
Citation: Mao, Z.; Cai, Y.; Guo, M.;

Ma, Z.; Xu, L.; Li, J.; Li, X.; Hu, B. Seed

Trajectory Control and Experimental

Validation of the Limited

Gear-Shaped Side Space of a

High-Speed Cotton Precision Dibbler.

Agriculture 2024, 14, 717. https://

doi.org/10.3390/agriculture14050717

Academic Editor: Caiyun Lu

Received: 29 March 2024

Revised: 24 April 2024

Accepted: 29 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Seed Trajectory Control and Experimental Validation of the
Limited Gear-Shaped Side Space of a High-Speed Cotton
Precision Dibbler
Zibin Mao 1 , Yiquan Cai 1, Mengyu Guo 2,*, Zhen Ma 3 , Luochuan Xu 1, Junwei Li 1,4, Xiangyu Li 1

and Bin Hu 1,4,*

1 College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China;
mzb316@hotmail.com (Z.M.); cai3365269059@hotmail.com (Y.C.); xuluochuan@stu.shzu.edu (L.X.);
emillee2011@163.com (J.L.); lixiangyu@stu.shzu.edu.cn (X.L.)

2 Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs,
Shihezi 832003, China

3 School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; 18255183270@163.com
4 Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery,

Shihezi 832003, China
* Correspondence: gmy2891@126.com (M.G.); hb_mac@shzu.edu.cn (B.H.); Tel.: +86-131-5040-3719 (M.G.);

+86-180-9758-0489 (B.H.)

Abstract: In this paper, a cotton precision seed-taking dibbler device was designed to address the
problems of congestion and leakage of the hole-type dibbler during high-speed operation (more
than 4 km/h). Firstly, the motion trajectory of the seed in the limited gear-shaped space was
analyzed and a motion model was established to analyze the relationship between the motion
trajectory and seed-filling performance. Secondly, a central combination test with four factors and
five levels was implemented using the discrete element software EDEM2018, which simulated the
seed-filling performance of the seed-holding space with different structural dimensions. The optimal
parameters impacting the seed-filling behavior of the designed dibbler were derived via response
surface optimization and multiple regression analyses. Under optimal conditions, three bench tests
were repeatedly conducted, and the average qualified index was 93.67%, the leakage index Y3 was
2.67%, and the multiple index Y2 was 3.66%, which was close to the simulation results. Finally,
for the speed adaptability test of the seed-holding space with optimal structural parameters, the
qualified index was more than 90% when the rotating speed ranged from 1.0 to 2.0 r/s (the speed
of the corresponding dibbler was 5.4 km/h to 7.2 km/h), indicating that the dibbler could meet the
requirements of high-speed operation and had good speed adaptability. The results can not only
provide a reference for the development of precision hole-type dibblers but also have theoretical
significance for the quantitative separation of the individual from the population of irregularly
rotating agricultural materials and ore materials such as cotton seeds.

Keywords: agricultural planting machinery; seed-holding space; high-speed filling; parameter
optimization

1. Introduction

A dibbler is a mechanical tool used for sowing. Its function is to separate a single seed
from a pile of seeds and sow the single seed into the soil. In semi-arid and arid regions,
the hole-type dibbler is widely used for precision sowing on the membrane [1,2]. One
of the key steps of a precision dibbler on the membrane is seed filling [3], which is also
the prerequisite for the precision seed metering of the dibbler. According to the type of
seed metering parts, there are currently two categories of dibblers: mechanical [4–6] and
pneumatic [7–9]. The mechanical hole-type dibbler has been applied extensively in cotton
plantations in semi-arid and arid regions [10] due to advantages like structural simplicity,
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adequate compatibility, operational convenience, and easy maintenance. However, as the
operating velocity of the planter machine increases (exceeding 4 km/h) [11,12], the sowing
leakage index increases drastically. This, to some extent, limits the broader application
and popularization of mechanical dibblers for the following reasons: (1) seed congestion
resulting from mutual squeezing among various particles during seed filling and (2) seed
leakage caused by the excessively high relative linear speed between the seed tray and
seeds during the seed-filling process [13–16].

Lei et al. [17] used EDEM software and high-speed camera technology to conduct
simulation and experimental research on the seed group movement and seed feeding
performance of a seeder and explored the filling performance of the seeder for rapeseed and
wheat seed at speeds ranging from 10 r/min to 40 r/min. However, the filling performance
was not analyzed at higher speeds. Li et al. [18] designed a groove structure to forcibly
orient the population and improved the seed-filling behavior of the rape seeder, providing
a reference for the improvement of mechanical dibblers. Zhang et al. [19] designed a
peculiar U-shaped cavity-type precision seeder unit for rice, which met the requirement for
the general precision direct hill-drop seeding of conventional rice in fields. However, the
maximum sowing speed of the seeder was 23.8 r/min, resulting in low seeding efficiency.
Shi et al. [20] improved the performance of the air-suction seeder with a corn roller. Based
on corn film planting characteristics in arid northwestern regions, elastic rubber was
utilized to improve the air-suction disc architecture of the seeder. Although the qualified
index of grain spacing was more than 95.54%, there was no significant improvement in the
rotation rate of the suction tray, which was 20 r/min. Su et al. [21] designed a new kind of
precision wheel-spoon-type seeding unit for Pinellia ternata (a Chinese medicinal herb),
which improved the seed-filling performance of irregular Pinellia ternata seeds under low-
speed operation. The aforementioned researchers of mechanical dibblers mainly focused on
improving the structure of the dibbler and evaluating and verifying the working principle
using feasible test methods. However, the issue of how to improve the high-speed seeding
performance of dibblers for irregular seeds, particularly cotton seeds, is still unresolved.
The leakage of seed filling from cotton seeders has not been extensively studied.

To address the problems of congestion and leakage in the high-velocity seed-filling
process of hole-type dibblers, Hu et al. [22] proposed the theory of high-velocity seed-filling
by considering the stress borne by the seed group and the constrained gear-shaped lateral
space. Although the problem of the high leakage rate of cotton seeds during seed filling
at high velocities can be effectively solved by the related seed metering device, further
research is required to determine the factors impacting the seed-filling performance of the
dibbler. In this paper, EDEM numerical simulation, high-speed camera observation, and
orthogonal test analysis were combined. Firstly, the dynamics of the filling process of the
dibbler were analyzed and a mechanical model for filling was established. Secondly, the
motion trajectory of cotton seed in the limited space was analyzed, and the relationship
between the structural parameters of the motion trajectory and the working parameters
was obtained. Thirdly, a simulation model of the seed tray and seed movement was
constructed to obtain the key structural parameters affecting the leakage rate. Finally, the
filling performance of cotton seed was optimized by statistical analysis. This study not
only effectively improves the working speed of the cotton dibbler (up to 7.2 km/h) but
also illustrates the mechanism of the orderly arrangement, migration, and quantitative
separation of cotton seeds at high speed, providing a reference for the design and research
of cotton precision dibblers type holes. It is of theoretical significance to quantitatively
separate individuals from the population for irregularly rotating agricultural materials and
ore materials like cotton seed.

