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Abstract: It is known that plant-based ethnomedicine represented the foundation of 

modern pharmacology and that many pharmaceuticals are derived from compounds 

occurring in plant extracts. This track still stimulates a worldwide investigational activity 

aimed at identifying novel bioactive products of plant origin. However, the discovery that 

endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons 

for their availability and production on a large scale by the pharmaceutical industry. In fact, 

following the path traced by the blockbuster drug taxol, an increasing number of valuable 

compounds originally characterized as secondary metabolites of plant species belonging to 

the Spermatophyta have been reported as fermentation products of endophytic fungal 

strains. Aspects concerning sources and bioactive properties of these compounds are 

reviewed in this paper. 
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1. Introduction 

Endophytic fungi are polyphyletic microorganisms that inhabit plant tissues without inciting disease 

symptoms, and eventually establish mutualistic associations with their host plants. Until recently these 

microbial entities have been generally overlooked as a component of ecosystems, the reason why 

lately they have been regarded as a trove of unexplored biodiversity. Investigations on the biosynthetic 

potential of endophytes have gained impetus owing to the ongoing discovery of strains capable to 

synthesize plant compounds, a property which may reflect an adaptative functional role in biocenosis. 

The intrinsic nature of the interactions among and between endophytes and host plants, and pests, 

which are mediated by such compounds, is an area open to future discoveries. The elucidation of such 

connections can not only enhance the understanding of evolution of complex defense mechanisms in 

plants and their associated organisms, but also help to exploit the latter for a sustained production of  

a few valuable compounds to be used in biotechnologies [1]. 

Secondary metabolites serve in multiple physiologic functions, many of which are common to both 

plants and microorganisms, and in a way it is intuitive that the same or similar compounds can be 

produced by ecologically associated entities. Thus, the aim to exploit botanical diversity for the 

discovery of novel drugs has led to the finding of microbial strains able to synthesize bioactive 

compounds previously considered as typical plant products. In the last 25 years, the general evidence 

that all plants are inhabited by endophytic microorganisms, together with an ongoing finding that the 

latter are also capable of producing plant metabolites, has depicted a research context which is more 

inclined to consider these compounds as a major factor influencing the establishment and evolution of 

mutualistic interrelations. Moreover, a refined tool enabling endophytes to regulate the metabolism of 

host plants in their delicately balanced association [2]. 

This paper offers an overview on the extremely varied assortment of organic molecules occurring as 

secondary metabolites both in plants and endophytic fungi. Our attention is particularly focused on 

products occurring in single or a restricted range of plant species, with a few exceptions. Therefore, 

compounds representing metabolic products of a wide array of organisms, such as carbohydrates, 

aliphatic compounds, aminoacids, peptides, nucleobases, phenolic and benzoic acids, tannins and 

pseudotannins, sterols, and carotenoids, are not treated in this review. 

2. Phytohormones 

Plant hormones are undoubtedly among the main secondary metabolites that can influence plant 

fitness and enhance development when exogenously administered. Many fungal species have been 

reported to be able to produce compounds such as indole-3-acetic acid (IAA) and gibberellins (GAs), 

particularly species inhabiting rhizosphere which are presumed to exert a consistent effect on plant 

development [3]. Likewise, the observation of such an aptitude by endophytic fungal strains, which in 

most instances establishes an even closer association with plant tissues, is indicative of a possible 

functional meaning of mutualistic relationships in certain associations, and provides ground for a more 

direct impact of an exogenous provision of phytohormones. Unlike what is generally thought for other 

products synthesized by both plants and endophytes, experimental findings have shown that 

biosynthetic pathways for these compounds may have evolved independently in plants and fungi [4,5]. 
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The interaction of crop plants with endophytic fungi producing gibberellins could be exploited as a 

strategy to overcome the adverse effects of abiotic stresses, considering the increased plant growth and 

biomass production that have been documented even in extreme environmental conditions [6]. On the 

other hand, it must be considered that hormones are characterized by a dose-related effect, the reason 

why exceeding supplies may result into abnormal growth. In fact, gibberellins were discovered as 

products of the plant pathogenic fungus Fusarium (=Gibberella) fujikuroi inducing disease symptoms 

(elongation of internodes, leaf yellowing, etc.) in rice plants [7]. Until recently, a number of fungal 

plant pathogens have proved to be able to produce these phytohormones as a means for altering 

physiology of their hosts, but these cases are not a subject for this review. We also do not consider the 

complex case of the endophytic fungi inhabiting a series of fodder plants, which cause noxious effects 

to livestock because of their attitude to permeate host tissues with mycotoxins, and are also able to 

produce phytohormones [8–10]. A few excellent reviews on this bordering subject are available in the 

literature [11–13]. 

Production of IAA by fungi establishing a mutualistic relationship with plants was first evidenced 

by a few mycorrhizal species recovered from pine and orchid roots [14–16]. Afterwards it has been 

reported by strains of Colletotrichum sp. from Artemisia annua [17], Talaromyces verruculosus 

(=Penicillium verruculosum) from roots of Potentilla fulgens [18], and Penicillium glabrum from 

pomegranate (Punica granatum) fruits [19]. An isolate of the yeast Williopsis saturnus endophytic in 

maize roots was found to produce IAA and indole-3-pyruvic acid [20]. Finally, IAA is also produced 

by Piriformospora indica [21], the quite famous Basidiomycetes species first described as a mycorrhizal 

agent of shrubs growing in the Rajahstan desert [22], but later found to be widespread and able to 

colonize roots of many host plants, disclosing a potential for applications in crop production [23]. 

However, all these reports should be carefully verified considering the growth medium used for 

culturing the producing strains; in fact, it has been observed that the addition of tryptophan incited 

auxin synthesis by a couple of yeast strains of Rhodotorula graminis and R. mucilaginosa recovered 

from poplar stems [24]. 

Other endophytic fungi have been found to produce both IAA and GAs, such as two strains of 

Fusarium sp. from Euphorbia pekinensis [25]. Moreover, a strain of Galactomyces geotrichum 

isolated from the aquatic plant Trapa japonica produced IAA and biologically active GAs (GA1, GA4, 

and GA7) [26], while two strains from cucumber roots (Phoma glomerata and Penicillium sp.) were 

found to produce gibberellic acid (GA3) along with GA1, GA4, GA7, and IAA in Czapek-Dox broth. 

This medium is based on sucrose as the only organic compound, which demonstrates an intrinsic 

ability by these strains to synthesize phytohormones. When experimentally inoculated in cucumber 

plants under drought stress, the plant biomass and related growth parameters significantly increased, 

together with a higher assimilation of essential nutrients (K, Ca and Mg), while effects of sodium 

toxicity were reduced. Moreover, a modulation of stress was also ensured through alteration in 

jasmonic acid level, down-regulation of abscissic acid, and increased salicylic acid content [27]. 

Similar effects resulted in the evaluation of another cucumber endophytic strain (Paecilomyces 

formosus) by the same research group [28]. 

Production of GAs only has been documented in a higher number of endophytic fungi. A strain of 

Fusarium proliferatum from roots of Physalis alkekengi var. francheti displayed a plant growth-promoting 

activity twice stronger than a wild-type of F. fujikuroi, due to the production of the physiologically 
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active GA1, GA3, GA4, and GA7, along with GA9, GA20 and GA24 [29]. Another strain of  

F. proliferatum from orchid roots was found to produce GA4 and GA7 as the major forms, and smaller 

amounts of GA1, GA3, GA9, GA13, GA14, GA16, GA24, GA25, and GA36, together with additional side 

products in the GA-biosynthetic pathway [30]. A strain of Scolecobasidium tshawytschae from 

soybean produced GA3 together with both active (GA1, GA4, and GA7) and inactive (GA15 and GA24) 

analogs [31]. Root isolates of Penicillium citrinum from the dune plant Ixeris repens [32], and 

Arthrinium phaeospermum from a sedge species (Carex kobomugi) [33] both produced GA1, GA3, 

GA4, and GA7, along with inactive forms (GA5, GA9, GA12, GA15, GA19, GA20, and GA24). Strains of 

Aspergillus fumigatus, Cladosporium sphaerospermum and Talaromyces funiculosus (=Penicillium 

funiculosum) from soybean were found to produce bioactive GAs (respectively G4, G9, and G12 the 

former; GA3, GA4, and GA7 the intermediate; GA1, GA4, GA8, and GA9 the latter), besides the inactive 

GA5, GA15, GA19, and GA24 [34–37]. Another strain of Penicillium sp. from crown daisy 

(Chrysanthemum coronarium) was found to promote shoot elongation due to the production of all 

bioactive GAs (GA1, GA3, GA4, GA7), along with a few inactive forms (GA9, GA12, GA15, GA19, 

GA20) [38]. Finally, GA3 has been reported as a fermentation product of an unidentified endophytic 

strain from Curcuma wenyujin [39]. 

