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Abstract: Crop growth parameters are the basis for evaluation of crop growth status and crop yield.
The aim of this study was to develop a more accurate estimation model for corn growth parame-
ters combined with multispectral vegetation indexes (VIopt) and the differential radar information
(DRI) derived from SAR data. Targeting the estimation of corn plant height (H) and the BBCH
(Biologische Bundesanstalt, Bundessortenamt and CHemical industry) phenological parameters, this
study compared the estimation accuracies of various multispectral vegetation indexes (VIopt) and
the corresponding VIDRI (vegetation index corrected by DRI) indexes in inverting the corn growth
parameters. (1) When comparing the estimation accuracies of four multispectral vegetation indexes
(NDVI, NDVIre1, NDVIre2, and S2REP), NDVI showed the lowest estimation accuracy, with a nor-
malized root mean square error (nRMSE) of 20.84% for the plant height, while S2REP showed the
highest estimation accuracy (nRMSE = 16.05%). In addition, NDVIre2 (nRMSE = 16.18%) and S2REP
(16.05%) exhibited a higher accuracy than NDVIre1 (nRMSE = 19.27%). Similarly, for BBCH, the
nRMSEs of the four indexes were 24.17%, 22.49%, 17.04% and 16.60%, respectively. This confirmed
that the multispectral vegetation indexes based on the red-edge bands were more sensitive to the
growth parameters, especially for the Sentinel-2 red-edge 2 band. (2) The constructed VIDRI indexes
were more beneficial than the VIopt indexes in enhancing the estimation accuracy of corn growth
parameters. Specifically, the nRMSEs of the four VIDRI indexes (NDVIDRI, NDVIre1DRI, NDVIre2DRI,
and S2REPDRI) decreased to 19.64%, 18.11%, 15.00%, and 14.64% for plant height, and to 23.24%,
21.58%, 15.79%, and 15.91% for BBCH, indicating that even in cases of high vegetation coverage, the
introduction of SAR DRI features can further improve the estimation accuracy of growth parameters.
Our findings also demonstrated that the NDVIre2DRI and S2REPDRI indexes constructed using red-
edge 2 band information of Sentinel-2 and SAR DRI features had more advantages in improving the
estimation accuracy of corn growth parameters.

Keywords: red-edge vegetation index; DRI; plant height; BBCH

1. Introduction

Optical remote sensing images can obtain rich spectral features of vegetation canopy,
especially the red-edge bands sensitive to green vegetation, which have absolute advan-
tages for monitoring crop growth. However, optical remote sensing images are susceptible
to weather conditions. It is often difficult to obtain satisfactory optical images during
the cloudy and rainy season of crop growth. In view of this, some scholars have stud-
ied methods for monitoring crop growth based on time-series Synthetic Aperture Radar
(SAR) images [1,2]. However, these methods require SAR images throughout the entire
crop growth season, with a large data volume and complex data processing. Moreover,
using SAR data alone cannot effectively utilize the rich spectral features of crop canopies
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reflected by optical data. Therefore, removing the need for time-series SAR data, this study
investigated a method for estimating corn growth parameters by combining multispectral
and backscatter features based on partially obtainable optical and SAR data during the
crop growth season.

Existing research has shown that there is a good correlation between the optical
vegetation indexes and crop growth parameters [3,4]. However, when vegetation coverage
or aboveground biomass is high, especially for corn crops with a large plant size, the optical
vegetation indexes are more prone to saturation in the middle or later growth stages [5,6].
At this time, the optical vegetation indexes are less sensitive to the crop growth parameters.
Some studies have found that there is a better correlation between the red-edge bands and
the growth parameters of green vegetation. The red-edge vegetation indexes can weaken
the saturation phenomenon to a certain extent when the vegetation coverage is high, and
they can more effectively monitor the crop growth status and the growth parameters [7,8].
However, even the red-edge vegetation indexes, which are sensitive to crop growth changes,
only reflect the spectral reflectance characteristics of the vegetation canopy and cannot
reflect the internal structural characteristics of the crop canopy. In comparison, SAR
signals are more sensitive to the internal structure and geometric characteristics of the
crop due to their penetration ability [9,10], which to some extent compensates for the
shortcomings of optical image data [11]. At present, there is still relatively little research
on using complementary information from optical and SAR data to estimate crop growth
parameters, but some progress has been made [12,13]. Luo et al. proposed a method that
combined optical and SAR features to estimate the corn LAI (Leaf Area Index) and biomass
parameters, and the results showed that combining spectral and texture features can
significantly improve the estimation accuracy of the crop LAI and biomass [14]. Abdikan
et al. verified the correlation between variables determined from Synthetic Aperture Radar
(SAR) and optical images and the plant height of the sunflower [15]. Yeasin et al., based on
machine learning models, examined whether combined Sentinel-1 and Sentinel-2 data are
more efficient in predicting the sugarcane phenology than Sentinel-1 and Sentinel-2 data
alone [16]. However, the current research based on the combination of these two different
types of features is at the data level. There is little analysis of the different responses of
optical and SAR features to crop growth parameters from at mechanistic level.