2. Materials and Methods
2.1. Structure and Working Principle of the Dibbler

As shown in Figure 1a, the dibbler consisted primarily of a pressure plate, a fixed plate,
a seed-cleaning mechanism, an elastic seed-throwing mechanism, a seed tray with a holding
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space, a seed chamber isolator, a seed guider, a duck-beak assembly for hole formation,
a dibbler axle, a bearing, and a mobile plate. The elastic seed-throwing mechanism was
arranged on the fixed plate, which was fixed on the axle of the dibbler and connected to
the seed chamber separator with bolts. The moving plate was connected to the axle of the
dibbler through the bearing, and the seed guider and duck-beak hole-forming assembly
were connected through a concave–convex groove and fixed by bolts. The pressure plate,
duck-billed assembly for hole formation, and mobile plate were connected and fixed by
bolts, and the seed tray with a holding space was fixed on the moving plate by bolts.
When the dibbler was operational, the fixed plate, elastic seed-throwing mechanism, and
seed-chamber isolator were immobile, while the pressure plate, seed tray, seed guider,
duck-billed assembly, and mobile plate rotated synchronously. The fixed plate and the seed
chamber separator formed a seed take-in chamber. The cotton seeds were introduced into
the seed take-in chamber through the seed inlet on the fixed plate. To avoid the interference
of seed movement in the two chambers, the isolator partitioned the dibbler into a take-in
chamber and a seed-charge chamber.
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Figure 1. Structure and working principle of dibbler. (a) Structure diagram. (b) Filling and quantitat-
ing seeds in take-in chamber. (c) Seed charge and drop-out in seed charge chamber.

As shown in Figure 1b,c, the dibbler was divided into the seed-filling and quantitating
process in the take-in chamber and the seed-charging and dropping process in the seed-
charge chamber [23–25], according to the working procedure of the dribbler. To complete
the semi-precise seed filling, the seeds in the take-in chamber were squeezed into a high-
speed, rotating, constrained, gear-shaped lateral space under the effect of seed group
stress. The seeds rotated concurrently with the seed tray, continuously adjusting the state
of motion; arranged and migrated along the inclination surface; and eventually entered
the type hole. Following treatment with the seed-cleaning mechanism at the upper left,
the single seed in the type hole was laterally dropped into the seed guider at the rear
end through the seed-chamber separator under the elastic seed-throwing mechanism,
accomplishing the elastic throwing of seeds. The seed guider allowed the seeds to quickly
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enter the duck beak. When they rotated synchronously and moved to the lowest position,
the duck beak was opened, and the seeds fell into the soil hole.

2.2. Dynamic and Trajectory Analyses of the Seed-Filling Process

Figure 2a,b display the structural schematic diagram of the seed tray with the holding
space, presenting the bottom surface, seed-arraying surface, top surface, seed-filling surface,
seed-holding surface, and type hole. The seed-arraying surface, seed-filling surface, and
seed-holding surface formed the constrained, gear-shaped, lateral space, which was known
as the seed-holding space.
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Figure 2. Stress analysis diagram of seeds in the seed-holding space. (a) Force diagram seed adjusting
and arraying (b) Main structural parameters of seed-filling performance. Note: F represents the
seed tray thrust, (N); F1 represents the vertical supporting force of lower to upper seeds, (N); F2

denotes the horizontal overall compressive stress of the seed box lateral wall, (N); FN1 and FN2 refer
separately to the supporting forces of the seed-arraying surface to seeds and of the seed-chamber
isolator to seeds, (N); f 1 represents the friction between lower and upper seeds, (N); f 2 is the frictional
force between the seed box lateral wall and seeds, (N); f N1 and f N2 refer separately to the frictional
forces imposed by the seed-arraying surface on seeds and between the seed-chamber isolator and
seeds, (N); Fr denotes the centrifugal force of seeds, (N); and G signifies the gravitational force on
the seed, (N).

The x’ axis was vertical to the bottom surface, while the z’ and y’ axes were situated
at the bottom surface. The origin and pathway of the coordinate system were denoted
separately by o’ and o’-x’y’z’. R and r represent the outer and inner diameters of the seed
tray, (mm), respectively; a is the length of the seed-arraying surface, (mm); α is the included
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angle between the seed-arraying surface and the bottom surface, that is, the inclination
of the seed-arraying surface, (◦); δ is the angle between the seed-holding surface and the
top surface, that is, the inclination of the seed-holding surface, (◦); H is the height of the
seed-holding space, (mm); R’ signifies the shortest distance from the seed-holding space to
the seed tray center, (mm); R0 denotes the distance between the centers of the type hole
and the seed tray, (mm).

The V-shaped, grooved structure space is composed of green, blue, and yellow planes
in the figure.

When the seed was resting on the seed-arraying surface, the center of gravity of the
seed was taken as the origin. The X, Y, and Z axes were made separately parallel to the x’,
y’, and z’ axes to establish a new three-dimensional mechanical O-XYZ system, which is
depicted in Figure 2a (the O-XYZ and o’-x’y’z’ coordinate systems are dynamic reference
systems and the o-xyz coordinate system, which was established with the rotation center of
the seed tray, was a fixed reference system). The equation of motion of the seed in the seed
holding space is as follows:

v = ω · [R′+ H · cot α]

v = v0 +
∫ t

0 aYdt

H − (u, h)max = 1
2

∫ t
0 aXdt2

s =
∫ t

0 v − vdt , a < |s| ≤ a·R
R′

R′+ H · cot α − ρ = 1
2

∫ t
0 aZdt2

∑ FX = m · aX
∑ FY = m · aY
∑ FZ = m · aZ

, (1)

where v is the average linear velocity of the seed-holding space of the seed tray, (m/s), and
ω is the angular velocity of the seed tray, (rad/s).

According to agricultural material science theory, the lateral pressure of intra-chamber
bulk particles is determined by seed height and specific gravity. Therefore, the horizontal
pressure was considerably impacted by the lateral pressure coefficient [26]. The force on
the seed was analyzed as follows:

F + fN1 + F1 · sin θ + Fr · s
ρ − f1 − f2 − fN2 − G · sin θ = maY

F2 − FN2 − FN1 · cos α = maX
G · cos θ − FN1 · sin α − F1 · sin θ + Fr · cos(arcsin s

ρ ) = maZ

F1 = γ · z · Ω1 · sin α
F2 = ξ · γ · z1 · Ω1
fN1 = µ1 · FN1
fN2 = µ2 · FN2
f1 = µ3 · F1
f2 = µ4 · F2

Fr = m · v2

ρ

G = m · g = γ(z1 − z)Ω1
ξ = tan2(45 − τ

2 )
θ = ω · t
ρ2 = s2 + [R′+ H · cot α]2

, (2)

where aX, aY, and aZ are the acceleration of the seed on the X, Y, and Z axes, (m/s2);
γ represents the specific gravity, (kg/m3); ξ denotes the coefficient of lateral pressure;
τ denotes the inter-seed angle of internal friction, (◦); Ω1 represents the seed layer surface
area, (m2); µ1, µ2, µ3, and µ4 refer separately to the coefficients of sliding friction between
the seed tray and seed, seed and separator, lower-layer seeds and seed, and chamber and
seed; z1 represents the height of the lower-layer seed, (mm); z and m separately denote
the height (mm) and weight (kg) of the seeds; g represents the acceleration of gravity,
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(m/s2); v denotes the seed velocity along the resultant force direction, (m/s); ρ represents
the curvature radius of centrifugal force, (m); θ represents the angle of gravity direction
with reference to the coordinate system Y-axis, (◦); s represents the distance between the
seed barycenter and the type hole opening, (mm); ω denotes the seed tray angular velocity,
(◦/s); and t refers to the time spent for the movement of the seed tray to the specific seed
state from the original position.