Cytokinins are a group of N6-substituted adenine derivatives influencing cell division, vascular 

development, apical dominance, stress tolerance and leaf senescence. Besides several mycorrhizal 

fungi reported to contribute to cytokinine levels of roots [40,41], production of these phytohormones 

has been well documented in the above-mentioned P. indica. In fact, relatively high levels of 

isopentenyladenine and cis-zeatins can be found in liquid cultures of this fungus, and accordingly the 

cytokinine levels are remarkably higher in roots of inoculated plants. Conversely, auxin levels are not 

influenced despite the ability by P. indica to produce this phytohormone as well, in connexion with the 

hypotesized conversion of some IAA into inactive compounds [42]. 

Finally, it must be mentioned that production of IAA, GA, abscisic acid and jasmonic acid in 

several combinations was observed by a pool of unidentified endophytic fungi recovered from five 

plants used in Indian ethnomedicine, Camellia caduca, Osbeckia chinensis, Osbeckia stellata, 

Potentilla fulgens, and Schima khasiana [43]. 

3. Compounds from Essential Oils 

Essential oils of plants have a very varied chemical composition, including over 60 different kinds 

of volatile molecules which can be extracted by distillation and belong to two main groupings, 

terpenes and aromatic products. Besides contributing to the scent of plants, many of these compounds 

present interesting bioactive properties, ranging from antibiotic to antitumor effects [44]. The ability to 

produce such volatile antibiotics has stimulated to investigate several endophytic strains for their 

possible use in the so-called mycofumigation of foodstuffs [45–47]. Additional prospects for 

biotechnological applications reside in their use as flavoring agents in the food industry [48], and even 

as biofuels [49]. Not surprisingly, many compounds known from essential oils have been also found as 

secondary metabolites of endophytic fungi (Table 1), and novel molecules are more and more 

characterized as fermentation products of these strains, indicating their effective role in determining 

the mixture composition. 
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Table 1. Components * of essential oils of plants extracted from fungal endophytic strains. 

Compounds Producing Species Host Plants Reference

Phenyl propanes 

Asarone Muscodor tigerii Cinnamomum camphora [50] 

Eugenol 
Annulohypoxylon stygium not specified [51] 

Alternaria sp. Rosa damascaena [52] 

Monoterpenes 

Camphor Nodulisporium sp. Lagerstroemia loudoni [47] 

Carene 
Meliniomyces variabilis Pinus sylvestris [53] 

Nodulisporium sp. L. loudoni [47] 

Cineole (eucalyptol) Nodulisporium sp. 

Persea indica [54] 

L. loudoni  [47] 

Cassia fistula [55] 

Limonene 

unknown Sordariomycetes Mentha piperita [56] 

Wickerhamomyces 

anomalus 
Lactuca sativa [57] 

Nodulisporium sp. L. loudoni [47] 

Nigrograna mackinnonii Guazuma ulmifolia [58] 

Myrcene 
W. anomalus L. sativa [57] 

Nodulisporium sp. L. loudoni [47] 

Ocimene 
W. anomalus L. sativa [57] 

Nodulisporium sp. L. loudoni [47] 

Phellandrene 

Muscodor fengyangensis 
Actinidia chinensis, 

Pseudotaxus chienii 
[59] 

Muscodor yucatanensis Bursera simaruba [60] 

unidentified strains “weed grasses” [61] 

Muscodor sp. O. granulata [62] 

Pinane Nodulisporium sp. L. loudoni [47] 

Pinene 

unknown Sordariomycetes M. piperita [56] 

M. variabilis,  

Phialocephala fortinii 
P. sylvestris [53] 

W. anomalus L. sativa [57] 

N. mackinnonii G. ulmifolia [58] 

Sabinanes 

(thujanes) 

Dihydroxysabinane Phomopsis sp. Camptotheca acuminata [63] 

Sabinene (thujene) 

Phomopsis sp. Odontoglossum sp. [64] 

W. anomalus L. sativa [57] 

Nodulisporium sp. L. loudoni [47] 

Terpinene, terpineol 
Nodulisporium sp. L. loudoni [47] 

N. mackinnonii G. ulmifolia [58] 

Diterpenes 

Abietadiene Xylaria sp. Cupressus lusitanica [65] 

Totarol Xylaria sp. C. lusitanica [65] 
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Table 1. Cont. 

Compounds Producing Species Host Plants Reference

Sesquiterpenes 

Acoradiene Phomopsis sp. Odontoglossum sp. [64] 

Aristolene M. yucatanensis B. simaruba [60] 

Aromadendrene, isoledene 

M. yucatanensis B. simaruba [60] 

Phoma sp. Larrea tridentata [66] 

Xylaria sp. C. lusitanica [65] 

Bisabolene 
M. fengyangensis A. chinensis, P. chienii [59] 

Xylaria sp. C. lusitanica [65] 

Bisabolol Muscodor kashayum Aegle marmelos [67] 

Cadinanes 

Cadalenes, calamenenes Phomopsis cassiae Cassia spectabilis [68] 

Bombamalone D, 

calamenenes, dysodensiol 

D, indicumolide C 

Phomopsis sp. Pleioblastus amarus [69] 

Cadinene, amorphene, 

muurolene 

Phoma sp. L. tridentata [66] 

Xylaria sp. C. lusitanica [65] 

Cubenol Xylaria sp. C. lusitanica [65] 

Carotol M. tigerii C. camphora [50] 

Caryophyllane Xylaria sp. C. lusitanica [65] 

Caryophyllene (humulene) 

Muscodor albus 

Cinnamomum 

zeylanicum 
[45] 

G. ulmifolia [70] 

M. fengyangensis A. chinensis, P. chienii [59] 

M. yucatanensis B. simaruba [60] 

M. variabilis, P. fortinii P. sylvestris [53] 

Phoma sp. L. tridentata [66] 

Isocaryophyllene Muscodor sutura Prestonia trifidi [71] 

Presilphiperfolanes Xylaria sp. Piper aduncum [72] 

Cedranes 
Cedrene, cedrol Xylaria sp. C. lusitanica [65] 

Diepicedrene-1-oxide M. fengyangensis A. chinensis, P. chienii [59] 

Chamigrene 
Phoma sp. L. tridentata [66] 

M. sutura P. trifidi [71] 

Cuparene unknown Sordariomycetes M. piperita [56] 

Drimanes 
Albicanol Perenniporia tephropora 

Taxus chinensis var. 

mairei 
[73] 

Hydroxyconfertifolin Phomopsis sp. Rhizophora stylosa [74] 

β-Elemene 

Nodulisporium sp. Cinnamomum loureirii [46] 

M. yucatanensis B. simaruba [60] 

Penicillium baarnense, 

Penicillium frequentans 
Curcuma zedoaria [75] 
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Table 1. Cont. 

Compounds Producing Species Host Plants Reference

Eremophilanes 

Eremophilanolides Xylaria sp. Licuala spinosa [76] 

Isopetasols unidentified strain Picea rubens [77] 

Mairetolide A Xylaria sp. C. lusitanica [78] 

Mairetolide F Xylaria sp. L. spinosa [76] 

Valencene 
M. albus 

C. zeylanicum [45] 

unidentified vine plant [79] 

Oryza granulata [62] 

Xylaria sp. C. lusitanica [78] 

Eudesmanes, eudesmenes (selinenes) 

Eutypella sp. Etlingera littoralis [80] 

Nodulisporium sp. C. loureirii [46] 

Phoma sp. L. tridentata [66] 

Xylaria sp. C. lusitanica [65] 

Arundinols, arundinones Microsphaeropsis arundinis Ulmus macrocarpa [81] 

Capitulatin B,  

hydroxycapitulatin B 
Nigrospora oryzae Aquilaria sinensis [82] 

Farnesene Xylaria sp. C. lusitanica [65] 

Guaianes: guaiene, guaiol 

(champacol), aciphyllene, bulnesene, 

gurjunene 

M. albus 

unidentified vine plant [79] 

C. zeylanicum [45] 

Myristica fragrans  [83] 

G. ulmifolia [70] 

Phoma sp. L. tridentata [66] 

Xylaria sp. C. lusitanica [65] 

Himachalene Phoma sp. L. tridentata [66] 

Irones Rhizopus oryzae Iris germanica [84] 

Longicyclene M. variabilis, P. fortinii P. sylvestris [53] 

Longifolenes 

M. yucatanensis B. simaruba [60] 

P. fortinii P. sylvestris [53] 

Xylaria sp. C. lusitanica [65] 

Longipinene Phoma sp. L. tridentata [66] 

Occidentalol Xylaria sp. C. lusitanica [65] 

Thujopsanol, thujopsene 
Xylaria sp. C. lusitanica [65] 

M. sutura P. trifidi [71] 

Ylangene Phoma sp. L. tridentata [66] 

Zingiberene Xylaria sp. C. lusitanica [65] 

* Not including fatty acids and their methyl esters. 

