GmbH, Jena, Germany) at 400×magnification. The median sporulation time was
determined for fungal biopesticides.

2.5. Statistical Analysis

The corrected percent mortality was calculated while using Abbott’s formula [23] and, prior
to analysis, these values were arcsine transformed to stabilize variance. Data were then analyzed
by means of univariate ANOVA involving a multi-factor analysis, using the general linear model
of the SPSS ver. 23 (IBM Corp. 2015, Armonk, NY, USA) [24]. In the case of significant F values,
means were compared while using the Bonferroni test. Median lethal time of T. confusum adults
and LC50 were calculated by probit analysis with 95% confidence interval (CI). The Cox Regression
method [25] was selected to determine the hazard effect of the factors over T. confusum adults. It is
a survival analysis regression model that describes the relation between the event incidence and a
set of covariates. Comparison of survival distributions was obtained while using the Breslow test
(Generalized Wilcoxon) (SPSS ver. 23). The percentages of sporulating cadavers and the median
sporulation time were compared between isolates using the T- Test of the SPSS. A comparison of
median lethal time was performed using one-way ANOVA (Biopesticide as a factor).



Agriculture 2019, 9, 226 4 of 11

3. Results

3.1. Mortality Effect of Commercial Biopesticides against Adults of T. confusum

The mortality percentage depended on the treatment, dose of the commercial biopesticides, and
the product. The final mortality percentages of T. confusum adults, on day 28 after exposure, were
17 to 30% in the treatments with zeolite, 27 to 50% in the treatments with Metab, and 23 to 77% in
the treatments with Lecan, on hull L. usitatissimum seeds; 97 to 100% in the treatments with zeolite,
13 to 47% in the treatments with Metab, and 17 to 50% in the treatments with Lecan, on no hull
L. usitatissimum seeds (Tables 1 and 2). The final mortality percentages of T. confusum adults were 30
to 53% in the treatments with zeolite, 13 to 40% in the treatments with Metab, and 13 to 50% in the
treatments with Lecan, on hull A. sativa seeds; 70 to 100% in the treatments with zeolite, 33 to 50%
in the treatments with Metab, and 37 to 67% in the treatments with Lecan, on no hull A. sativa seeds
(Tables 3 and 4). For control adults who had only been treated with ddH2O, mortality was 3% on no
hull A. sativa seeds, 2% on hull A. sativa seeds, 4% on hull L. usitatissimum seeds, and 2% on no hull
L. usitatissimum seeds, at the end of the experiment (Tables 1–4).

Table 1. Mean mortality (% ± SD) and median lethal concentration (LC50 with Slope (Sl) and Intercept
(Int) values) of T. confusum adults, exposed for 28 days to no hull L. usitatissimum seeds that had been
treated with Metab, Lecan and Zeolite, at three dose rates. Mean ± SD values with the same letter
within a column are not significantly different (p < 0.05) (F = 1.068, df = 6.96, p < 0.001).

Product (Seeds) Biopesticide Dose
(ppm)

Mortality (% ± SD)
LC50Days

7 14 21 28

no hull
L. usitatissimum

Metab
250 7 ± 6a 13 ± 6a 13 ± 6a 13 ± 6a 3500 ppm

(Sl: 1.89)
(Int: −6.72)

500 7 ± 6a 13 ± 6a 17 ± 11a 17 ± 11a
1000 7 ± 11a 20 ± 10a 37 ± 6b 47 ± 15a

Lecan
250 7 ± 6a 17 ± 6a 17 ± 6a 17 ± 6a 1716 ppm

(Sl: 2.22)
(Int: −7.18)

500 7 ± 11a 20 ± 10a 23 ± 6a 27 ± 6a
1000 13 ± 6a 20 ± 10a 37 ± 6b 50 ± 10a

Zeolite
250 20 ± 0a 57 ± 6b 73 ± 11c 97 ± 0b 793 ppm

(Sl: 0.15)
(Int: −0.04)

500 47 ± 6a 80 ± 10c 93 ± 6c 100 ± 0b
1000 83 ± 12b 93 ± 6c 100 ± 0d 100 ± 0b

Control dd H2O 0 ± 0c 0 ± 0d 2 ± 0f 2 ± 0c

Table 2. Mean mortality (% ± SD) and median lethal concentration (LC50 with Slope (Sl) and Intercept
(Int) values) of T. confusum adults, exposed for 28 days to hull L. usitatissimum seeds that had been
treated with Metab, Lecan and Zeolite, at three dose rates. Mean ± SD values with the same letter
within a column are not significantly different (p < 0.05) (F = 1.699, df = 6.96, p = 0.035).