Equations (1) and (2) represent the motion state of the barycenter of the seed in the
seed-holding space, which is relatively complex. A simplified calculation can be utilized.
Assume that the seed has reached the bottom of the V-shaped groove after semi-precise
seed-filling. Then, the seed moves along the V-shaped groove to the hole inlet at a certain
relative speed, establishes a fixed reference system with the rotation center of the seed tray,
takes the pathway coordinate system as the dynamic reference system, projects it to the
seed tray bottom surface, and analyzes its trajectory.

The relative equation of motion of the cotton seed on the o’-y’z’ plane is as follows:{
y′ = s −

∫ t
0 vr · dt 0 < s < a

z′ = R′+ H · cot α R′ < z′ ≈ R0 < R
, (3)

The equation of implicated motion on the plane is as follows:
y′o′ = R′ · sin θ
z′o′ = R′ · cos θ
θ = ω · t

, (4)

As shown in Figure 3a, the coordinate transformation relationship between the dy-
namic system and the fixed system is as follows:{

y = y′o′ + y′ · cos θ + z′ · sin θ
z = z′o′ − y′ · sin θ + z′ · cos θ

, (5)

The absolute equation of motion of the cotton seed on the plane obtained by simulta-
neous Equations (3)–(5) is as follows:{

y = (s −
∫ t

0 vrdt) · cos ωt + (2R′+ H · cot α) · sin ωt
z = (s −

∫ t
0 vrdt) · sin ωt + (2R′+ H · cot α) · cos ωt

, (6)

where vr is the relative speed between the seed and the seed holding space, (m/s).
Figure 3 displays the trajectory of the seed. In Figure 3a, the trajectory of the relative

motion of the seed in the o’-y’z’ plane is almost a straight line. Here, the seed enters
the type hole along a straight line that is located on the arraying surface of the seed-
holding space. In Figure 3b, the trajectory of the absolute motion of seeds is composed of
|sI| + |sII| + |sIII|. Among them, |sI| is an involute segment. In stage I (i.e., the semi-precise
seed-filling stage), there is a large relative velocity between the seed-holding space and
the seed, as depicted in the o’-y’z’ plane; the seed quickly approaches R0 from R. |sII| is
an approximate arc segment. In stage II (i.e., the self-adaptive motion state regulation
and migration stage), the relative motion between the seed and the seed-holding space
is minimal or non-existent. The seed mainly adjusts the motion of the state, which is
manifested in the o’-y’z’ plane: the seed only moves circumferentially and hardly moves
radially. |sIII| is an involute segment. In stage III (i.e., precision seed filling stage), there is
a relative velocity between the seed-holding space and the seed, and the seed enters the
type hole linearly along the seed-arraying surface. The seed is shown approaching R0 from
R on the o’-y’z’ plane. According to previous research, there must be no relative motion
(absolute zero velocity motion) between the seed and the seed-holding space. When the
structural parameters are appropriate, in addition to ensuring a specific seed height, it is
also necessary to apply surface treatment to all parts in contact with the seed. The purpose
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is to design the surface roughness of the parts at the appropriate level, ensuring that the
value of the friction coefficient between the parts and the seed is appropriate. Furthermore,
there is a relationship between the size of θ and the absence of relative motion. In most
cases, the seeds have small relative motion while adjusting their posture. During seed
filling, stage II will be affected if the relative speed between the seed and the seed holding
space is large in the whole process, indicating that |sII| ≈ 0. Here, the absolute motion
trajectory of the seed is |s| and the time from R to R0 of the seed decreases. Therefore, the
time to adjust the posture is short, causing leakage and congestion. Stages I and III are
affected if the relative speed between the seed and the seed-holding space is small in the
whole process, implying a reduction in the fluidity of the seed. The seed whose posture
is adjusted may be blocked by the seed whose posture is not adjusted. Consequently, the
seed is unable to enter the type hole, resulting in leakage filling. Therefore, the relative
speed of each stage must be controlled.
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Figure 3. Diagram of seed trajectory. (a) Relative trajectory of seed. (b) Actual trajectory of seed.
Note: The brown area represents the state of the seed group when the dibbler is working, the dark
brown area represents the effective seed group height (which affects the motion state of the seed),
and z represents the critical seed group height when the relative speed between the seed and the seed
tray is zero.

Based on the aforementioned analysis and prior research, at an invariant rotational
velocity of the seed tray, increasing s or decreasing vr can make the seed have a longer
absolute motion trajectory, leaving more time for the seed to adjust its posture. However,
an excessively long seed-arraying surface will increase the probability of the arranged seed
being disturbed by the seed group and reduce the qualified index of seed filling. For the
structural parameters, the length of the seed-arraying surface a can be altered to obtain the
appropriate s. Furthermore, the inclination of the seed-arraying surface a can be controlled
to obtain the appropriate vr. The angle of the seed-holding surface δ can be controlled to
obtain the appropriate seed fluidity.

The seeds are regarded as particles in Equations (1), (2) and (6). However, the real
motion of seeds must include their posture changes. According to the attitude regulation
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process of satellites around the earth [27,28], it requires at least three coordinate systems to
completely express the motion of seeds in the seed holding space, which include a fixed
reference system (o-xyz), the O-XYZ coordinate system for trajectory, and the coordinate
system for the body established by the long axis and short axis of the seed (not shown
in the text). The included angle between the body and trajectory coordinate systems is
0 when the seed is in its final stable state, indicating that the two coordinate systems
coincide fully. Moreover, the Euler angle can be used to describe the seed posture. Thus,
the friction coefficient (µ1, µ2, µ3, µ4), the rotation speed of the seed tray (n), seed group
height (z), and spatial structure parameters of the seed-holding space (α, a, δ, etc.) can be
used to describe the state-of-motion change of seed. However, further research is required
to understand whether this matrix exists or whether the existing matrix can accurately
describe the state of motion and trajectory of seeds. Cai et al. [29] proved that the state-of-
motion regulation of seeds is related to the rotation speed of the seed tray (n), seed height
(z), and friction coefficient (µ1). However, the impact of structural parameters on seed-
filling performance was not analyzed. Due to the complexity of the model and the presence
of many parameters, it is impossible to use the traditional expression to describe the motion
of the seed. The application of EDEM discrete element software is a good solution to such
challenging problems.

2.3. Simulation Test of Seed-Filling Performance

To improve the operational performance of the dibbler and optimize the design
parameters, the discrete element simulation software EDEM2018 was used to perform the
seed-filling test and analyze the test results. Finally, the bench test confirmed the reliability
of the optimization results.

In this paper, Xinluzao 61 cotton seeds were individually measured for triaxial dimen-
sions and analyzed by employing the Kolmogorov–Smirnov test. The results demonstrated
that the p values for the thickness (u), length (l), and width (h) of the cotton seeds exceeded
0.05, indicating an approximately normal distribution with the following triaxial seed di-
mensions: l value (9.063, 0.186) mm, with an 8.16–9.95 mm scope; h value (4.793, 0.087) mm,
with a 4.6–4.85 mm scope; and u value (4.698, 0.98) mm, with a 4.55–4.45 mm scope. Given
the complex geometry of cotton seeds, reverse engineering [30]—a process of establishing
product CAD models from existing physical models, especially suitable for objects with
complex geometry—was utilized to obtain the seed model. As shown in Figure 4a, the
HandySCAN 700 scanner was used to 3D-scan the cotton seeds, save the obtained 3D
model of cotton seeds in x-t format, import the 3D models into EDEM2018 [31], and fill
them with multiple spheres. The total seed mass was set at 0.3 kg, the generation rate at
3 kg/s, and the time step at 1.25 × 10−5 s.