Within the several groups of sesquiterpenes occurring in essential oils, the eremophilanes are 

particularly widespread among endophytic fungi, and many novel molecules of this series have been first 

discovered as their fermentation products (Table 2). It is quite interesting to note that eremophilanes 

include compounds with phytotoxic effects, such as phaseolinone and phomenone which are also 

known from an endophytic strain of Xylaria sp. from the matico tree (Piper aduncum) [72]. 
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Table 2. Eremophilane compounds first characterized from endophytic fungal strains. 

Compounds Producing Species Host Plants Reference 

Botryosphaeridione Phoma sp. Melia azedarach [85] 

Cupressolides A-B Xylaria sp. Cupressus lusitanica [78] 

Dihydroberkleasmin A Pestalotiopsis photiniae Podocarpus macrophyllus [86] 

Eremoxylarins A-B xylariaceous fungus not specified [87] 

MBJ-0011-13 Apiognomonia sp. not specified [88] 

Periconianone B Periconia sp. Annona muricata [89] 

Pestalotiopsin A-B P. photiniae P. macrophyllus [90] 

Phomadecalins Microdiplodia sp. Pinus sp. [91] 

unnamed compounds 
Xylaria sp. Licuala spinosa [76] 

Xylaria sp. mangrove plant [92] 

Xylarenones 
Xylaria sp. Torreya jackii [93] 

Camarops sp Alibertia macrophylla [94,95] 

Data introduced in the above tables are eventually incomplete, due to the ongoing addition of novel 

findings concerning the direct and indirect influence of endophytic fungi on the composition of 

essential oils, and ensuing effects on their biological activities. The resulting complex framework and 

the intriguing applicative perspectives are possibly indicative of the opportunity of a dedicated review 

for such a hot research topic. A recent one that can be cited here [96] is limited to sesquiterpenes, and 

not specifically addressed to fungal endophytes. 

Another interesting finding on terpenoids from essential oils concerns a few such compounds, 

namely aristolene, guaiene and thujopsene, produced by strains of Daldinia spp. establishing symbiotic 

relationships with Xiphydria woodwasps on a number of tree species [97]. In a strict sense, these fungi 

cannot be considered endophytic since they are inoculated by the wasps and colonize the galleries 

excavated by their larvae. However, their belonging to the Xylariaceae, a group including Xylaria, 

Hypoxylon, Muscodor and Nodulisporium which are well-known for their endophytic habit, stimulates 

the appraisal of the ecological role held by these compounds in the identification of the host plant and 

the establishment of this particular symbiotic relationship, and to consider their possible relevance in 

other plant-insect interactions. 

Finally, the effect of endophytic fungal strains in modifying the pattern of compounds in the 

essential oils of plants may have intriguing interactions with crop resistance/susceptibility toward 

pests. As an example, it has been observed that tomato plants harboring an unspecialized endophyte 

(Acremonium strictum), which remarkably influences composition of volatile compounds released by 

the host, are significantly preferred by adult whiteflies (Trialeurodes vaporariorum) [98], and for 

oviposition by the cotton bollworm (Helicoverpa armigera) [99]. Therefore, any factors influencing 

composition of essential oils may be considered in view of enhancing plant protection. 

4. Other Terpenoids 

Sesquiterpene lactones present some affinity with a few analog components of essential oils,  

such as guaianes and eudesmanes. Within this category, loliolide (Figure 1), first characterized from 

Lolium perenne [100], has been reported from a strain of Annulohypoxylon ilanense from the wood of 
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a plant of Cinnamomum sp. [101]. Xanthatin (Figure 1), first isolated from cockleburs (Xanthium spp.) and 

characterized for its antimicrobial, anti-inflammatory, pro-apoptotic and trypanocidal properties [102,103], 

has been recovered from cultures of a strain of Paecilomyces sp. from Panax ginseng [104]. Moreover, 

dihydrocumambrin A (Figure 1), known as a secondary metabolite of Glebionis coronaria 

(=Chrysanthemum coronarium), has been recently extracted as a fermentation product of a strain of 

Lasiodiplodia (=Botryodiplodia) theobromae endophytic in leaves of Dracaena draco [105]. 
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Figure 1. Structures of some terpenoids produced by endophytic fungi. 

Ginkgolides are diterpenoid lactones known as secondary metabolites of G. biloba which are 

considered, particularly ginkgolide B, as prospect drugs based on documented antagonistic effects 

against the platelet-activating factor involved in a number of inflammatory disorders. Ginkgolides A-C 

and the related compound bilobalide (Figure 1) have been found as fermentation products of an endophytic 

strain of Fusarium oxysporum recovered from root bark of this living fossil tree [106]. 

More terpenoid compounds can be found in oleoresins of certain plants. Agathic acid is a diterpenoid 

representing the major component of the oleoresin of Agathis microstachya, an endangered species 

belonging to the Araucariaceae endemic to Queensland (Australia) [107], and more recently found in 

oleoresin of copaiba (Copaifera spp.) in the Amazon region [108]. It has been extracted from cultures 

of a strain of Botryosphaeria sp. endophytic in leaves of Maytenus hookeri, together with the related 

isocupressic acid which is commonly found in the needles of several coniferous species [109]. These 

compounds have been reported for an abortive effect on cows [110], while agathic acid is also known 

for some extent of trypanocidal activity [108]. 

Limonoids are tetranortriterpenes reported from members of Rutaceae and Meliaceae, among which 

the azadirachtins are best known and exploited for their insecticidal properties [111]. Azadirachtins A 

and B (Figure 2) have been recently extracted from cultures of a strain of Penicillium (Eupenicillium) 

parvum endophytic in the neem plant (Azadirachta indica) [112]. However, the importance of 

endophytes in the biosynthesis of these plant products may be more substantial, considering that  

an endophytic Penicillium strain from the chinaberry tree (Melia azedarach), which is another source 

of azadirachtin, has been reported to produce the austins [113], a series of meroterpenoids which may 

share the same biosynthetic pathway. 

The structurally-related toosendanin (Figure 2) extracted from fruits and bark of Melia toosendan, 

possibly a synonym of M. azedarach which is used as an anti-helmintic remedy in the Chinese 

traditional medicine, has been also characterized with reference to its insecticidal effects deriving from 

antifeedant and growth regulatory properties [111]. Three unidentified strains endophytic in  



Agriculture 2015, 5 927 

 

 

M. azedarach have been found to produce this compound [114], whose possible exploitation as  

an antitumor drug has been recently envisaged [115]. 
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Figure 2. Structures of azadirachtins and toosendanin. 

5. Coumarins 

Additional metabolites occasionally found in essential oils, such as bergapten, can be ascribed to  

the coumarins, a heterogeneous class of natural products whose molecular structure is based on  

a benzopyran-2-one (Figure 3). These compounds are widespread in edible plants, therefore commonly 

assumed through dietary exposure, and considered interesting prospects for a pharmaceutical 

exploitation due to their antioxidant, anti-inflammatory, anticoagulant, antimicrobial, anticancer, 

antihypertensive, antihyperglycemic, and neuroprotective properties [116,117]. A number of these 

compounds primarily known from plants have recently started being reported as metabolites of 

endophytic fungi, such as coumarin found in extracts of strains of Alternaria spp., Penicillium spp. and 

Aspergillus flavus from the annual herb Crotalaria pallida [118]. 

Scopoletin (6-methoxy-7-hydroxycoumarin) is reported from several plants, where it is possibly 

involved in protection against pathogens due to its antimicrobial properties [119]. This compound has 

been isolated from a mangrove endophytic strain of Penicillium sp., together with bergapten and 

umbelliferone (7-hydroxycoumarin) [120]. Scopoletin, umbelliferone and 7-O-prenylumbelliferone, 

along with additional coumarins known from several plant species such as angelicin, brosiparin, 

columbianetin, jatamansinol, osthenol and seselin, have been recently extracted from cultures of an 

endophytic strain of A. ilanense [121]. Moreover, marmesin has been reported from a mangrovial 

endophytic strain of Fusarium sp. [122], while bergapten and meranzin have been extracted as 

fermentation products of a previously-mentioned isolate of L. theobromae from D. draco [105]. 

Within dihydroisocoumarins, mellein derives its name by a strain of Aspergillus melleus from which 

it was first characterized [123]. It is quite a common fungal metabolite, together with a number  

of derivatives [124]. However, several products in this series have been also directly reported  

from plants [125,126]. Examples of compounds produced by both plants and endophytic strains 

include 7-hydroxymellein extracted from cultures of a strain of Penicillium sp. associated to  

Alibertia macrophylla [127] and a strain of Xylaria cubensis derived from leaves of Litsea  

akoensis [128], and mellein itself from a strain of Nigrospora sp. from the benzoil tree (Moringa 

oleifera) [129]. Another xylariaceous fungus from fruits of the wingleaf soapberry (Sapindus 

saponaria) [130], and a strain of Annulohypoxylon squamulosum from Cinnamomum sp. [131] 
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produced both compounds. Finally, a few mellein derivatives have been found together with 

isofraxidin (7-hydroxy-6,8-dimethoxycoumarin) as fermentation products of an endophytic strain of 

Annulohypoxylon bovei var. microspora from bark of Cinnamomum sp. [132]. 
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Figure 3. Structures of coumarins produced by endophytic fungi. 