Product (Seeds) Biopesticide Dose
(ppm)

Mortality (% ± SD)
LC50Days

7 14 21 28

hull
L. usitatissimum

Metab
250 13 ± 15a 27 ± 12a 27 ± 12a 27 ± 12a 4312 ppm

(Sl: 1.04)
(Int: −3.79)

500 23 ± 15a 23 ± 21a 33 ± 21a 40 ± 16a
1000 23 ± 15a 40 ± 10ab 50 ± 17a 50 ± 17a

Lecan
250 13 ± 6 17 ± 6a 20 ± 0a 23 ± 6a 1216 ppm

(Sl: 2.04)
(Int: −6.3)

500 20 ± 17a 37 ± 21ab 50 ± 10a 50 ± 10a
1000 20 ± 10a 57 ± 6ab 77 ± 6b 77 ± 6b

Zeolite
250 3 ± 6a 10 ± 0a 17 ± 6a 17 ± 6a 16545 ppm

(Sl: 0.97)
(Int: −4.11)

500 7 ± 6a 20 ± 10a 23 ± 6a 23 ± 6a
1000 23 ± 20a 27 ± 21a 30 ± 17a 30 ± 17a

Control dd H2O 0 ± 0b 0 ± 0c 0 ± 0c 4 ± 0c
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Table 3. Mean mortality (% ± SD) and median lethal concentration (LC50 with (Sl) and Intercept (Int)
values) of T. confusum adults exposed for 28 days to no hull A. sativa seeds that had been treated with
Metab, Lecan and Zeolite, at three dose rates. Mean ± SD values with the letter within a column are not
significantly different (p < 0.05) (F = 1.586, df = 6.96, p = 0.025).

Product
(Seeds)

Biopesticide Dose
(ppm)

Mortality (% ± SD)
LC50Days

7 14 21 28

no hull
A. sativa

Metab
250 10 ± 0a 20 ± 10a 30 ± 10a 33 ± 15a 7057 ppm

(Sl: 0.31)
(Int: −1.86)

500 17 ± 6b 27 ± 15a 33 ± 6a 37 ± 6a
1000 27 ± 15b 40 ± 0a 40 ± 0a 40 ± 0a

Lecan
250 27 ± 6b 37 ± 6a 37 ± 6a 37 ± 6a 2855 ppm

(Sl: 0.98)
(Int: −3.45)

500 27 ± 6b 40 ± 0a 43 ± 6a 43 ± 6a
1000 30 ± 10b 47 ± 12a 53 ± 12a 67 ± 10b

Zeolite
250 3 ± 6a 57 ± 21a 70 ± 17ab 70 ± 17b 887 ppm

(Sl: 0.59)
(Int: −1.74)

500 27 ± 12b 63 ± 6a 83 ± 12ab 93 ± 6b
1000 47 ± 6b 100 ± 0b 100 ± 0b 100 ± 0b

Control dd H2O 0 ± 0c 1 ± 0c 3 ± 0c 3 ± 0c

Table 4. Mean mortality (% ± SD) and median lethal concentration (LC50 with (Sl) and Intercept (Int)
values) of T. confusum adults exposed for 28 days to hull A. sativa seeds that had been treated with
Metab, Lecan, and Zeolite, at three dose rates. Mean ± SD values with the same letter within a column
are not significantly different (p < 0.05) (F = .939, df = 6.96, p = 0.047).