As displayed in Figure 4b, the dibbler was simulated in SolidWorks and subsequently
imported into EDEM2018. The duck beak did not open during the simulation. The seeds
could fall into the soil if they reached the bottom of the duck beak before the duck beak
reached the lowest end of the dibbler. After the simulation, the simulation process was
played back, and the corresponding data were counted. Table 1 displays the relevant
parameters required for simulation [32].

According to the aforementioned results of the analysis and pre-test, good seed-filling
performance was attained when the inclination of the seed-arraying surface X1 (α) was
within the range of 35◦~55◦, the length of the seed-arraying surface X2 (a) was within the
range of 26 mm~40 mm, and, for the inclination of the seed-holding surface X3 (δ), the
rotation speed X4 (n) needed to be in the range of 1.0 r·s−1~2.0 r·s−1 (the corresponding
advancing speed of the dibbler was 5.20 km/h~10.40 km/h). To set up the orthogonal
test, the inclination of the seed-arraying surface X1 (α), length of the seed-arraying surface
X2 (a), inclination of the seed-holding surface X3 (δ), and rotation speed X4 (n) were set
as factors, with the qualified index Y1, the multiple index Y2, and the leakage index Y3
as the evaluation indexes. Table 2 displays a four-factor, five-level orthogonal design
formulated by exploiting the Design Expert’s Central Composite Design (CCD) module.
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The test consisted of 30 groups in total, with two asterisk arms and six center test points of
factor area.
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Figure 4. EDEM simulation model of seed filling. (a) Seed model. (b) Simplified model of dibbler.
Note: The picture shows the simulation state of the dibbler at t = 0.97 s under the conditions of
inclination of the seed-arraying surface α = 45◦, length of the seed-arraying surface a = 33 mm,
inclination of the seed-holding surface δ = 27.5◦, and rotation speed n = 1.5 r/s.

Table 1. Physical properties and contact parameters of materials.

Parameter Seeds Tray Others

Poisson’s ratio 0.25 0.41 0.28
Shear modulus (Pa) 1 × 106 8.9 × 108 8.2 × 1010

Density (kg·m−3) 640 1130 7890
Coefficient of restitution (with seeds) 0.30 0.62 0.52

Coefficient of static friction (with seeds) 0.56 (0.5) 0.48 (0.4) 0.50 (0.50)
Coefficient of rolling friction (with seeds) 0.15 0.09 0.1

Note: The data listed in the table are old; there are certain errors in the coefficient of friction between cotton seed
and cotton seed in different batches. Different processing methods (e.g., surface treatment or not) also change the
static friction coefficient between seed tray and seed and other parts and seed. The above data are only reference
values and may have some errors with actual working conditions. Through actual measurements, a set of average
corrected data of static friction coefficient is given in this paper, which is 0.5, 0.4, and 0.5, respectively.

Table 2. Factors and levels of the orthogonal test.

Levels

Factor

Inclination of
Seed-Arraying
Surface X1/(◦)

Length of
Seed-Arraying

Surface X2/(mm)

Inclination of
Seed-Holding
Surface X3/(◦)

Rotation Speed
X4/(r·s−1)

−2 35 26 0 1.0
−1 40 29.5 13.75 1.25
0 45 33 27.5 1.5
1 50 36.5 41.25 1.75
2 55 40 55 2.0

The JB/T10293–2013 ‘Single Seed (Precision) Dibbler Technical Conditions’ [33] stipu-
lates that the Y1 value must be greater than or equal to 80%, the Y2 value must be less than
or equal to 15%, and the Y3 value must be less than or equal to 8%. The time interval of seed
filling was continuously detected and recorded under a stable operating state of the dibbler,
and the continuous rotation of 20 turns constituted a group of tests (20 × 14 = 280 type
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holes). Every group of the test was triplicated, after which, the average value of each
evaluation index was calculated and recorded.

Y1 = w1
W × 100%

Y2 = w2
W × 100%

Y3 = w3
W × 100%

, (7)

where W denotes the overall quantity of measured type holes in the course of the test; w1
and w2 separately denote the numbers of type holes filled with a single and two or more
seeds during the test; and w3 denotes the number of type holes filled without seed during
the test.

2.4. Bench Test of Seed-Filling Performance

The main purpose of the bench test was to determine if the dibbler could adhere to
the national operation standards in a high-speed operation environment and assess its
speed adaptability. It is evident from Figure 5 that the test system consisted of a bench
for testing seed metering, a precision cotton dibbler, Xinluzao 61 seeds (thousand-seed
weight = 90.4 g, moisture content = 6.3%), a camera (FASTEC TS3, TS4), and motion analysis
software (ProAnalyst). The seed tray was made of 3D-printed photosensitive resin material
and its contact surface was subjected to microtexture alteration such that the coefficient of
friction between the tray and seed was 0.4.
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Figure 5. Bench test. (a) SolidWorks model. (b) Physical part. (c) Bench test of of dibbler.

Some of the image data are shown in Figure 6, where “Begin” is the state in which the
type hole emerged from the population, called the initial state, and “End” is the state in
which the number of seeds in the type hole no longer changed, called the end state. The
dashed line shows the change in the state of the type hole (red) and the dropped seeds
(blue) on the time axis, not represented as a trajectory. The single seed was divided into
two cases: the number of seeds in the type hole was 1 from the initial state to the end state,
as shown in Figure 6a, and the number of seeds in the type hole decreased from multiple
seeds in the initial state to 1 seed in the end state, as shown in Figure 6b. For seeds of the
multiple situation, the number of seeds in the type hole was multiple from the initial state
to the end state, as shown in Figure 6c. For the empty seed situation, the number of seeds
in the hole was reduced from 1 or more seeds in the initial state to 0 seeds in the end state,
as shown in Figure 6d. To carry out the validation experiment, the surface treatment of the
seed tray was needed to reduce the sliding friction coefficient with the cotton seeds to 0.46.
The average values were 92.86% of the single seed rate, 6.43% of the hollow hole rate, and
0.71% of the multi-seed rate, which had a smaller error with the simulation results and was
better than the required value.
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3. Results
3.1. Results of the EDEM Simulation Test

The experimental results of the orthogonal simulation are shown in Table 3, where X1,
X2, X3, and X4 represent the coding values of each factor.

The regression variance analysis on test evaluation index Y1 reveals that the p values
of independent factors X1 and X4 and the interactive factors X1X2 and X2X3 were all < 0.01
and all significantly influenced the Y1 value. The p values of independent variables X2
and X3 and interactive variables X3X4, X2

1 , X2
2 , and X2

4 all varied from 0.01 to 0.05 and all
impacted the Y1 value significantly. The p values of all the interaction parameters X1X3,
X1X4, X2X4, and X2

3 were >0.05 and were all non-significant parameters for Y1. As indicated
by a lack of fit p = 3.49, no additional influencing factors of the response index Y1 were
present. The p value-based rankings of exceedingly significant and significant factors for
Y1 were as follows: X4 > X1 > X2X3 > X1X2 > X2

2 > X2
1 > X3 > X2 > X3X4 > X2

4 , where the
non-significant factors for Y1 were neglected.
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Table 3. Results of the orthogonal simulation test.