6. Flavonoids 

Commonly associated to coumarins for their fundamental antioxidant properties, flavonoids also 

display consistent anti-inflammatory, antibacterial, antiviral, antitumor, and vasodilatatory effects [133]. 

These polyphenolic compounds are widespread in plants where they represent a biochemical 

mechanism in pre- and post-infection resistance against pathogens [134]. Their structure consists of 

two benzene rings at either side of a 3-carbon ring, and multiple substitutions in this fundamental 

frame originate several classes of derivatives, such as flavones, isoflavones, flavonols, flavanones, 

catechins, and anthocyanins (Figure 4). Such a variation, and the concomitant occurrence of several 

compounds belonging to this class is the reason why many reports dealing with their production by 

endophytic fungal strains consider the total flavonoid content rather than every single product [135,136]. 

When a more detailed analysis is carried out, a complex pattern of metabolites in this series results; 

this is the case of a strain of A. ilanense producing kaempferol, quercetin, genkwanin, (+/−)-catechin, 

(−)-4′-hydroxy-5,7,3′-trimethoxyflavan-3-ol, tectochrysin (5-hydroxy-7-methoxyflavone), dimethylgalangin 

(3,7-dimethoxy-5-hydroxyflavone), and 5-hydroxy-3,6,7-trimethoxyflavone [121], and a strain of 

Fusarium sp. producing tectorigenin (6-methoxy-5,7,4′-trihydroxyisoflavone) and a few more 

isoflavones [122]. 
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Figure 4. Structures of flavonoids produced by endophytic fungi. 

Kaempferol has been more frequently mentioned as a fermentation product of endophytic fungi, 

such as a strain of Mucor fragilis from rhizomes of Sinopodophyllum hexandrum [137], a strain of 

Fusarium chlamydosporum from stem of Tylophora indica (Asclepiadaceae) [138], and a  

previously-mentioned unidentified strain from C. wenyujin [39]. It has been also found together with 

quercetin in the above-mentioned strain of A. squamulosum [131], and in a strain of A. bovei var. 

microspora together with kaempferitrin and luteolin [139]. A widespread plant metabolite with 

putative cancer chemopreventive and therapeutic properties [140], luteolin has been also reported as a 

secondary metabolite of an endophytic strain of A. fumigatus from the pigeon pea (Cajanus cajan), 

which itself is known as a source of this phytoestrogen [141]. 

Cajanol is another isoflavone from roots of C. cajan displaying antimicrobial properties, and pro-apoptotic 

activity resulting in assays against human breast cancer cells [142]. Endophytic strains of Hypocrea lixii 

from roots of C. cajan have also been reported to produce this compound in liquid cultures [143]. 

Another endophytic fungus from C. cajan, Chaetomium globosum, has been reported to produce apigenin 

(4′,5,7-trihydroxyflavone) [144]. Its glycosidic derivative vitexin (apigenin-8-C-β-D-glucopyranoside) 

has been found as a fermentation product of a strain of Colletotrichum sp. endophytic in  

G. biloba [145]. More glycosidic derivatives, namely apigenin-5-O-α-L-rhamnopyranosyl-(1→3)-β-D-

glucopyranoside and euryanoside (apigenin-5-O-α-L-rhamnopyranosyl-(1→2)-(6″-O-acetyl)-β-D-

glucopyranoside), have been detected as transformation products by a strain of Paraconiothyrium 

variabile endophytic in the Japanese plum yew (Cephalotaxus harringtonii) growing on crude extracts 

of the same plant, by which these compounds had been previously reported [146]. 

Rotenone is one of the oldest known bioactive plant metabolites, extracted from roots of tropical 

Leguminosae such as Lonchocarpus spp., Tephrosia spp., Mundulea spp., Dalbergia paniculata and 



Agriculture 2015, 5 930 

 

 

Derris elliptica [147]. An unidentified Penicillium strain from the latter plant has been reported to 

produce this compound or a structural analog [148]. 

Silymarin is a bioactive extract of the fruits of milk thistle (Silybum marianum), containing seven 

flavolignans with reported antitumor and hepatoprotective properties [149,150]. Three of these 

compounds, silybin A, silybin B, and isosilybin A have been extracted as fermentation products of  

a strain of Aspergillus iizukae isolated from the leaves of S. marianum. Interestingly, flavonolignan 

synthesis attenuated after repeated subculturing of this strain, but could be resumed when autoclaved 

leaves of the host plant were added to the growth medium [151]. 

The chalcones (benzalacetophenones) are involved in flavonoid biosynthesis in plants through  

an isomerization process promoted by the enzyme chalcone flavanone isomerase [152]. These compounds 

exhibit notable bioactive properties [153], and significant anti-cancer effects [154]. An endophytic strain 

of Ceriporia lacerata has been found to produce 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone 

first extracted from its host plant Cleistocalyx operculatus (=Eugenia operculata or Syzygium 

operculatum) [155]. 

7. Xanthones and Quinones 

With a number of pharmaceutical applications, xanthones (Figure 5) are structurally related to 

flavanoids, and also commonly recovered from both plant and fungal sources [156]. With reference to 

endophytic fungi, a mangrovial strain of Penicillium sp. has been found to produce  

1,7-dihydroxyxanthone [120], primarily known for its antimalarial properties and reported as  

a secondary metabolite of plants such as Weddellina squamulosa (Podostemaceae) and several species 

in the Guttiferae [157,158]. 
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Figure 5. Structures of xanthones produced by endophytic fungi. 

Pinselin was initially characterized from a strain of Penicillium amarum, but later found to be 

identical to cassiollin reported from Cassia occidentalis [159]. This metabolite has been found as  

a fermentation product of a strain of Phomopsis sp. endophytic in rhizome of Paris polyphylla var. 

yunnanensis [160], together with additional xanthones including 6-O-methyl-2-deprenylrheediaxanthone B, 

previously extracted from bark of Garcinia vieillardii [161]. 

Fairly widespread as plant metabolites and widely used as dyes in the textile industry, 

anthraquinones are believed to contribute to the defense against pests and disease agents, based on 

their antifungal, antibacterial and insecticidal properties [162]. Several compounds in this class are also 

known from endophytic fungi (Figure 6). Emodin, physcion and citreorosein, found in several plant 

species such as rhubarb (Rheum spp.) [163], Cassia spp. [164], and Polygonum cuspidatum [165,166], 

are also produced by heterologous endophytic strains of Penicillium spp. (e.g., P. herquei,  

P. janthinellum) [167–169]. Emodin has been also reported from a strain of Talaromyces sp. from the 
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mangrove Kandelia candel [170], while physcion was also extracted from cultures of an unidentified 

strain from the mangrove Avicennia marina [171], and of strains of A. fumigatus from  

Cynodon dactylon [172], and Aspergillus terreus from Opuntia ficus-indica [173]. Quinizarin known 

from roots of the madder plant (Rubia tinctorum) [174], has been reported as a secondary metabolite of 

a previously-mentioned unidentified strain from C. wenyujin [39]. Endocrocin, reported from roots of 

Rumex nepalensis [175], has recently been found to be produced by an endophytic strain of  

Pestalotia (Pestalotiopsis) acaciae [176]. Questinol and questin are known from Polygonum spp. [177] 

and again from Cassia spp. [164]. The former compound has been detected in the culture extracts of 

strains of Eurotium rubrum from the mangrove Hibiscus tiliaceus [178] and P. glabrum from 

pomegranate fruits [19], while the latter has been reported as a metabolite of an unidentified strain 

belonging to the Dothideomycetes from the Thai medicinal plant Leea rubra. This strain also produces 

the biosynthetically related chromone derivative eugenitin, previously extracted as a secondary 

metabolite of clove (Syzygium aromaticum), and its analog 6-hydroxymethyleugenitin [179]. A strain 

of Phoma sorghina endophytic in the medicinal plant Tithonia diversifolia [180] has been found to 

produce pachybasin and phomarin, known as secondary metabolites of species in the Scrophulariaceae, 

such as Digitalis spp. [181] and Isoplexis isabelliana [182], and 1,7-dihydroxy-3-methylanthraquinone, 

first extracted from leaves of Digitalis viridiflora [183]. Once again, the three latter compounds  

have been more recently extracted from cultures of a strain of Coniothyrium sp. endophytic in  

Salsola oppostifolia [184]. Finally, pachybasin has been also reported from an unidentified strain from 

the yellow moonshed (Arcangelisia flava) [185]. 