Product
(Seeds)

Biopesticide Dose
(ppm)

Mortality (% ± SD)
LC50Days

7 14 21 28

hull
A. sativa

Metab
250 3 ± 6a 10 ± 0a 13 ± 6a 13 ± 6a 2766 ppm

(Sl: 1.86)
(Int: −6.42)

500 10 ± 10a 23 ± 12a 27 ± 6a 30 ± 17a
1000 10 ± 0a 27 ± 6a 40 ± 10a 40 ± 10a

Lecan
250 3 ± 6a 7 ± 6a 13 ± 6a 13 ± 6a 1748 ppm

(Sl: 2.23)
(Int: −7.25)

500 7 ± 12a 27 ± 12a 30 ± 6a 40 ± 10a
1000 37 ± 21a 37 ± 21a 40 ± 17a 50 ± 20a

Zeolite
250 13 ± 12a 17 ± 15a 30 ± 10a 30 ± 10a 5475 ppm

(Sl: 0.94)
(Int: −3.53)

500 17 ± 15a 20 ± 17a 27 ± 6a 33 ± 6a
1000 20 ± 10a 27 ± 15a 33 ± 12a 53 ± 15a

Control dd H2O 0 ± 0b 0 ± 0b 1 ± 0b 2 ± 2b

Accordingly, in the case of no hull products, the estimated median lethal concentration (LC50) was
lower for zeolite, as compared with Metab and Lecan (Tables 1–4), which indicated higher virulence of
zeolite against T. confusum. In the case of hull products, the median lethal concentration (LC50) of
Lecan was lower when compared to Metab and zeolite (Tables 1–4), indicating a higher virulence of
Lecan against T. confusum.

Significant differences were recorded between product, biopesticide, doses, and the days of the
experiment as factors, in relation to the dependent variable of mortality (Table 1). The effectiveness
of the biopesticides was significant against T. confusum adults at different doses with different
products (Table 5). The three-way factor model of product×days×dose, product×biopesticide×days
biopesticide×dose×days and the four-way factor model of product×biopesticide×doses×days also
showed a significant effect in terms of the mortality of T. confusum adults (Table 5).
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Table 5. ANOVA parameters for mortality levels of T. confusum adults exposed for 28 days to three
doses of Metab, Lecan, and Zeolite that had been applied to hull and no hull seeds of A. sativa and
L. usitatissimum.

Factor Df F Sig.

Seeds 3 6.643 .000
Biopesticide 3 85.373 .000
Dose 2 15.678 .000
Time 3 49.312 .000
Seed * Biopesticide 9 9.306 .000
Seeds * Dose 6 .366 .900
Seeds * Time 9 2.717 .004
Biopesticide * Dose 6 1.868 .085
Biopesticide * Time 9 8.733 .000
Dose * Time 6 1.651 .132
Seeds * Biopesticide * Dose 18 .450 .976
Seeds * Biopesticide * Time 27 4.759 .000
Seeds * Dose * Time 18 2.607 .000
Biopesticide * Dose * Time 18 4.097 .000
Seeds * Biopesticide * Dose * Time 54 1.956 .000
Error 384
Total 576
Corrected Total 575

3.2. Fungal Growth on Cadavers of T. confusum after the Exposure to the Fugnal Biopesticides

Following treatment with Lecan on no hull A. sativa and L. usitatissimum seeds, we observed a high
rate of mycosis on cadavers (t = 12.144, df = 7, p < 0.001) (Table 6), as well as the shortest sporulation
time; four days on no hull A. sativa seeds and 4.1 days on no hull L. usitatissimum seeds (t = 16.578,
df = 7, p < 0.001) (Table 6).

Table 6. The sporulation percentage and sporulation time on cadavers of T. confusum. Mean ± SD
values with the same letter within a column are not significantly different (p < 0.05).