Number
Experimental Factors Experimental Indexes

X1/(◦) X2/(mm) X3/(◦) X4/(r/s) Y1/(%) Y2/(%) Y3/(%)

1 −1 −1 −1 −1 91.67 ± 4.18 4.33 ± 2.16 4.00 ± 1.23
2 1 −1 −1 −1 95.33 ± 3.16 0.67 ± 0.66 4.00 ± 1.33
3 −1 1 −1 −1 92.67 ± 6.72 1.00 ± 0.33 6.33 ± 3.67
4 1 1 −1 −1 94.00 ± 5.17 2.00 ± 1.67 4.00 ± 0.36
5 −1 −1 1 −1 80.33 ± 10.34 2.67 ± 0.66 17.00 ± 8.67
6 1 −1 1 −1 93.67 ± 6.58 3.33 ± 1.67 3.00 ± 1.67
7 −1 1 1 −1 97.67 ± 2.16 2.33 ± 0.66 0.00 + 1.58
8 1 1 1 −1 96.33 ± 3.84 3.00 ± 0.33 0.67 ± 0.66
9 −1 −1 −1 1 90.67 ± 6.67 3.33 ± 3.67 6.00 ± 3.02
10 1 −1 −1 1 92.67 ± 5.42 0.33 ± 0.33 7.00 ± 2.58
11 −1 1 −1 1 85.67 ± 7.68 1.66 ± 0.67 12.67 ± 3.42
12 1 1 −1 1 84.67 ± 10.33 1.66 ± 0.66 13.67 ± 4.46
13 −1 −1 1 1 67.33 ± 13.16 1.00 ± 0.33 31.67 ± 7.62
14 1 −1 1 1 85.67 ± 5.71 0.33 ± 0.33 14.00 ± 5.41
15 −1 1 1 1 85.67 ± 3.58 1.66 ± 0.67 12.67 ± 3.67
16 1 1 1 1 80.67 ± 7.53 2.00 ± 0.83 17.33 ± 8.06
17 −2 0 0 0 78.00 ± 12.66 3.00 ± 1.66 19.00 ± 7.36
18 2 0 0 0 93.33 ± 3.16 0.00 + 1.67 6.67 ± 4.96
19 0 −2 0 0 80.67 ± 6.53 4.33 ± 1.67 15.00 ± 3.81
20 0 2 0 0 90.00 ± 4.37 4.00 ± 0.66 6.00 ± 4.42
21 0 0 −2 0 93.67 ± 7.43 1.00 ± 0.33 5.33 ± 0.66
22 0 0 2 0 91.67 ± 6.16 1.33 ± 0.66 7.00 ± 2.36
23 0 0 0 −2 93.33 ± 3.08 6.00 ± 0.66 0.67 ± 0.66
24 0 0 0 2 81.00 ± 9.82 0.00 + 2.34 19.00 ± 5.41
25 0 0 0 0 90.67 ± 6.42 2.00 ± 1.27 7.33 ± 4.31
26 0 0 0 0 91.33 ± 6.78 2.67 ± 0.66 6.00 ± 3.96
27 0 0 0 0 93.33 ± 4.76 1.00 ± 0.34 5.67 ± 3.26
28 0 0 0 0 95.33 ± 3.33 1.67 ± 1.33 3.00 ± 1.67
29 0 0 0 0 92.33 ± 6.42 1.33 ± 0.67 6.67 ± 3.67
30 0 0 0 0 95.33 ± 1.05 1.67 ± 0.67 3.00 ± 2.58

According to the regression variance analysis on test evaluation index Y2, the p value
of the single factor X4 was <0.01, and was an exceedingly significant influencing factor for
the Y2 value. The p values of the independent factor X1 and the interactive ones X1X2 and
X2

2 varied from 0.01 to 0.05, and all impacted the value of Y2 significantly. The p values
for the independent variables X2 and X3 and interactive ones X1X3, X1X4, X2X3, X2X4,
X3X4, X2

1 , X2
3 , and X2

4 , were greater than 0.05, and all were non-significant parameters for
Y2. As indicated by the lack of fit p = 0.0883 in the data, there were no other major factors
influencing the response index Y2. When the non-significant factors for Y2 were excluded,
the p value-based rankings of exceedingly significant and significant factors for Y2 were as
follows: X4 > X2

2 > X1 > X1X2.
According to the regression variance analysis on the test evaluation index Y3, the

p values of the independent factors X1 and X4 and interactive ones X2X3 and X2
1 were

<0.01, and all affected the value of Y3 significantly. The p values of the independent factors
X2 and X3 and the interactive ones X1X2 and X3X4 were in the range of 0.01–0.05, and all
had an extremely significant impact on the Y3 value. The p values of the interaction factors
X1X3, X1X4, X2X4, X2

2 , X2
3 , and X2

4 were >0.05, and all were non-significant factors for Y3.
There were no major factors affecting the response index Y3, as suggested by the lack of fit
p = 0.0554. The p value-based rankings of the factors that were exceedingly significant and
significant for Y3 were as follows: X4 > X2X3 > X1 > X2

1 > X1X2 > X3 > X3X4 > X2, where
the non-significant factors for Y3 were ignored.

The non-significant factors were neglected, while the significant and exceedingly
significant ones were retained. The regression equations for the qualified index Y1, the
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multiple index Y2, and the leakage index Y3 were re-fitted, and new regression equations
(see Equation (9)) were obtained by assuming the significance of regression models and the
insignificance of a lack of fit.

Y1 = 93.05 + 2.58X1 + 1.61X2 − 1.83X3 − 3.89X4 − 2.71X1X2
+1.21X1X3 − 0.1656X1X4 + 2.92X2X3 − 1.21X2X4
−1.79X3X4 − 1.73X2

1 − 1.81X2
2 + 0.0224X2

3 − 1.35X2
4

Y2 = 1.72 − 0.4442X1 − 0.0558X2 + 0.0833X3 − 0.8067X4 + 0.5425X1X2
+0.4162X1X3 − 0.125X1X4 + 0.25X2X3 + 0.2913X2X4
−0.3325X3X4 − 0.1394X2

1 + 0.5269X2
2 − 0.2231X2

3 + 0.2356X2
4

Y3 = 5.22 − 2.14X1 − 1.56X2 + 1.75X3 + 4.69X4 + 2.17X1X2
−1.63X1X3 + 0.2906X1X4 − 3.17X2X3 + 0.9169X2X4
+2.12X3X4 + 1.87X2

1 + 1.28X2
2 + 0.2007X2

3 + 1.12X2
4

(8)



Y1 = 93.08 + 2.58X1 + 1.61X2 − 1.83X3 − 3.89X4 − 2.71X1X2
+2.92X2X3 − 1.79X3X4 − 1.73X2

1 − 1.81X2
2 − 1.36X2

4
Y2 = 1.61 − 0.4442X1 − 0.0558X2 + 0.0833X3 − 0.8067X4

+0.5425X1X2 + 0.5410X2
2

Y3 = 7.54 − 2.14X1 − 1.56X2 + 1.75X3 + 4.69X4 + 2.17X1X2
−3.17X2X3 + 2.12X3X4 + 1.58X2

1

(9)

To further understand how the investigated factors (the inclination of the seed-arraying
surface X1, length of the seed-arraying surface X2, inclination of the seed-holding surface
X3, and rotation speed X4) impacted the evaluation indexes (the qualified index Y1, multiple
index Y2, and leakage index Y3), the influence rules of independent factors on the evaluation
indexes of seed-filling performance were assessed using the Design Expert’s Analysis
module. As depicted in Figure 7, the univariate model curves were replotted utilizing the
Origin software.