Hypericin, a secondary metabolite of St. John’s wort (Hypericum perforatum) and other congeneric 

species, has been extensively studied for its antidepressant, antiviral and antitumor properties.  

In combination with light the compound effectively induces apoptosis and/or necrosis of cancer cells, 

the reason why it has been exploited for the photodynamic therapy of cancer [186]. Hypericin has been 

found as a metabolic product of an endophytic strain of Thielavia subthermophila isolated from  

H. perforatum in India, together with the above-mentioned emodin considered as a possible  

precursor [187,188]. 
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Sterequinone C, primarily extracted from bark of the Ayurvedic medicinal plant  

Stereospermum personatum [189], has been more recently found as a metabolite of an unidentified 

strain of Penicillium sp. from leaf of the mangrove Avicennia [120]. 

The tanshinones are diterpenoid quinones from roots and rhizomes of danshen (Salvia miltiorrhiza) 

and other Salvia spp. exerting antioxidant, anti-inflammatory and antitumor effects [190]. These 

compounds have been also extracted from endophytic strains of the same plant, particularly TR21 of 

Emericella foeniculicola [191], and D16 of Trichoderma atroviride [192]. Polysaccharides from the 

mycelium of the latter strain were found to elicit root growth and tanshinone production [193]. 

Moreover, a previously-mentioned strain of Paecilomyces sp. from P. ginseng has been found to 

produce isotanshinone [104]. 

Shikonin is a pigment of the Chinese therapeutic herb zicao (Lithospermum erythrorhizon) with  

a naphthoquinone structure, displaying interesting pharmacological activities based on its anti-inflammatory, 

antigonadotropic, anti-HIV and antitumor properties [194]. This compound has been recently recovered 

from extracts of an endophytic strain from roots of the old lady cactus (Mammillaria hahniana) [195]. 

Lapachol is another naphthoquinone derivative originally extracted from the bark of the lapacho tree 

(Handroanthus impetiginosus, syn. Tabebuia avellanedae), but later found in plants belonging to 

different botanical families. It is an active principle in lapacho used in ethnomedicine by indigenous 

populations of South America, and reported for a wide range of pharmacological activities [196]. 

Endophytic strains of Alternaria sp., A. alternata, A. niger and Penicillium sp. from the silver trumpet 

tree (Tabebuia argentea) have been found to produce this compound [197,198]. 

8. Lignans 

Quite widespread as plant metabolites [199], the podophyllotoxins and related cyclolignans have 

been also characterized for their insecticidal effects [200,201]. However, the higher reputation for 

podophyllotoxin (Figure 7) and a few synthetic derivatives relies on their pharamacological 

applications, particularly as antitumor drugs [199,202]. These products have also been reported from 

an increasing number of endophytic fungi, such as Alternaria sp. from S. hexandrum [203] and 

Juniperus communis (=J. vulgaris) [204], Penicillium spp. from S. hexandrum, Diphylleia sinensis and 

Dysosma veitchii [203], Phialocephala fortinii from Podophyllum peltatum [205], Trametes hirsuta, 

Fusarium solani and M. fragilis from S. hexandrum [137,206,207], and F. oxysporum from  

Juniperus recurva [208]. Moreover, deoxypodophyllotoxin has been reported from a strain of  

A. fumigatus endophytic in J. communis [209]. 

Phillyrin (Figure 7) is another lignan displaying antioxidant, anti-inflammatory and antipyretic 

activities, known from Phyllirea and a number of medicinal plants such as Forsythia suspensa, a shrub 

used in Chinese traditional medicine [210]. An endophytic strain of Colletotrichum gloeosporioides 

from a fruit of this plant was found to produce phillyrin in liquid cultures [211]. Other lignans known 

from several plant species, such as sesamin, syringaresinol and ketopinoresinol (Figure 7), have been 

recently found as secondary metabolites of an endophytic strain of A. ilanense [121]. 
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Figure 7. Structures of lignans produced by endophytic fungi. 

9. Taxol and Taxanes 

Taxol, also known as paclitaxel, is probably the most valuable compound in this review, at least 

considering its notoriety as the first billion-dollar anticancer drug. Temporarily set aside in chapter 4 

concerning terpenoids, this diterpene compound presenting an unusual oxytane ring and a tricyclic 

core (Figure 8) was originally characterized from bark of the Pacific yew (Taxus brevifolia) [212], but 

later found in all other yew species [213]. Problems for an adequate pharmaceutical supplying were 

soon evident, and the need to find alternative sources lead to the discovery of the first endophytic 

fungal strain able to synthesize this compound, isolated from the inner bark of T. brevifolia and 

ascribed to the novel species Taxomyces andreanae [214]. This discovery was followed by an ongoing 

series of similar findings from yews, but also from other plants species, attaining to a provisional 

number of almost 100 reports of endophytic strains belonging to 72 fungal species from 32 different 

host plants, as listed in Table 3. However, these figures are underestimated, considering that we have 

not been able to check a number of reports from China and other Asian countries. Whether or not one 

or more of such strains can be effectively employed by the pharmaceutical industry is still under 

debate [1,215], and treating this theme goes beyond the scopes of this review. Nevertheless, there is no 

doubt that the issue of taxol production by endophytic fungi has stimulated a wide research activity 

concerning drugs and other reputed bioactive compounds extracted from plants, introducing new 

insights in the appreciation of the microbial component of biodiversity and the opportunity of its 

exploitation for human wellness. 
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Table 3. Endophytic fungi reported for production of taxol. 

Species Host plants Reference 

Acremonium sp. Taxus globosa [216] 

Alternaria sp. 

Taxus cuspidata 

Ginkgo biloba 

Corylus avellana 

[217] 

[218] 

[219] 

Aspergillus candidus Taxus × media [220] 

Aspergillus fumigatus Podocarpus sp. [221] 

Aspergillus niger var. taxi T. cuspidata [222] 

Aspergillus sp. Taxus chinensis [223] 

Bartalinia robillardoides Aegle marmelos [224] 

Botryosphaeria sp. T. globosa [216] 

Botrytis sp. 
T. chinensis var. mairei 

T. cuspidata 

[225] 

[226] 

Ceratobasidium sp. T. chinensis [223] 

Chaetomella raphigera Terminalia arjuna [227] 

Cladosporium cladosporioides T. media [228] 

Cladosporium oxysporum Moringa oleifera [229] 

Cladosporium tenuissimum T. chinensis [223] 

Colletotrichum gloeosporioides

Justicia gendarussa 

Plumeria acutifolia 

T. media 

Tectona grandis 

M. oleifera 

[230] 

[231] 

[232] 

[233] 

[234] 

Colletotrichum sp. Maguireothamnus speciosus [235] 

Coniothyrium diplodiella T. chinensis [223] 

Didymostilbe sp. T. chinensis var. mairei [236] 

Ectostroma sp. T. chinensis var. mairei [225] 

Epacris sp. T. chinensis [223] 

Fusarium arthrosporioides T. cuspidata [237] 
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Table 3. Cont. 

Species Host plants Reference 

Fusarium lateritium Taxus baccata [217] 

Fusarium mairei T. chinensis var. mairei [238] 

Fusarium oxysporum Rhizophora annamalayana [239] 

Fusarium proliferatum T. media [232] 

Fusarium redolens Taxus wallichiana [240] 

Fusarium solani 
Taxus celebica 

T. chinensis 

[241] 

[242] 

Fusarium sp. 
T. wallichiana 

T. globosa 

[243] 

[216] 

Gliocladium sp. T. baccata [244] 

Guignardia mangiferae T. media [232] 

Gyromitra sp. T. globosa [216] 

Lasiodiplodia theobromae 
Morinda citrifolia  

T. baccata 

[245] 

[246] 

Metarhizium anisopliae T. chinensis [223] 

Monochaetia sp. T. baccata [217] 

Mucor rouxianus T. chinensis [247] 

Mucor sp. T. chinensis var. mairei [248] 

Nigrospora sp. T. globosa [216] 

Nodulisporium sylviforme T. cuspidata [249] 

Ozonium sp. T. chinensis var. mairei [250] 

Paraconiothyrium brasiliense T. chinensis [223] 

Paraconiothyrium sp. T. media [251] 

Penicillium aurantiogriseum C. avellana [252] 

Penicillium raistrickii Taxus brevifolia [253] 

Penicillium sp. 

Taxus yunnanensis (=T. wallichiana)

T. globosa 

T. chinensis 

[254] 

[216] 

[255] 

Periconia sp. Torreya grandifolia [256] 

Pestalotia bicilia T. baccata [217] 

Pestalotia pauciseta 
Cardiospermum helicacabum 

Tabebuia pentaphylla 

[257] 

[258] 

Pestalotiopsis guepinii Wollemia nobilis [259] 

Pestalotiopsis microspora 
T. cuspidata, T. wallichiana 

Taxodium distichum 

[260] 

[261] 

Pestalotiopsis neglecta  T. cuspidata [262] 

Pestalotiopsis sp. 
W. nobilis 

Catharanthus roseus 

[259] 

[263] 

Pestalotiopsis terminaliae T. arjuna [264] 

Pestalotiopsis versicolor T. cuspidata [262] 

Pezicula sp. T. chinensis [223] 

Phoma betae G. biloba [265] 
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Table 3. Cont. 