Radar vegetation scattering models describe the scattering mechanism of radar signals
on vegetation-covered surfaces, and they accurately characterize the scattering and ab-
sorption characteristics of radar waves on these surfaces [17]. Among them, the Michigan
Microwave Canopy Scattering (MIMICS) model is currently the most comprehensive vege-
tation scattering model, which has been used in the study of scattering characteristics of
various vegetation types since its establishment [18,19]. However, the MIMICS model has a
large number of input parameters, which to some extent affects the accuracy of vegetation
scattering model construction and crop growth parameter estimation [20]. The Water Cloud
Model (WCM), as one of the typical semi-empirical scattering models, does not require
complex geometric mathematical models to describe the interaction between microwaves
and vegetation. It is more general than empirical models and easier to use than physical
models [21,22]. It has been widely used in the evaluation of vegetation growth parameters
in recent years. Yang et al. used three scattering components obtained from polarization
decomposition, coupling those with the modified WCM, and they estimated the rice LAI,
plant height, and panicle biomass based on time-series RADARSAT-2 fully polarized SAR
data throughout the entire growth cycle [23]. Kweon et al. improved the WCM based on
corn and soybean crops by introducing the mean and standard deviation of crop canopy
leaf inclination distribution, further enhancing the estimation accuracy of crop growth pa-
rameters based on the WCM [24]. In addition, Bai et al. proposed a soil moisture estimation
method based on the WCM and the Advanced Integral Equation Model (AIEM), and they
found that the method has the potential to estimate crop growth parameters [25]. These
studies have verified that the scattering mechanism of radar waves over vegetation-covered
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surfaces described by the WCM can effectively explain the scattering contribution of the
vegetation layer and thus achieve growth parameter estimation for different crops.

Therefore, the aim of this study was to explore the combined method of using comple-
mentary optical and SAR information at the mechanistic level, and to construct a growth
parameter estimation model suitable for the corn crop. Since the WCM is most suitable
for describing the microwave scattering mechanism in areas with a relatively uniform
vegetation cover [26,27], the optical and SAR satellite images selected in this paper were all
in the late jointing or tasseling stages of the corn crop. At this time, the corn already has a
large plant body size, and the ground is completely covered by the vegetation, meeting
the condition that volume scattering dominates, which is in accordance with the principles
of the WCM. In order to obtain a more accurate growth parameter estimation model, this
study comprehensively utilized the advantages of optical and SAR data, combined with the
principle of the WCM, without the need for other external data or a large volume of data.
This approach led us to develop a new method that integrates multispectral vegetation
indexes and differential radar information (DRI) features, achieving the high-precision
estimation of crop growth parameters. In this paper, estimation models of field corn plant
height and phenological stage parameters, respectively, are presented.

2. Materials and Methods
2.1. Experimental Area

The research area is located in Jiaozuo City, Henan Province, with the central coordi-
nates of 113◦23′ E and 35◦12′ N. Jiaozuo is bordered by the Yellow River in the south and
the Taihang Mountains in the north. It is one of the most famous grain-producing areas in
China. This area is mainly planted with wheat, corn, soybeans, peanuts, potatoes, etc. The
region has a temperate monsoon climate with four distinct seasons. The annual average
temperature is 13 ◦C, with January being the coldest month at an average temperature of
0 ◦C, while July is the hottest with an average monthly temperature of 28 ◦C. The annual
precipitation in this area is about 600–1200 mm. The main agricultural planting mode is a
winter wheat and summer corn rotation. Summer corn is usually sown as soon as possible
after the winter wheat harvest in early June and harvested at the end of September, with
the entire growth period lasting approximately 110 days. The locations of the experimental
area and ground sampling points are shown in Figure 1.
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Figure 1. Location of the experimental areas and some ground sampling points (Yellow rectangles
show the specific sampling fields).

The experimental area was divided into experimental area 1, located in Xiuwu County
to the east of Jiaozuo City, and experimental area 2, located in Qinyang and Bo’ai Counties
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to the west of Jiaozuo City. In the study area, experimental area 1 was covered by the
113 and 40 orbit data of the Sentinel-1 satellite, while only the 113 orbit data covered
experimental area 2. Therefore, the Sentinel-1 SAR satellite data for experimental areas 1
and 2 had different measurement dates and radar incidence angles. Since the SAR data
intensity is affected by the incidence angle, and the radar incidence angle varies greatly in
different sample fields, especially when the satellite is in different orbits, the effect of the
radar incidence angle could not be ignored in this study.