Product (Seeds) Biopesticide
(Fungal)

Sporulation on
Cadavers (% + SD)

Sporulation Time on
Cadavers (Days + SD)

no hull A. sativa
Metab 44 ± 11a 4.9 ± 0.2a

Lecan 58 ± 8a 4.0 ± 0.5b

hull A. sativa
Metab 50 ± 17a 5.6 ± 1.1ab

Lecan 44 ± 11a 5.9 ± 0.8a

no hull L. usitatissimum
Metab 54 ± 11a 5.3 ± 0.6a

Lecan 62 ± 13a 4.1 ± 0.5b

hull L. usitatissimum
Metab 57 ± 10a 5.7 ± 0.5a

Lecan 47 ± 9a 5.1 ± 1ab

3.3. Median Lethal Time of T. confusum Adults after Exposure to the Biopesticides

The median lethal time of T. confusum adults that were treated with Metab, Lecan, and zeolite
were statistically significant in relation to the median lethal time of control adults (F = 3.730, df = 3,
p < 0.001). The median lethal time of control adults was very low as compared with the median lethal
time of adults that had been sprayed with the biopesticides. More specifically, after the treatment with
zeolite, the median lethal time of T. confusum adults was 32% lower than the median lethal time of
control individuals ((18.78 days (CI: 17.85–19.70 days)); after the treatment with Lecan, the median
lethal time was 15% lower ((22.82 days (CI: 22.00–23.65 days)), and after the treatment with Metab,
it was 17% lower ((23.45 days (CI: 22.66–24.23 days)). The medial lethal time of control individuals
was 27.65 days (CI: 27.42–27.87 days).
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3.4. Factor Effect on Mortality of T. confusum Adults

Treatment and Dose are statistically significant with p values of < 0.001 (Table 7). Treatments and
Doses had a major effect on the lethal time of T. confusum adults. The Exp(B) for Upper limit 95.0%
CI will be associated with increased hazard as recorded for T. confusum adults on no hull A. sativa
and no hull L. usitatissimum seeds. Exp(B) for Product was 0.962, meaning that product as a factor
will be associated with lower hazard, longer survival, and less of an effect on the lethal time of the
Coleopteran. The B coefficient for Dose was positive with Exp(B) > 1. Higher dose values are associated
with greater hazard and therefore shorter survival of T. confusum adults. Treatment also displayed
positive B coefficient with Exp(B) > 1. This showed greater hazard and therefore shorter survival of
adults in comparison to the control treatment (Control Exp(B) = 1). Product, on the other hand, had
a negative coefficient and Exp(B) < 1. This means that some products will be associated with lower
hazard and longer survival.

Table 7. Variables in the Equation from Cox regression (Chi–square: 301.764, df = 3, p < 0.001).

B Sd df Sig. Exp(B) 95.0% CI for Exp(B)

Lower Upper

Treatment .748 .049 1 .000 1.473 1.430 1.521
Dose .308 .057 1 .000 1.360 1.216 1.521
Product
(Seeds)

−.039 .040 1 .333 .962 .889 1.041

4. Discussion

The insecticidal efficacy of biopesticides is interlinked with several factors, including insect’s
behavior and other genetic and physiological information, the extent to which the physiology and
morphology of the host render it sensitive to biological control agents, such as biopesticides [26–29],
as well as the product. Our results showed that the different efficacy of the tested biopesticides
depended on the product, on the dose, on the isolates, and their interaction. Our results indicated that
stored product pests can be controlled with biopesticides, especially zeolite (lower LC50 on no hull
seeds) and Lecan (L. lecanii) (lower LC50 on hull seeds), which produced good results. Several published
studies are available on the efficacy of the biopesticides against stored grain insect pests [16], [30–32],
but there are no references regarding the susceptibility of T. confusum to these biopesticides, to be
compared with the results that were obtained in this study.

Literature presents several hypotheses regarding which factors may influence the efficacy of
biopesticide residues in stored products and many of these hypotheses have not yet been fully tested
due to the numerous variables involved. Some of the main factors that can influence the efficacy of
biopesticides are bio-pathogens and dose [28,30,33], abiotic factors [34–37], as well as the product [10].
In our experiment, the lethal time parameter indicates that the biopesticides are as effective as the other
isolates mentioned in the literature, especially the raw zeolite. The pathogenicity of the zeolite was the
highest recorded among the three biopesticides, on no hull seeds. More specifically, T. confusum adults
on no hull seeds had the lowest medial lethal time after exposure to zeolite, in comparison to the other
tested biopesticides.