Species Host plants Reference 

Phomopsis sp. 
G. biloba, Larix leptolepis, T. cuspidata 

T. chinensis 

[266] 

[223] 

Phyllosticta melochiae Melochia corchorifolia [267] 

Phyllosticta sp. Ocimum basilicum [268] 

Phyllosticta spinarum Cupressus sp. [269] 

Pithomyces sp. Taxus sumatrana [216] 

Rhizopus sp. T. media [270] 

Seimatoantlerium nepalense T. wallichiana [271] 

Sordaria sp. T. chinensis [223] 

Sporormia minima T. wallichiana [272] 

Stegolerium kukenani Stegolepis guianensis [273] 

Stemphylium sedicola T. baccata [274] 

Taxomyces andreanae T. brevifolia [214] 

Taxomyces sp. Taxus sp. [275] 

Trichoderma sp. T. chinensis [223] 

Trichothecium sp. T. wallichiana [272] 

Tubercularia sp. T. mairei [276] 

Xylaria sp. 
M. speciosus 

T. chinensis 

[235] 

[223] 

Another opportunity to obtain taxol is represented by a semisynthetic method starting from the 

structurally related taxane compounds baccatin III and 10-deacetylbaccatin III (Figure 8), which are 

more easily accessible for their occurrence in yew needles [277]. Besides a number of papers where 

these precursors are reported together with taxol (Table 3), specific references consider their 

production by endophytic strains from Taxus wallichiana, respectively Diaporthe phaseolorum [278] 

and Trichoderma sp. [279]. A more general biosynthetic ability concerning taxanes has been 

evidenced in a number of endophytic strains isolated from Taxus baccata which were not identified at 

the species level, ascribed to the genera Alternaria, Aspergillus, Beauveria, Epicoccum, Fusarium, 

Gelasinospora, Geotrichum, Phoma and Phomopsis [280]. Evidence as taxane producers has been also 

reported for strains of Cladosporium langeronii and Phomopsis sp. from Wollemia nobilis [281]. 

10. Quinoline Alkaloids 

Camptothecin (CPT) is probably the best known representative of this group, whose importance and 

history as a plant-derived antitumor drug to be widely found as a secondary metabolite of endophytic 

fungi seems to retrace what just described for taxol. In fact, in the last decade, this compound, and its 

analogues 9-methoxycamptothecin (MCPT) and 10-hydroxycamptothecin (HCPT) (Figure 9), have 

been reported from a number of endophytes from Camptotheca acuminata and a few more trees in the 

unrelated botanical family of the Icacinaceae (Table 4). 

The attempt to obtain CPT by fermentation has evidenced a fundamental problem which may affect 

the possible use of endophytic fungal strains for production of bioactive plant metabolites on a large 

scale. In fact, the loss of the biosynthetic ability has been documented in a number of strains of  
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F. solani [282] and Aspergillus sp. [283]. This breakdown seems not to be related to the antibiotic 

properties of the compound, considering that resistance to CPT has been documented for a number of 

endophytic strains from C. acuminata [284], and it is intrinsic and not related to the biosynthetic 

aptitude [285]. On the other hand, production of camptothecins can be stimulated by exploiting the 

eliciting effects of a few organic and inorganic compounds, particularly salicylic acid which induced  

a higher HCPT yield by a strain of Xylaria sp. [286], and methyl jasmonate which increased CPT 

production by a strain of T. atroviride [283]. Furthermore, CPT production by a strain of F. solani 

from C. acuminata was notably increased by supplying an ethanolic extract of leaves of C. roseus 

containing strictosidine as a precursor in CPT biosynthesis, and even by ethanol itself [287]. 
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Figure 9. Structures of quinoline alkaloids produced by endophytic fungi. 

Table 4. Endophytic fungi producing camptothecin (CPT) and its analogues  

9-methoxycamptothecin (MCPT) and 10-hydroxycamptothecin (HCPT). 

Compounds Fungal Species Host Plants References 

CPT Entrophospora infrequens Nothapodytes foetida [288,289] 

CPT Neurospora sp. N. foetida [290] 

CPT Nodulisporium sp. N. foetida [291] 

CPT, HCPT, MCPT Fusarium solani Camptotheca acuminata [292] 

CPT, HCPT, MCPT F. solani Apodytes dimidiata [293] 

CPT Botryosphaeria parva Nothapodytes nimmoniana [294] 

CPT Diaporthe conorum N. nimmoniana [294] 

CPT Fusarium oxysporum N. nimmoniana [294] 

CPT Fusarium sacchari N. nimmoniana [294] 

CPT F. solani N. nimmoniana [294] 

CPT Fusarium sp. N. nimmoniana [294] 

CPT Fusarium subglutinans N. nimmoniana [294] 

CPT Fusarium verticillioides N. nimmoniana [294] 
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Table 4. Cont. 

Compounds Fungal Species Host Plants References 

CPT Galactomyces sp. N. nimmoniana [294] 

CPT Irpex lacteus N. nimmoniana [294] 

CPT Phomopsis sp. N. nimmoniana [294] 

CPT Unidentified strains N. nimmoniana [294] 

HCPT Xylaria sp. C. acuminata [286] 

HCPT Valsa mali C. acuminata [295] 

CPT Aspergillus spp. C. acuminata [283] 

CPT Trichoderma atroviride C. acuminata [283] 

CPT, HCPT, MCPT Alternaria alternata Miquelia dentata [296] 

CPT, HCPT, MCPT Fomitopsis sp. M. dentata [296] 

CPT, HCPT, MCPT Phomopsis sp. M. dentata [296] 

CPT F. oxysporum N. foetida [297] 

A paramount pharmaceutical relevance also pertains to the cinchona-alkaloids (Figure 9) extracted 

from bark of quina trees (Cinchona sp.), representing fundamental drugs for malaria prophylaxis [298]. 

After reporting the first endophytic isolate (Diaporthe sp.) from Cinchona ledgeriana collected in Java 

(Indonesia) producing quinine, quinidine, cinchonidine, and cinchonine [299], additional 20 strains of 

Phomopsis sp., Schizophyllum sp., Penicillium sp., Fomitopsis sp., and Arthrinium sp. from the same 

source have been found to produce variable amounts of the these compounds [300,301]. 

Two more compounds in this class are to be considered in this review. Berberine (Figure 9) is  

a cardioprotective, antidiabetic, antibiotic and antitumor product known from several unrelated 

medicinal plants [302], which has been recently found as a secondary metabolite of a strain of F. solani 

from roots of the medicinal liana Coscinium fenestratum [303]. Sanguinarine (Figure 9),  

a benzylisoquinoline or benzophenanthridine alkaloid known from several plants belonging to the 

Papaveraceae, whose antimicrobial effects have been particularly exploited for toothpastes and 

mouthwashes [304], has been found to be produced by a strain of F. proliferatum from leaves of 

Macleaya cordata [305]. 

11. Other Alkaloids 

The vinca-alkaloids (Figure 10) are a series of over a hundred bioactive products extracted from 

periwinkle (Catharanthus roseus) and the related Vinca species, mostly exploited in cancer 

chemotherapy based on their action on tubulin and microtubule organization [306]. Endophytic strains 

of Alternaria sp. [307] and F. oxysporum [308] from C. roseus respectively produced vinblastine and 

vincristine, while more recently another strain of the latter species has been found to produce both 

compounds [309], and to synthesize vincristine from vinblastine when the latter compound was added 

to the growth medium [310]. Finally, an unidentified strain from Vinca minor has been reported for 

production of vincamine [311]. 
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Figure 10. Structures of vinca-alkaloids. 

Caffeine, the methylxanthine alkaloid (Figure 11) from Coffea spp. well known as a psychoactive 

drug, has been evidenced in extracts of unidentified endophytic fungi recovered from the Indian 

ethnomedicinal plants Osbeckia chinensis, O. stellata and Potentilla fulgens [43]. 

Piperine (Figure 11) is an alkaloid of Piper longum and Piper nigrum known for its antimycobacterial, 

antihyperlipidemic, anti-inflammatory, immunoregulatory and antitumor properties [312–314]. This 

valuable compound has been extracted from liquid cultures of endophytic strains of Periconia sp. from 

P. longum [315], and Mycosphaerella sp. [316] and C. gloeosporioides [317] from P. nigrum. 
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Figure 11. Structures of miscellaneous alkaloids produced by endophytic fungi. 