The impact of the X1 factor on the test evaluation indices Y1, Y2, and Y3 is depicted
by the curves Y(X1)1, Y(X1)2, and Y(X1)3, respectively, in Figure 7a. With increasing X1,
Y(X1)1 initially increased and then decreased, Y(X1)2 continued to decrease, and Y(X1)3 first
decreased and then increased. Y(X1)1 achieved its maximum values when X1 had a level
value close to 0.5 (47.5◦), while the value of Y(X1)2 was small and the value of Y(X1)3 attained
the minimum. The reason for this phenomenon was the inclination of the seed-arraying
surface, which allowed the seeds to quickly enter the V-shaped seed-holding space and
adjusted the state of motion of the seeds at the same time, with a value of 47.5◦. Zhang
et al. [34] utilized the steepest descent principle to solve the seed metering angle of the
inner wall of the hole of the hole-type seeder, enabling seeds to quickly slide to the bottom
of the seed-holding cavity with a value of about 48.7◦. The cross-sectional area of the
V-shaped seed-holding space continued to decrease with increasing X1, and the probability
of multiple seeds entering the seed-holding space at the same time decreased, resulting
in the continuous decrease of Y(X1)2. The value of Y(X1)3 decreased as a consequence of
the seeds’ improved ability to quickly enter the seed-holding space as X1 increased. The
cross-sectional area of the V-shaped seed-holding space decreased with the continuous
increase in X1, which also decreased the seed-holding capacity for any posture, increasing
the value of Y(X1)3.

The evaluation indices Y1, Y2, and Y3 were impacted by the X2 factor, as shown by
the curves Y(X2)1, Y(X2)2, and Y(X2)3, respectively, in Figure 7b. As X1 increased, Y(X2)1
increased initially and then decreased, Y(X2)2 decreased initially and then increased, and
Y(X2)3 initially declined and subsequently increased. When X2 had a level value of nearly
0.5 (34.75 mm), the value of Y(X2)1 reached its maximum, while the values of Y(X2)2 and
Y(X2)3 were small. The cause of this phenomenon was that when X2 increased, the duration
of seed motion in the seed-holding space increased, and the state-of-motion adjustment
was more sufficient, increasing the value of Y(X2)1. The dynamic boundary stress effect
became unstable with the continuous increase in X2, and the seeds beyond the scope of
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the seed-holding space were more likely to interfere with the seeds adjusting the state
of motion inside the seed-holding space. This caused the process of the state-of-motion
adjustment of the seed to be interrupted, resulting in multiple seeds, blocking, and leakage.
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In Figure 7c, the curves Y(X3)1, Y(X3)2, and Y(X3)3 portray how the X3 factor impacted
the Y1, Y2, and Y3 indices, respectively. With increasing X3, the value of Y(X3)1 decreased
further, the value of Y(X3)2 was small and changed slightly, and the value of Y(X3)3 increased
further. The fluidity of seed motion in the seed-holding space was enhanced as X3 increased,
making it easier for the seeds to be easily guided into the seed group by the inclined surfaces
of the seed-holding space. Furthermore, the seeds in the seed-holding space became more
active, providing conditions for the seeds to be filled repeatedly. Liu et al. [35] analyzed
the friction and repeated filling behaviors of the cell-belt precision seeder unit for rice
and concluded that increasing the activity and renewal of the seed group could provide
conditions for repeated seed filling in multiple cycles. However, with increasing X3, the
disturbance of the seed-holding space within the seed group became smaller, and the
force chain formed easily between seeds, which was not conducive to seed filling. Du
et al. [36] studied seed group disturbance and seed-filling performance and concluded that
excessively large or insufficiently small seed group disturbance reduced the seed-filling
efficiency of the metering apparatus, which can explain why Y(X3)1 continued to decrease
and Y(X3)3 to increase.

The curves Y(X4)1, Y(X4)2, and Y(X4)3 in Figure 7d illustrate how the the X4 factor
affected the evaluation indicators Y1, Y2, and Y3, respectively. The values of Y(X4)1 and
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Y(X4)2 decreased persistently with increasing X4, whereas the value of Y(X3)3 continued to
increase. The reason may be related to the fact that when X4 increased, the movement time
of the seed-holding space in the seed group decreased, leading to less time for the entry of
seeds in the seed group into the seed-holding space and increasing leakage filling. Even if
the seeds entered the seed-holding space, they had insufficient time to adjust their altitude,
and the seeds could not enter the type hole at a proper altitude, resulting in leakage filling.

The variance regression analyses in Table 4 demonstrate that the interactive variables
X1X2, X2X3, and X3X4 had a significant impact on the test evaluation index Y1. The
evaluation index Y2 was impacted significantly by interactive variables X1X2 and X1X3,
while the Y3 index was affected significantly by the interactive items X1X2, X2X3, and X3X4.
Consequently, only the effects of the significant interactive factors on the Y1, Y2, and Y3
indices were evaluated, while the non-significant interactive variables were ignored.

Table 4. Variance analysis of regression models of the test results.

Source
Qualified Index Multiple Index Leakage Index

Sum of
Squares df F Value p Value Sum of

Squares df F Value p Value Sum of
Squares df F Value p Value

Model 1201.42 14 8.22 0.0001 ** 44.81 14 3.6 0.0096 ** 1277 14 8.36 <0.0001 **
X1 160.12 1 15.33 0.0014 ** 4.73 1 5.32 0.0357 * 109.78 1 10.06 0.0063 **
X2 62.31 1 5.97 0.0274 * 0.0748 1 0.0841 0.7758 58.06 1 5.32 0.0357 *
X3 80.7 1 7.73 0.014 * 0.1667 1 0.1874 0.6713 73.54 1 6.74 0.0202 *
X4 362.78 1 34.73 <0.0001 ** 15.62 1 17.56 0.0008 ** 528.94 1 48.49 <0.0001 **

X1X2 117.45 1 11.25 0.0044 ** 4.71 1 5.29 0.0362 * 75.13 1 6.89 0.0191 *
X1X3 23.4 1 2.24 0.1552 2.77 1 3.12 0.0978 42.28 1 3.88 0.0677
X1X4 0.4389 1 0.042 0.8403 0.25 1 0.2811 0.6038 1.35 1 0.1239 0.7298
X2X3 136.13 1 13.03 0.0026 ** 1 1 1.12 0.3058 160.47 1 14.71 0.0016 **
X2X4 23.35 1 2.24 0.1556 1.36 1 1.53 0.2357 13.45 1 1.23 0.2843
X3X4 51.37 1 4.92 0.0424 * 1.77 1 1.99 0.1789 72.21 1 6.62 0.0212 *

X2
1 81.98 1 7.85 0.0134 * 0.5328 1 0.599 0.451 95.73 1 8.78 0.0097 **

X2
2 89.99 1 8.62 0.0102 * 7.61 1 8.56 0.0104 * 45.25 1 4.15 0.0597

X2
3 0.0138 1 0.0013 0.9715 1.37 1 1.54 0.2344 1.11 1 0.1013 0.7546

X2
4 50.27 1 4.81 0.0444 * 1.52 1 1.71 0.2104 34.3 1 3.14 0.0965

Residual 156.66 15 13.34 15 163.63 15
Lack of fit 137.05 10 3.49 0.0899 11.69 10 3.53 0.0883 147.25 10 4.5 0.0554
Pure error 19.62 5 1.66 5 16.37 5
Cor total 1358.08 29 58.16 29 1440.63 29

Note: * indicates significant (p < 0.05), ** indicates extremely significant (p < 0.01).

