Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems
Abstract
:1. Introduction
- To evaluate the variations of the selected soil measurements as a function of the sampling dates that correspond to the fall, winter, spring, and summer, in an arid agro-ecosystem; and
- To evaluate how three different cropping systems affect the variability of these soil measurements.
2. Materials and Methods
2.1. Study Site and Treatments
2.2. Soil Sampling and Laboratory Analyses
2.3. Statistical Analysis
3. Results
3.1. Sampling Season Effects
3.2. Crop Management Effects
4. Discussion
4.1. Sampling Season Effects
4.2. Crop Management Effects
4.3. Implications of This Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil quality: Current concepts and applications. Adv. Agron. 2001, 74, 1–40. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Special Publication; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Steward, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994. [Google Scholar][Green Version]
- Unger, P.W.; Stewart, B.A.; Parr, J.F.; Singh, R.P. Crop residue management and tillage methods for conserving soil and water in semi-arid regions. Soil Tillage Res. 1991, 20, 219–240. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Roy, B.R.; Miah, M.M.; Amin, M.S.; Khandakar, T. Spatial variability of physical soil quality index of an agricultural field. Appl. Environ. Soil Sci. 2014, 2014, 379012. [Google Scholar] [CrossRef]
- Verheye, W.H. Land Use, Land Cover and Soil Sciences—Volume IV; EOLSS Publisher: Abu Dhabi, UAE, 2009. [Google Scholar]
- Moebius, B.N.; van Es, H.M.; Schindelbeck, R.R.; Idowu, O.J.; Clune, D.J.; Thies, J.E. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 2007, 172, 895–912. [Google Scholar] [CrossRef]
- Jiang, P.K.; Xu, Q.F.; Xu, Z.H.; Cao, Z.H. Seasonal changes in soil labile organic carbon pools within a phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. For. Ecol. Manag. 2006, 236, 30–36. [Google Scholar] [CrossRef]
- Ryan, J.; Masri, S.; Singh, M. Seasonal changes in soil organic matter and biomass and labile forms of carbon as influenced by crop rotations. Commun. Soil Sci. Plant Anal. 2009, 40, 188–199. [Google Scholar] [CrossRef]
- Piao, H.C.; Hong, Y.T.; Yuan, Z.Y. Seasonal changes of microbial biomass carbon related to climatic factors in soils from karst areas of southwest China. Biol. Fertil. Soils 2000, 30, 294–297. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 8th ed.; United States of Agriculture: Washington, DC, USA, 1998.
- Blake, G.R. Bulk Density in Methods of Soil Analysis. In Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1965; pp. 374–390. [Google Scholar]
- Idowu, O.J.; Kircher, P. Soil quality of semi-arid conservation reserve program lands in eastern New Mexico. Arid Land Res. Manag. 2016, 30, 153–165. [Google Scholar] [CrossRef]
- Ogden, C.B.; van Es, H.M.; Schindelbeck, R.R. Miniature rain simulator for field measurement of soil infiltration. Soil Sci. Soc. Am. J. 1997, 61, 1041–1043. [Google Scholar] [CrossRef]
- Kłute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; Volume 9, pp. 635–662. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954.
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar][Green Version]
- Culman, S.W.; Snapp, S.S.; Freeman, M.A.; Schipanski, M.E.; Beniston, J.; Lal, R.; Drinkwater, L.E.; Franzluebbers, A.J.; Glover, J.D.; Grandy, A.S.; et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci. Soc. Am. J. 2012, 76, 494–504. [Google Scholar] [CrossRef]
- Ludwick, A.E.; Reuss, J.O. Guide to Fertilizer Recommendations in Colorado; Colorado State University: Fort Collins, CO, USA, 1974. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954.