Aconitine is a diterpenoid alkaloid (Figure 11) extracted as a secondary metabolite of Aconitum 

species, displaying analgesic, anti-inflammatory and antitumor activity. It has been also found as  

a fermentation product of an endophytic strain of Cladosporium cladosporioides recovered from roots 

of Aconitum leucostomum [318]. 

Rohitukine is a chromane alkaloid (Figure 11) with anti-inflammatory, immunomodulatory and 

antitumor properties first characterized as a secondary metabolite of a few tropical plants,  

Amoora rohituka (=Aphanamixis polystachya) and Dysoxylum binectariferum (Meliaceae), 

Schumanniophyton (Tetrastigma) magnificum and Schumanniophyton (Assidora) problematicum 

(Rubiaceae) [319]. This compound has been recently reported as a fermentation product of endophytic 
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strains of F. proliferatum, F. oxysporum and F. solani from D. binectariferum [320,321], and  

F. fujikuroi from A. rohituka [321]. 

Peimisine and peiminine are steroidal alkaloids (Figure 11) known to occur in bulbs of  

Fritillaria spp. used as in Chinese ethnomedicine for their expectorant effects. A strain of  

an undetermined Fusarium species endophytic in bulbs of Fritillaria unibracteata var. wabensis has 

been found to produce these compounds [322]. 

Swainsonine is a trihydroxy inolidizine alkaloid (Figure 11) acting as a glycosidase inhibitor which 

occurs in a number of plant species, such as Swainsona canescens, Ipomoea spp., Turbina cordata, 

Sida carpinifolia, and locoweeds (Astragalus and Oxytropis spp.) [323]. The latter are forage plants 

whose consumption by livestock is associated to the syndrome of locoism. It has been observed that  

a fungal endophytic species occurring in locoweeds, the vertically-transmitted Undifilum oxytropis [324,325], 

previously described as Embellisia sp. [326,327], is capable to produce swainsonine in vitro. Novel 

species of Undifilum, U. fulvum and U. cinereum, have been later reported for production of this 

compound, respectively in Astragalus lentiginosus and A. mollissimus [328], along with strains of  

an unidentified Undifilum sp. recovered from S. canescens in Australia [329]. Moreover, the 

compound was found to be produced by endophytic isolates of Fusarium tricinctum recovered from 

Oxytropis kansuensis and O. deflexa in China [330]. The inhibitory properties on α-mannosidase have 

been exploited for the development of swainsonine as an anticancer drug, which has been impaired by 

reason of undesirable side effects [331,332]. Finally, it is interesting to note that plants of  

A. lentiginosus and Oxytropis sericea germinated from the embryo, which is not colonized by 

endophytes, were found to be fungus free and did not contain swainsonine [333]. This evidence 

strongly supports the hypothesis that actually its occurrence in plants may entirely derive from 

biosynthesis by endophytic fungal strains. 

12. 3-Nitropropionic Acid 

Analogous for its effects in livestock intoxication, 3-nitropropionic acid (NPA) is a secondary 

metabolite involved in the nitrification process in Leguminosae [334], particularly of the genera Hippocrepis, 

Lotus, Scorpiurus and Securigera, and the species Astragalus falcatus and Coronilla viminalis [335]. 

The fact that the latter are the only species in the respective genera to be reported to produce this 

compound has raised the interrogative if it is actually produced by associated endophytic 

microrganinsms. In fact NPA is mainly known as a toxin from a number of fungal species [336–338], 

and mentioned as a product of endophytic fungi such as Melanconium betulinum from birches in 

Germany [339], and a number of Phomopsis species, including P. phaseoli (= Diaporthe phaseolorum) 

from an unidentified rainforest tree of Guyana [339], and P. longicolla from Trichilia elegans in  

Brazil [340]. Isolates of Phomopsis spp. from crêpe ginger (Costus sp.) in Costa Rica and from Thai 

medicinal plants also produce this compound, together with a few strains of unidentified species from 

the latter source [335,341]. 

13. Saponines 

Saponines are glycosides where the sugar moiety is bound through a glycosidic linkage to  

an aglycone (sapogenin) which can be a triterpenoid or a steroid compound. Generally considered as 
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antinutritional factors, these products have been recently re-evaluated for their nutraceutical properties 

deriving from consistent anticholesterolemic effects and inhibition of sugar and ethanol absorption. 

Additional antibiotic, antitumor and immunomodulatory properties have also been reported [342]. 

Saponins are known to occur in many taxonomically unrelated plants, but there is an increasing 

evidence that their production is also widespread among endophytic fungi. Again such a biosynthetic 

ability may represent an aspect of the mutualistic relationships established in view of plant defense, 

considering that some plant pathogens are reported to have developed saponin-detoxifying enzymes as 

a virulence factor [343]. To this regard, production of saponins has been recently documented for 

strains of Aspergillus sp. from Salvadora oleoides [344] and Justicia beddomei [345], Aspergillus sp., 

Bulgaria sp. and Sirococcus conigenus from Potentilla fulgens [346], A. niger and F. oxysporum from 

Crotalaria pallida [347], A. alternata, A. niger and Penicillium sp. from Loranthus sp. [348], A. alternata, 

A. flavus, A. niger, Colletotrichum gleosporioides and Trichoderma sp. from Tabebuia argentea [197], 

Cochliobolus lunatus (anamorph Curvularia lunata) from Boswellia ovalifoliolata, and  

Monochaetia karstenii (=Pestalotiopsis maculans) and Phyllosticta sp. from Shorea thumbuggaia [349], 

Aspergillus neoniveus (=Fennellia nivea) from Typhonium divaricatum [350], A. alternata, A. flavus, 

A. niger, Cladosporium sp., Penicillium sp., Phomopsis sp. and Trichoderma sp. from Aegle marmelos [351], 

A. niger, A. terreus, Aspergillus sp., Aspergillus tubingensis, Coprinopsis cinerea, C. lunata and Fusarium 

sp. from Eugenia jambolana [352], Aspergillus awamori and again C. gleosporioides from Rauwolfia 

serpentina [353]. 

More particularly, the ginsenosides (Figure 12), previously characterized from plants in the genus 

Panax, have been extracted from cultures of root endophytic strains of Penicillium sp.,  

Dictyochaeta sp. and Camarosporium sp. from Aralia elata [354], and of Fusarium sp., Aspergillus sp. 

and Verticillium sp. from P. ginseng [355]. However, the ability by endophytic strains of  

F. oxysporum, Fusarium sp. and Nodulisporium sp. from Panax notoginseng to transform ginsenosides 

to yield additional analog compounds [356] demonstrates that endophytic fungi directly contribute to 

the particular pattern of these compounds occurring in plant tissues. 
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Figure 12. Structures of saponines produced by endophytic fungi. 

A similar effect has been documented for an endophytic strain of Fusarium sp. from Dioscorea nipponica 

which was able to increase diosgenin content in its liquid cultures added with a rhizome extract of the 

host plant [357]. Diosgenin is a steroidal sapogenin (Figure 12) known as a secondary metabolite of  

a number of plant species, particularly the yams (Dioscorea spp.). It is an important precursor for 

production of semi-synthetic steroids, such as corticosteroids, progesterone and other steroidal drugs, 

and displays a number of important pharmacological effects [358]. This valuable compound is also 
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produced by endophytic strains of Cephalosporium sp. and Paecilomyces sp. from P. polyphylla  

var. yunnanensis [359,360]. In vitro cell culturing represents an alternative means for production of 

this drug, considering that natural populations of one of the most important sources, the yellow ginger 

(Dioscorea zingiberensis), are decreasing due to overexploitation, and agricultural production is 

problematic by reason of the 3–4 years required for obtaining mature rhizomes. Oligosaccharides and 

polysaccharides extracted from an endophytic strain (Dzf17) of F. oxysporium have been found to 

elicit growth and diosgenin production in cell cultures of D. zingiberensis [361,362]. The same effect 

was also observed when both cell cultures and seedlings were treated with beauvericin produced by  

an endophytic strain of Fusarium redolens from the same plant species [363]. 

Gymnemagenin, a triterpenoid sapogenin (Figure 12) extracted from the renowned anti-diabetic 

herb Gymnema sylvestre, has been found as a fermentation product of an endophytic strain of 

Penicillium oxalicum recovered from leaves of this plant in India [364]. 

14. Miscellaneous Compounds 

Resveratrol (Figure 13) is a stilbene phytoalexin produced by many plants in response to biotic and 

abiotic injuries, and a reputed nutraceutical based on its antioxidant properties [365]. A number of 

endophytic strains from Vitis vinifera, Vitis quinquangularis, and P. cuspidatum belonging to the 

genera Alternaria, Aspergillus, Botryosphaeria, Cephalosporium, Geotrichum, Mucor and Penicillium 

were found to be able to produce this compound; however, only a Alternaria strain retained this 

capability after repeated culturing cycles [366]. Another leaf strain of Alternaria, together with root 

strains of F. solani, F. oxysporum and F. proliferatum from C. cajan, have been found to produce 

cajaninstilbene acid (Figure 13), a related antioxidant compound originally characterized from the host 

plant [367]. 
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Figure 13. Structures of miscellaneous compounds produced by endophytic fungi. 