Although no data is available regarding the susceptibility of T. confusum to zeolite, Tribolium
spp. individuals are the most tolerant among stored product insects [38–41]. Nevertheless, Vayias
and Athanassiou [42] showed that T. confusum larvae were affected by diatomaceous earth dust and,
therefore, even though adults are resilient, control can be achieved by exposing young larvae. Our
study showed a significant high mortality percentage of T. confusum adults treated with the zeolite
aqueous solution, in all tested doses.

Different strains of entomopathogenic fungi are known to differ in their pathogenicity-related
characteristics [43–45], as confirmed by our results. B. bassiana and M. anisopliae both have a wide
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range of hosts [46]. Batta [14] reported that high mortality of Rhyzopertha dominica F. (Coleoptera:
Bostrichidae) was obtained seven days after treatment with M. anisopliae. Wakefield et al. [47] reported
100% mortality of Oryzaephilus surinamenis L. (Coleoptera: Silvanidae) and Ephestia kuehniella Zeller
(Lepidoptera: Pyralidae) after 10 days of treatment with 108 conidia/mL of B. bassiana. Hluchy and
Samsinakova [48] noted that Boverosil® caused 90% mortality of O. surinamensis at 108 conidia/mL.

Moino et al. [28] and Dal Bello et al. [49] reported that inoculation with Beauveria isolates produced
a greater mortality of stored product pests than inoculation with Metarhizium isolates. Būda and
Pečiulytė [50] found that all four fungal isolates of B. bassiana, L. lecanii, M. anisopliae var. anisopliae,
and Isaria farinose were pathogenic to adults of the Indian meal moth [Plodia interpunctella Hübner
(Lepidoptera: Pyralidae)]. Moreover, the treatment of stored wheat grains with formulated B. bassiana
in milled rice significantly restricted the total grain weight loss that was caused by S. oryzae infestation
and generated high rates of S. oryzae mortality [10]. On the contrary, Dal Bello et al. [51] reported that
the treatment of S. oryzae with M. anisopliae was ineffective. Akbar et al. [13] concluded that B. bassiana,
at a concentration of 109 conidia/mL, had very little virulence against adults of T. castaneum.

In our study, all the fungal biopesticides were found to cause mortality to T. confusum. Lecan
proved to be the most pathogenic to T. confusum on hull seeds, with higher sporulation percentage in
cadavers and, in some cases, the shortest sporulation time. In fact, Lecan was the fastest in causing
mortality and it also produced the highest number of cadavers that showed signs of infection after
death. Moreover, the lowest median lethal time was recorded in the treatment with Lecan.

In all cases, the mortality of T. confusum adults was satisfactory. On the no hull seeds, the mortality
that is caused by the zeolite was the highest among the three tested treatments. The fungal biopesticides
also proved more pathogenic on the no hull than on the hull seeds. The type of seed can play role
in the pathogenicity or effectiveness of the biopesticides. Generally, studies have shown that the
presence of hull in the stored product confers some level of protection against infestation and facilitates
post-harvest management [52,53]. Conversely, varieties with more cracks and splits in the hull provide
a pathway for the entry of neonates [54,55]. This also supports our results that the level of mortality of
stored product pests that is caused by biopesticides might also vary according to the type of seed.

5. Conclusions

For the protection of stored products, biopesticides, fungal or not, can be interchangeably used
or together with other insecticides, to restrict the quantities of chemicals and to possibly lessen or
delay the development of pest resistance. One advantage of pathogen-based control systems is the
disease cycling. Upon death, the cadaver releases many infective agents, thus renewing the inoculum
at the place where the insects had died. In this way, insect pests are exposed to lethal doses of the
entomopathogen from the sporulating cadavers. Disease cycling can increase insecticidal effects in the
long run, while zeolite formulations are effective in the short run. The use of these biopesticides could
more effectively benefit the environment and protect stored grains.
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