As seen in Figure 8a, when the X2 factor exhibited an increase in its level value from
−2 to 2 and the X1 factor had a level value of −2, the value of Y1 exhibited an increasing
trend, rising from 59.7% to 87.82%. When the X2 factor showed an increase in its level
value from −2 to 2 and the X1 factor had a level value of 2, the Y1 index value tended to
initially increase and then decrease. When the X2 factor increased its level value from −2
to −1.10, the value of Y1 increased from 91.70% to the highest value of 93.32%. The value
of Y1 dropped to 76.46% with the persistent elevation in the level value of X2 to 2, and
this trend of decline was more pronounced than the elevation trend. When X1 showed
an increase in its level value from −2 to 2 and X2 had a level value of −2, the value of Y1
exhibited an increasing trend that tended to increase considerably from 59.7% to 91.7%.
When X1 exhibited a −2 to 2 increase in its level value and X2 had a level value of 2, the Y1
value initially increased and subsequently decreased. As the level value of X1 exhibited an
elevation from −2 to −0.84, the value of Y1 increased from 87.82% to the highest value of
90.22%. The value of Y1 decreased to 76.46% as a consequence of the persistent elevation
in the level of X1 value to 2, and this decreasing trend was more pronounced than the
elevation trend. Therefore, if X1 (α) was small, selecting a larger X2 (a) could obtain a
larger Y1, and when X1 (α) was large, selecting a smaller X2 (a) could obtain a larger Y1
and vice versa. Additionally, the dual effect of X1 and X2 on the Y1 value was consistent
with the effect of single-factor action, in which the value of Y1 presented an initial elevation
and a subsequent decline in response to the concurrent elevations in the level values of
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both factors from −2 to 2. As shown in Figure 8a, which depicts the contour variations for
response surface projection, a larger Y1 (94.09%) could be obtained when X1 (α) was nearly
0.97 (49.85 ◦) and X2 (a) was nearly −0.32 (31.88 mm).
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According to Figure 8b, when X3 presented an increase in its level value from −2 to 2
and X2 had a level value of −2, the Y1 value tended to decrease markedly from 97.96% to
67.28%. When X3 exhibited a −2 to 2 elevation in its level value and X2 had a level value
of 2, the Y1 value tended to increase markedly from 81.04% to 97.08%. When X2 showed
an elevation from −2 to 2 in its level value and X3 had a level value of −2, the Y1 value
tended to increase initially and subsequently decrease. As the level value of X2 presented a
−2 to −1.23 elevation, the value of Y1 increased from 97.96% to the highest value of 99.21%.
The value of Y1 dropped to 81.04% as a consequence of the persistent elevation in the level
value of X2 to 2, and such a declining trend was more pronounced than the elevation trend.
When X2 exhibited a −2 to 2 elevation in its level value and X3 had a level value of 2, the
Y1 value tended to increase drastically, rising from 67.28% to 97.08%. In conclusion, when
X2 (a) was small, selecting a smaller X3 (δ) could obtain a larger Y1, and when X2 (a) was
large, selecting a larger X3 (δ) could obtain a larger Y1 and vice versa. Figure 8b, which
depicts the contour variations for response surface projection, demonstrates that a larger
Y1 (97.96%, 97.08%) was achieved when X2 (a) was −2 (26 mm) and X3 (δ) was about −2
(0◦) or when X2 (a) was 2 (40 mm) and X3 (δ) was nearly 2 (55◦).

As shown in Figure 8c, when X4 exhibited a −2 to 2 elevation in its level value and X3
had a level value of −2, the Y1 value tended to initially increase and then decrease. With
a −2 to −0.06 elevation in the level value of X4, the value of Y1 increased from 91.92%
to the highest value of 96.75%, and the increasing trend was evident. With the persistent
elevation in the level value of X4 to 2, the value of Y1 tended to decrease significantly to
90.68%. When X4 exhibited a −2 to 2 elevation in its level value and X3 had a level value of
2, the Y1 value presented a marked downward trend, which continued to decrease from
98.92% to 69.04%. If the level value of X3 presented an increase from −2 to 2 and X4 had
a level value of −2, the Y1 value presented a marked upward trend, which continued to
increase from 91.92% to 98.92%. If X3 exhibited a −2 to 2 increase in its level value and
X4 had a level value of 2, the Y1 value exhibited a pronounced downward trend, which
continued to decrease from 90.68% to 69.04. Thus, if X4 (n) was large, selecting a smaller X3
(δ) could yield a higher Y1 value. Additionally, the dual effect of the X3 and X4 factors on
the Y1 value presented a consistent trend as in the case of single factor action, in which the
value of Y1 presented a continuous decreasing trend in response to the concurrent −2 to
2 elevations in the level values of both factors. As seen from Figure 8c, which depicts the
contour variations for response surface projection, a larger Y1 (98.92%) was obtained when
X3 (δ) was nearly 2 (55◦) and X4 (n) was nearly −2 (1.0 r/s).
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As seen in Figure 9, when X2 exhibited a −2 to 2 elevation in its level value and
X1 had a level value of −2, the Y2 value tended to decrease initially and subsequently
increase. If X2 showed a −2 to 1.10 increase in its level value, the value of Y2 presented a
marked downward trend, which continued to decrease from 6.94% to 1.90%. The value of
Y2 increased from 1.90% to 2.38% due to the persistent elevation in the level value of X1 to
2. Such a trend of decline was more pronounced than the elevation trend. Furthermore,
it agreed with the single X2 factor effect on the value of Y2. Accordingly, under the
aforementioned condition, X2 influenced Y2 significantly. When X2 exhibited a −2 to
2 elevation in its level value and X1 had a level value of 2, the Y2 value tended to decrease
initially and subsequently increase. The value of Y2 decreased from 0.82% to a minimum of
0.23%, with a −2 to −0.97 elevation in the level value of X2. The value of Y2 presented an
obvious increasing trend with the persistent elevation in the level value of X2 to 2, which
increased to 4.94%, and this increase was more distinct than the elevation trend. Moreover,
this trend agreed with the case of the single X2 effect on the value of Y2. When X1 exhibited
a −2 to 2 elevation in its level value and X2 had a level value of −2, the Y2 value tended
to markedly decline from 6.94% to 0.83%. This downward trend agreed with the case of
the single X1 effect on the value of Y2. When X1 exhibited a −2 to 2 increase in its level
value and X2 had a level value of 2, the Y2 value tended to increase markedly from 2.38%
to a maximum of 4.942%. The dual effect of the X1 and X2 factors on the value of Y2
exhibited a consistent trend as in the case of the single X2 effect, in which the value of Y2
presented an initial downward and then an upward trend in response to the concurrent
−2 to 2 elevations in the level values of both factors. Figure 9, which depicts the contour
variations for response surface projection, demonstrates that a smaller Y2 (0.23%) could be
obtained when X1 (α) was nearly 2 (55◦) and X2 (a) was nearly −0.96 (29.64 mm).
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Figure 9. Influence law of interactive items X1X2 on Y2.