Mainly used as a food additive, curcumin (Figure 13) is a diarylheptanoid compound of turmeric 

(Curcuma longa) with potential pharmaceutical applications [368], which has been recently found as  

a fermentation product of a previously-mentioned endophytic strain from C. wenyujin [39]. 

Falcarinol, also known as carotatoxin or panaxynol (Figure 13), is a fatty alcohol reported from 

several unrelated plant species such as carrots (Daucus carota) and other Apiaceae, red ginseng  

(P. ginseng), ivies (Hedera spp.) and other Araliaceae. It is considered a natural pesticide protecting 
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roots from fungal diseases, and displayed some extent of activity against certain types of cancer [369]. 

Production of this compound has been reported by a strain of Paecilomyces sp. from P. ginseng [104]. 

Myrtucommulones are acylphloroglucinol compounds extracted from myrtle (Myrtus communis) 

and related plants in the Myrtaceae considered as prospect pharmaceuticals based on consistent 

antibacterial, antimalarial, antioxidant, anti-inflammatory and antitumor properties. So far 13 analogues 

(myrtucommulones A-M) have been characterized from plant sources, and the production of 

myrtucommulone A (Figure 13) and D has been recently reported from a myrtle endophytic strain of 

Neofusicoccum australe (teleomorph Botryosphaeria australis) [370]. 

Finally, the widespread pentacyclic triterpenoid compound ursolic acid, also known as prunol or 

malol, and reported for its anticancer and cardioprotective properties [371], has been recently found in 

extracts of a cited endophytic strain of A. stygium [51]. 

15. Future Perspectives 

Data considered in this review highlight a continuously increasing number of plant-derived 

bioactive products also occurring as secondary metabolites of endophytic fungal strains. Therefore, it is 

quite easy to foresee that the finding of additional such compounds is under way and may disclose further 

applicative opportunities. As an example, the reported production of colchatetralene, a structural analog 

of colchicine, by an endophytic strain (Aspergillus sp.) from seeds of Gloriosa superba [372] has 

paved the way for the possible production of this important drug by a microbial agent. Moreover, 

indications have been reported concerning the possible production of the secoiridoid glycoside 

gentiopicrin and of the cardiotonic drug digoxin by endophytic fungal strains, respectively from 

Gentiana macrophylla [373] and Digitalis lanata [374], and more circumstantiated studies are 

expected for these important compounds. 

Within the above-considered categories, volatile compounds from essential oils particularly 

represent a mine to be dug more in depth. In fact benzophenone derivatives, which are biosinthetically 

related to xanthones and known as main components of the scent of species in a few botanical families 

such as Clusiaceae, Gentianaceae, Moraceae, Polygalaceae, Rosaceae and Thymelaceae, are also 

widespread secondary metabolites of fungi [375]. Therefore, it would not be surprising if additional 

compounds previously reported from plants are also evidenced as fermentation products of endophytic 

strains [376–378]. 

The likely finding by endophytic strains has been also anticipated for asperphenamate, a phenylalanine 

derivative recently attracting attention for its antitumor properties. In fact this compound was first 

characterized from Aspergillus flavipes and a number of fungi which are also known for their 

endophytic habit. Therefore, its subsequently observed occurrence in many botanically unrelated plant 

species is considered to possibily derive by the biosynthetic ability of endophytic fungal strains [379]. 

Besides the above-mentioned case of swainsonine, a more direct proof that some plant metabolites can 

be actually produced by their associated endophytic fungi has been provided by the finding of the 

mycotoxin alternariol, along with the related compounds altenusin and alternariol 5-O-methyl ether,  

in foliar extracts of the medicinal plant Polygonum senegalense harboring an Alternaria strain [380]. 

The latter compound had been also extracted from Anthocleista djalonensis, a tree used in traditional 

medicine in West Africa [381]. 
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Further investigational opportunities arise from the ability by endophytic fungi to modify plant 

metabolites into novel bioactive compounds, and actually several examples of such a kind of biochemical 

interaction have been reported so far. A strain of Xylaria sp. associated with Cinchona pubescens was 

found to be able to convert the above-mentioned Cinchona alkaloids into their 1-N-oxides [382]. 

Strains of Diaporthe spp. from the tea plant (Camellia sinensis) and from rhizome of C. longa 

respectively performed the stereoselective oxidation of (+)-catechin and (–)-epicatechin into the 

corresponding 3,4-cis-dihydroflavan derivatives [383,384], and the conversion of curcumin into a few 

colorless hydroderivatives [385]. Moreover, an unidentified strain from yellow moonshed 

(Archangelisia flava) has been reported to convert berberine into its 7-N-oxide derivative [386]. 

On the other end, endophytic fungi may also have a role in degradation of plant metabolites.  

As an example, a strain of Phomopsis liquidambari from the stem of Chinese bishopwood  

(Bischofia polycarpa) has been showed to degrade the phytoestrogen luteolin and additional phenolic 

compounds such as phenanthrene [387], introducing the possible employment of endophytic fungal 

strains in bioremediation [388]. 

However, there is no doubt that in the future the most intriguing research hint concerns the genetic 

bases of production of bioactive metabolites by these closely associated but phylogenetically unrelated 

organisms. Although a negationist point of view has been advanced concerning taxol biosynthesis by 

endophytes [389], taken as a whole the over 300 cases mentioned in this review concerning 

homologous and heterologous endophytic strains producing plant bioactive compounds represent  

a compelling evidence that these micorganisms and their host plants interact at some level in the 

biosynthetic process. The main hypothesis is that these interactions may lead to horizontal gene 

transfers or genetic recombinations, from the plant to its endophytic counterpart and/or vice-versa, 

originating novel specialized strains able to accumulate certain metabolites in the host tissues [186], 

which would be a good reason to explain why in the end a mutualistic relationship is established. The 

fact that most of these compounds have been originally extracted from plants has generated a somehow 

misleading preconception that it is the endophytic microbe that for some reasons acquires the ability to 

produce a given plant metabolite. However, actually, the finding of taxol and other bioactive products 

from endophytic strains of plants which themselves are not reported as a source of the same compound 

could be considered as an indication that a reverse influence may be more likely. On the other hand, 

investigations concerning complex diterpenoid compounds, such as gibberellins and again taxol, have 

shown that the biosynthetic pathways in plant and endophytes may differ at some level [5,251], which 

is a clue for an independent development of the subtended genetic traits. However, in the end, the 

problem is again preconceptual, since it cannot be excluded that such a variation in the biosynthetic 

scheme may also exist within the categories of both plants and associated endophytes. 

An even more complex situation could result if further evidence is provided that synthesis of bioactive 

metabolites in fungi is in turn influenced by other associated microbes. This is the case of rhizoxin which 

has been found to be actually synthesized by an endosymbiotic bacterium (Burkholderia rhizoxinica) 

residing in the cytosol of the rice fungal pathogen Rhizopus microsporus [390,391]. Moreover, such a 

kind of provision may well occur in endophytic fungi, considering that a widespread presence of 

endohyphal bacteria resulted in a survey on Ascomycetous endophytes of Cupressaceae [392]. 

Moreover, a role of giant linear plasmids in the synthesis of antibiotic compounds in Streptomyces has 

been proposed since over 25 years [393]. If eventually confirmed for other metabolites, the role of 



Agriculture 2015, 5 945 

 

 

these “third parties” could represent the means through which the biosynthetic abilities are 

interchanged between plants and their associated endophytes, and also explain why in a few cases this 

property is lost after repeated subculturing. This latter undesired aspect, which is reported to impair an 

efficient employment of endophytic fungi by the pharmaceutical industry, might also be consequential 

to more subtle events at the gene level, considering that the plant-endophyte interaction may involve 

promotion of gene transcriptions. Coherent with this possibility are the elicitating properties observed 

by endophytes on the synthesis of a number of bioactive plant products, with a few cases previously 

mentioned in this review [193,361,362]. Finally, an intriguing elicitating function may also 

characterize other cohabiting endophytic strains not directly capable to produce a given metabolite, as 

shown in the case of strains of Alternaria sp. and Phomopsis sp. which consistently increased taxol 

synthesis by a taxol-producer Paraconiothyrium sp. from Taxus x media in co-cultures [394]. 

Quite clearly, the complex evolving scenario outlined in this paper is introductory to further advances 

in the elucidation of the genetic and biochemical bases of the synthesis of bioactive compounds, and 

the reflecting biocenotic interactions among plants, their associated endophytes and other involved 

microorganisms. New acquisitions in these fields will be fundamental in order to exploit microbial 

strains for a large-scale production of plant-derived drugs in controlled fermentative processes. 
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