- Cihacek, L.J. Interpreting Soil Analysis. Cooperative Extension Service Guide a-126; New Mexico State University Publicationl Office: Las Cruces, NM, USA, 1983. [Google Scholar]
- SAS Institute. SAS User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Wilding, L.; Drees, L. Spatial variability: A pedologist’s viewpoint Chapter 1. In Diversity of Soils in the Tropics; American Society Agronomy: Madison, WI, USA, 1987; pp. 1–12. [Google Scholar]
- Zhao, Q.; Zeng, D.; Fan, Z.; Yu, Z.; Hu, Y.; Zhang, J. Forest ecology and management seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types. For. Ecol. Manag. 2009, 258, 1376–1382. [Google Scholar] [CrossRef]
- Eviner, T.V.; Chapin, I.F.S.; Vaughn, C.E. Seasonal variations in plant species effects on soil N and P dynamics. Ecology 2006, 87, 974–986. [Google Scholar] [CrossRef]
- Perrott, K.; Sarathchandra, S.; Waller, J. Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high producing pastoral soil. Aust. J. Soil Res. 1990, 28, 593–608. [Google Scholar] [CrossRef]
- Garcia-montiel, D.C.; Coe, M.T.; Ferreira, J.N.; Oriental, E.; Silva, E.M.; Davidson, E.A. Estimating seasonal changes in volumetric soil water content at landscape scales in a savanna ecosystem using two-dimensional resistivity profiling. Earth Interact. 2008, 12, 1–25. [Google Scholar] [CrossRef]
- Cosentino, D.; Chenu, C.; Le Bissonnais, Y. Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biol. Biochem. 2006, 38, 2053–2062. [Google Scholar] [CrossRef]
- Li, J.; Okin, G.S.; Epstein, H.E. Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments. Biogeosciences 2009, 114. [Google Scholar] [CrossRef][Green Version]
- Gibbens, R.P.; Tromble, J.M.; Hennessy, J.T.; Cardenas, M. Soil movement in mesquite dunelands and former grasslands of southern New Mexico from 1933 to 1980. J. Range Manag. 1983, 36, 145–148. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.A.; Si, B.C. Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. Eur. J. Soil Sci. 2012, 63, 820–830. [Google Scholar] [CrossRef]
- Moraa, J.; Lázarob, R. Seasonal changes in bulk density under semiarid patchy vegetation: The soil beats. Geoderma 2014, 235, 30–38. [Google Scholar] [CrossRef]
- Soane, B.D. The role of organic matter in soil compactibility: A review of some practical aspects. Soil Tillage Res. 1990, 16, 179–201. [Google Scholar] [CrossRef]
- Thomas, G.W.; Haszler, G.R.; Blevins, R.L. The effects of organic matter and tillage on maximum compactability. In Proceedings of the Southern Conservation Tillage Conference for Sustainable Agriculture, Starkville, MS, USA, 26–28 June 1995; pp. 34–36. [Google Scholar]
- Epstein, H.E.; Burke, I.C.; Lauenroth, W.K. Regional patterns of decomposition and primary production rates in the US great plains. Ecology 2002, 83, 320–327. [Google Scholar]
- Rajak, D.; Manjunatha, M.; Rajkumar, G.; Hebbaraa, M.; Minhas, P. Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol. Agric. Water Manag. 2006, 83, 30–36. [Google Scholar] [CrossRef]
- Baath, G.S.; Shukla, M.K.; Steiner, R. Irrigation water salinity influences at various growth stages of capsicum annuum. Agric. Water Manag. 2016, 179, 246–253. [Google Scholar] [CrossRef]
- Flynn, R. Interpreting Soil Tests: Unlock the Secrets of Your Soil; New Mexico State University Cooperative Extension: Las Cruces, NM, USA, 2015; Volume 676, pp. 1–12. [Google Scholar]
- Ulery, A.; Tugel, A. Farming in New Mexico: Soil quality and productivity maintenance. N. M. J. Sci. 1999, 39, 86–108. [Google Scholar]