According to Figure 10a, if X2 exhibited an increase in its level value from −2 to 2 and
X1 had a level value of −2, the value of Y3 decreased from 29.94% to 6.34%, indicating a
significant downward trend. When X2 exhibited an increase in its level value from −2 to
2 and X1 had a level value of 2, the Y3 value presented a marked upward trend, which
increased from 4.02% to 15.14%. When X1 presented a −2 to 2 elevation in its level value
and X2 had a level value of −2, the Y3 value tended to decline to 4.02% from 29.94%. If
X1 exhibited a −2 to 2 elevation in its level value and X2 had a level value of 2, the Y3
value tended to initially increase and then decrease. With a −2 to −0.71 elevation in the
level value of X1, the Y3 value tended to decline markedly from 6.342% to a maximum of
3.65%. With the persistent elevation in the level value of X1 to 2, the Y3 value increased to
15.14%, and this upward trend was more distinct than the downward trend. This trend was
consistent with the case of the single X1 effect on the Y3 value. Therefore, when X1 (α) was
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small, selecting a larger X2 (a) could yield a smaller Y3 value, and when X1 (α) was large,
selecting a smaller X2 (a) could yield a smaller Y3 value and vice versa. The dual effect of
the X1 and X2 factors on the Y3 value was consistent with the case of the single X1 or X2
effect, where the Y3 value presented an initial downward and subsequent upward trend
in response to the simultaneous −2 to 2 elevations in the level values of both factors. As
seen in Figure 10a, which depicts the contour variations for response surface projection, a
smaller Y3 (3.65%) could be obtained when X1 (α) was nearly −0.71 (41.25◦) and X2 (a) was
nearly 2 (40 mm).
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As shown in Figure 10b,c, the influence of interactive items X2X3 and X3X4 on the
test evaluation indicator Y3 was opposite to that on the test evaluation indicator Y1. The
existence of Y3 below 0 indicated that there was a minimal error in the fitting equation
provided in Equation (9). However, this model was still applicable as per the variance test
in Table 4.

Among the performance indicators that evaluate the efficiency of seed filling, the qual-
ified and leakage indices are two crucial evaluation indicators that affect the application of
precision dibblers [37]. To upgrade the seed-filling performance, the crucial dibbler parame-
ters (i.e., the inclination of the seed-arraying surface X1, length of the seed-arraying surface
X2, inclination of the seed-holding surface X3, and rotation speed X4) were optimized
to derive an optimal parameter assortment. Utilizing the Design Expert’s Optimization
module, the second-order regression model constructed was subjected to optimal analysis
while adhering to the following constraints:

Target


maxY1
0% ≤ Y2 ≤ 15%
minY3

s.t.



35◦ ≤ X1 ≤ 55
◦

26mm ≤ X2 ≤ 40mm
0◦ ≤ X3 ≤ 55

◦

1r/s ≤ X4 ≤ 2r/s
80% ≤ Y1 ≤ 100%
0% ≤ Y2 ≤ 15%
0% ≤ Y3 ≤ 5%

, (10)

Based on the optimization outcomes, the optimal combination of parameters was X1
(α) = 46.40◦, X2 (a) = 35.45mm, X3 (δ) = 28.13◦, and n =1.25 r/s (approximately 6.75 km/h),
which provided the highest Y1 = 96.88%, lowest Y3 = 0.3%, and corresponding Y2 = 2.82%.
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3.2. Results of the Bench Test

Figure 11 displays the seed adaptability test results for the seed tray under the optimal
structural parameters. Its qualified index was more than 90% while operating at rotational
speeds in the range of 1.0–2.0 r/s. When operating in the range of 1.0–1.75 r/s, its various
indexes were better than those in JB/T10293–2013 ‘Single Seed (Precision) Dibbler Technical
Conditions,’ and its speed adaptability was good.
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The experimental verification was conducted at the Key Laboratory of Northwest
Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi University,
at the beginning of June 2022. The average values of the bench experiment under the
aforementioned conditions were Y1 = 93.67%, Y3 = 2.67%, and Y2 = 3.66%. The errors of
these percentages in the model forecasts were 3.21%, 1.97%, and 0.84%, respectively. The
verification outcomes were fundamentally consistent with the model forecasts, as indicated
by a mean error of 2.01%. Furthermore, the results were consistent with the JB/T10293–2013
‘Single Seed (Precision) Dibbler Technical Conditions’, which stipulates that the Y1 value
must be greater than or equal to 80%, the Y2 value must be less than or equal to 15%, and
the Y3 value must be less than or equal to 8%.

3.3. Analysis of Differences between the Simulation and Bench Experiment Results

There were minor differences between the simulation and bench experiment results.
The maximum difference was only 3.12%, which was within the acceptable range. The
reasons for these discrepancies are as follows:

1. The values for physical properties and material contact parameters were invariant
during the course of the simulation. For instance, the coefficients of seed–component
static friction were assigned as 0.40. Nevertheless, variations in the values were
observed within some range during the bench experiment [38].

2. During the simulation, the parameters of the seed tray had ordinary values. However,
3D printing was used to fabricate the seed tray during the bench experiment. Conse-
quently, their angle parameters were complex and differed slightly from the standard
ones after processing.

The operating performance of the designed type-hole dibbler was impacted by vi-
bration. In addition to the errors from the simulation software, vibration contributed
significantly to the differences between simulation outcomes and bench test findings. For
better consistency between these two results, we could either introduce vibration to the
simulation or reduce it in the bench experimentation [39].

Thus, the differences between simulation outcomes and bench test findings were
inevitable due to the aforementioned reasons. Nevertheless, despite tolerable minor differ-
ences, these two types of results are credible and valid.
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4. Discussion

1. In this study, through a combination of EDEM numerical simulation, high-speed
camera observation, and orthogonal test analysis, the migration trajectory of cotton
seed in the constrained, gear-shaped, lateral space of the seed tray was obtained.
However, the type hole and the constrained, gear-shaped, lateral space on the seed
retrieval tray could effectively disturb the population and improve the mobility
performance [40]. This finding can effectively improve the population congestion and
arching in previous studies [16].

2. The innovative design of the dibbler scheme in this study effectively improved the
working speed of the dibbler. The test results show that the maximum rotating speed
of the seed tray could reach 1.75 r/s (that is, the working speed of the dibbler was
9.5 km/h) under the premise of meeting the requirements of agronomy. Compared
with the previously designed structure scheme [17,19–21], the increase in speed
could effectively improve the work efficiency of the seeding machinery and reduce
labor costs.

3. In this study, firstly, a structural model was established. Secondly, simulation soft-
ware was used to simulate the working process. Finally, a bench test was used for
verification. This is a classical approach that is extensively employed for simulating
seed-metering apparatuses [41,42]. However, the effect of vibration on filling per-
formance was not considered in this paper. In further research, we will attempt to
explore more deeply the vibration effect based on field experiments and bench tests
combined with the existing studies [43–45].

5. Conclusions

1. The forces on the seed in the seed-holding space were analyzed using the theoretical
analysis method in conjunction with the working characteristics of the constrained,
gear-shaped, lateral space of a precision high-velocity cotton dibbler. Consequently,
the trajectory of the seed-filling motion was obtained through observations of a high-
speed camera. It was verified that the cotton seed eventually became single and
multiple and that leakage occurred.

2. The discrete element software EDEM2018 was utilized to simulate the seed-filling
performance of the seed-holding space with different structural dimensions. A central
combination test with four factors and five levels was implemented. The optimal
parameter assortment impacting the seed-filling efficiency of the designed dibbler was
derived via response surface optimization and multiple regression analyses. Finally,
the errors of the qualified index (Y1), multiple index (Y2), and leakage index (Y3) in
the model forecasts were 3.21%, 1.97%, and 0.84%, respectively.

3. When the rotating speed was between 1.0 and 2.0 r/s for the speed adaptability test
of the seed-holding space with the optimal structural parameters, the qualified index
was greater than 90%, and, when the rotating speed was between 1.0 and 1.75 r/s, its
various indexes were better than those in JB/T10293–2013 ‘Single Seed (Preci-sion)
Dibbler Technical Conditions’, implying that the speed adaptability was good.
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