2.2. In Situ Data

The field investigation mainly measured and recorded the plant height and pheno-
logical stage information throughout the entire corn growth period in the study area in
2021. In that time, 39 sample fields were observed in experimental area 1, and 20 summer
corn fields were observed in experimental area 2. The corn sample fields were planted in a
family unit, so the corn plants in the same field had the same cultivated variety and field
management level. All the corn fields were sown with a uniform seeder, with a row spacing
of 60 cm and a plant spacing of 10–20 cm. The area of each field varied from 0.65 hectares
to 1.94 hectares, with an average area of about 1.04 hectares. Before the field investigation,
boundary information for each sample field was determined by combining a GPS locator
and a Google Images map. The morphological characteristics and corresponding BBCH
(Biologische Bundesanstalt, Bundessortenamt and CHemical industry) codes [28] of the
corn at different growth stages are shown in Table 1. The BBCH coding is a decimal sys-
tem based on the well-known code for cereals developed by Zadoks et al., which makes
it possible to unify the coding of all crops and weeds at the same physiological growth
stage [29].

Table 1. Morphological characteristics and corresponding BBCH codes of corn at different
growth stages.

No. Phonology Stages Morphological Characteristics BBCH Code

1 Emergence Expose the first leaf from the tooth sheath. 10
2 Three Leaves Expose the third leaf from the second leaf sheath. 13

3 Seven Leaves Expose the seventh leaf from the sixth
leaf sheath. 17

4 Jointing The round and hard stem nodes can be felt near
the ground. 31

5 Tasseling The top spikelet of the male spike protrudes
from the leaf sheath. 51

6 Male florescence The anthers in the upper part of the male spike
are exposed, and pollen is scattered. 55

7 Silking Floral filaments are exposed in the bracts of
female spikes in plants. 61

8 Milk ripening
The shape of the grains has reached normal size,
and the lower middle grains of the fruit
inflorescence are filled with thick white milk.

79

9 Maturity More than 80% of plants have yellowed outer
bracts, dried filaments, and hardened grains. 89

The field investigation of corn phenological stages was carried out according to the
Meteorological Industry Standard of the People’s Republic of China [30] and the record
specification of the corn crop BBCH [28]. The field investigation of the phenological stages
was carried out every other day. The stages of emergence, milky ripening, and maturity
phenology were determined by visual discrimination. The other stages were determined by
the percentage of the corn plants entering those phenological stages compared to the total
number of observed plants. When the percentage was greater than or equal to 50%, this
indicated that the field had entered the universal development period, and it was then that
it was determined that the corn field had entered this phenological stage. For each sample
field, 15–20 corn plants more than 2 m away from the edge of the plot were randomly
selected for measurement and judgment.
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The plant height was measured with a steel ruler from the root to the highest point of
the canopy leaves in the natural state of the corn plant, or to the top of the male tassel after
the tasseling stage. The unit of the measured plant height was in centimeters (cm), and the
measurement data were rounded to an integer. For each sample field, 8 to 10 corn plants
more than 2 m away from the edge of the plot were randomly selected for plant height
measurement to obtain the plant height value of the field. In order to better match the
ground measurement and satellite image data, and to reduce ground measurement errors,
the ground measurement data were filtered and fitted based on logical functions, and they
were interpolated with a daily interval. The fitting function is shown in Equation (1).

M =
a

1 + b · exp(ct)
(1)

where M stands for the original field measurement data, natural constants a, b, and c are
function fitting parameters, and t is the date of the field investigation, represented here by
DOY (day of year).

The original measurement data and corresponding fitted results of the plant height and
BBCH for one of the sample fields are shown in Figure 2. The fitting function parameters of
a, b, and c for the plant height are 368.732, 7.706 × 109, and −0.116, respectively. For the
BBCH, the fitting parameters are 101.430, 5368.613, and −0.040, respectively. In this study,
the fitted results were used to represent the surface measurement data synchronized with
satellite observations. The date of the surface measurement data was determined by the
acquisition times of two optical satellite images. In this paper, the acquisition times of the
two optical images were 26 July and 31 July 2021, respectively. Therefore, the fitted ground
measurement data on these two days were extracted for estimation model construction and
accuracy verification.
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2.3. Image Data Collection