Experimental Blocks | Crops | Soil Taxonomic Class * | Surface Soil Texture |
---|---|---|---|
Block I | Alfalfa | Thermic Typic Torripsamments | Sandy loam |
Cotton | |||
Pecan | |||
Block II | Alfalfa | Thermic Vertic Torrifluvents | Clay loam |
Cotton | |||
Pecan | |||
Block III | Alfalfa | Thermic Vertic Torrifluvents | Clay loam |
Cotton | |||
Pecan |
Soil Measurements | Crop Management | Sampling Date | Sampling Date x Crop Management |
---|---|---|---|
MWD | ns | * | ns |
WAS | ns | *** | ns |
AGG > 2 mm | ns | ns | ns |
AGG < 0.25 mm | ns | * | ns |
AWC | ns | *** | ns |
BD | ns | *** | ns |
pH | ns | * | ns |
EC | * | ns | ns |
SOM | ns | *** | ns |
NO3-N | * | ** | * |
K | ns | *** | ns |
P | ns | * | ns |
Zn | * | *** | ns |
Mn | ns | ns | ns |
Fe | ns | ns | ns |
Cu | ns | * | ns |
Mg | * | ns | ns |
Ca | * | ns | ns |
Na | * | * | ns |
SAR | * | ** | ns |
POXC | ns | *** | ns |
Soil Measurements | Fall | Winter | Spring | Summer | * LS | ** CV |
---|---|---|---|---|---|---|
EC (dS m−1) | 1.91 | 1.69 | 1.98 | 2.01 | ¶ ns | 7.6% |
pH | 7.15 b † | 7.29 a | 7.29 a | 7.23 ab | 5% | 0.9% |
Mg (mg kg−1) | 31.62 ab | 29.43 b | 38.67 a | 34.05 ab | 1% | 11.9% |
Ca (mg kg−1) | 186.97 | 165.13 | 204.81 | 203.21 | ns | 9.7% |
Na (mg kg−1) | 189.52 b | 184.23 b | 244.95 a | 202.40 b | 1% | 13.4% |
SAR | 3.24 b | 3.30 b | 3.89 a | 3.31 b | 1% | 8.9% |
NO3-N (mg kg−1) | 20.65 a | 8.54 b | 7.52 b | 15.68 a | 1% | 47.4% |
P (mg kg−1) | 10.20 a | 9.69 a | 7.89 b | 9.23 ab | 5% | 10.7% |
K (mg kg−1) | 34.89 a | 30.04 b | 21.66 c | 27.60 b | 1% | 19.3% |
Fe (mg kg−1) | 3.78 | 4.28 | 4.34 | 3.60 | ns | 9.2% |
Zn (mg kg−1) | 7.63 a | 2.62 b | 1.09 b | 1.01 b | 5% | 101% |
Mn (mg kg−1) | 3.57 | 2.79 | 2.16 | 3.19 | ns | 20.6% |
Cu (mg kg−1) | 1.38 a | 0.95 b | 1.27 a | 1.19 ab | 5% | 15.2% |
Soil Measurements | Alfalfa | Cotton | Pecan |
---|---|---|---|
MWD (mm) | 1.05 | 1.04 | 1.02 |
WAS (%) | 56.66 | 49.45 | 46.35 |
AGG >2 mm (%) | 32.09 | 32.12 | 32.71 |
AGG <0.25 mm (%) | 23.01 | 28.71 | 25.18 |
AWC (m3 m−3) | 0.26 | 0.23 | 0.23 |
BD (Mg m−3) | 1.39 | 1.30 | 1.47 |
pH | 7.10 | 7.25 | 7.33 |
EC (dS m−1) | 1.21b | 2.82 a | 1.68 a |
SOM (g kg−1) | 12.1 | 9.1 | 8.5 |
NO3-N (mg kg−1) | 10.23 ab | 23.45 a | 5.62 b |
K (mg kg−1) | 23.26 | 30.82 | 31.56 |
P (mg kg−1) | 8.88 | 8.78 | 10.11 |
Zn (mg kg−1) | 1.84 b | 5.62 a | 4.30 a |
Mn (mg kg−1) | 3.40 | 3.15 | 2.24 |
Fe (mg kg−1) | 4.35 | 3.58 | 4.07 |
Cu (mg kg−1) | 1.29 | 1.19 | 1.11 |
Mg (mg kg−1) | 23.10 b | 49.98 a | 27.72 b |
Ca (mg kg−1) | 128.86 b | 296.59 a | 144.69 b |
Na (mg kg−1) | 112.93 b | 309.35 a | 193.66 ab |
SAR | 2.28 b | 4.25 a | 3.78 a |
POXC (mg kg−1) | 417.82 | 411.37 | 410.18 |
Crop Management | Nitrate Nitrogen (mg kg−1) | |||
---|---|---|---|---|
Winter | Spring | Summer | Fall | |
Alfalfa | 9 Bb | 8 Ba | 13 Ab | 11 Bb |
Cotton | 14 Ca | 12 Ca | 25 Ba | 42 Aa |
Pecan | 2 Bc | 3 Bb | 8 Ac | 9 Ab |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, M.; Idowu, O.J.; Ulery, A.L.; VanLeeuwen, D.; Guldan, S.J. Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems. Agriculture 2018, 8, 124. https://doi.org/10.3390/agriculture8080124
Omer M, Idowu OJ, Ulery AL, VanLeeuwen D, Guldan SJ. Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems. Agriculture. 2018; 8(8):124. https://doi.org/10.3390/agriculture8080124
Chicago/Turabian StyleOmer, Mohammed, Omololu J. Idowu, April L. Ulery, Dawn VanLeeuwen, and Steven J. Guldan. 2018. "Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems" Agriculture 8, no. 8: 124. https://doi.org/10.3390/agriculture8080124