This study obtained synchronous optical and SAR satellite data covering two experimental
areas. The detailed image parameters and coverage information are shown in Table 2.
Among them, one SAR image acquired on August 1 and two optical images covered
experimental area 1 and experimental area 2 at the same time. Due to differences in satellite
orbits, the SAR images covering different experimental areas had significant differences
in observation intervals and radar incidence angles. Therefore, experimental area 1 and
experimental area 2 could be used as two independent experimental measurements for
model training and verification, respectively. We trained the model based on the data of
experimental area 1, and we used the data of experimental area 2 to further verify the
accuracy and stability of the model.
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The tasseling stage of the corn is an important turning point in its life. It is the transition
period from plant vegetative growth to reproductive growth. At this time, all leaves of
the corn have been expanded, the plant height or leaf area index (LAI) has reached the
maximum; the plant body essentially stops vegetative growth and enters the stage centered
on reproductive growth. The plant is very sensitive to the environmental conditions at this
time. A continuous high temperature, drought, or rainy weather will directly affect the
yield of the corn. Therefore timely and accurate monitoring of the growth status of corn
crop in this phenological stage is necessary for timely guidance of field management and
improvement of crop yield. Therefore, the images used in this study were mainly of the
tasseling stage of corn.

Table 2. The detailed optical and SAR image parameters and coverage information.

Experimental Types Orbits Platform Acquisition Date Phenology

area 1

Optical / Sentinel-2A 26 July 2021 Late jointing
/ Sentinel-2B 31 July 2021 Tasseling

SAR 40 Sentinel-1A 27 July 2021 Late jointing
113 Sentinel-1A 1 August 2021 Tasseling

area 2

Optical / Sentinel-2A 26 July 2021 Late jointing
/ Sentinel-2B 31 July 2021 Tasseling

SAR 113 Sentinel-1A 1 August 2021 Tasseling
113 Sentinel-1A 13 August 2021 Flowering

2.4. Image Feature Extraction

From the Sentinel-1 SAR data, we mainly obtained the parameters of backscatter
coefficient (σ0

VH and σ0
VV) and radar incidence angle (θ). Firstly, in order to ensure that

the backscatter coefficient from one image was not affected by the incidence angle, the
radar incidence angle effect for each SAR image was normalized and corrected based on
cosine normalization theory [31].

From the optical images, we mainly extracted multispectral vegetation indexes. The
Sentinel-2 optical data used in this study contain three red-edge bands, which are sensitive
to vegetation parameters. Therefore, the multispectral vegetation indexes of each sample
field, mainly including the commonly used NDVI index [32], the normalized difference
vegetation index NDVIre1 based on the red-edge 1 band [33], the normalized difference
vegetation index NDVIre2 based on the red-edge 2 band [33], and the red-edge position
index S2REP (Red-Edge Position Index, S2REP) specially designed by the ESA for Sentinel-
2 [34], were calculated and extracted in this study.

2.5. VIDRI Model Construction

Radar vegetation scattering models can describe a series of complex interactions be-
tween radar electromagnetic waves, various components of vegetation, and underlying
surfaces. The main impact of vegetation on radar electromagnetic waves is the scattering
and absorption of radar signals reaching the vegetation canopy. The scattering intensity
of radar electromagnetic waves by vegetation is not only affected by the vegetation itself
(the size and direction of scatterers in the vegetation canopy, the dielectric constant of
the vegetation) but also by radar system parameters such as electromagnetic wave fre-
quency, incidence angle, and polarization mode. The advantage of the WCM [35] is that
the description of the scattering mechanism is relatively simple, and it can be used to
describe scattering in areas with a relatively uniform vegetation coverage such as crop
fields. However, the model ignores multiple scattering between vegetation and the under-
lying surface, and the prerequisite for applying this model is that the ground scattering
mechanism is dominated by volume scattering. Therefore, when applied to sparse vege-
tation areas, it may lead to significant errors. However, the corn fields in this study were
all in the late jointing or tasseling stages, meeting the condition that volume scattering
dominated. Therefore, they were in accordance with the principles of the WCM. This study
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introduced the application of the widely used Water Cloud Model (WCM) principle to corn
growth monitoring.

According to the principle of the WCM [36], the total backscatter received by radar
in a crop area is related to vegetation growth status (LAI, biomass, etc.) and underlying
surface soil parameters (including the surface soil roughness and moisture). Therefore,
directly using the original backscatter coefficient to invert vegetation growth parameters
will result in significant errors. Meanwhile, the method of separating canopy and surface
scattering terms through radar vegetation scattering models requires a large amount of
surface measurement data input, which involves a huge workload for large-scale field
crop growth parameters’ estimation, and its accuracy is difficult to guarantee. Therefore,
based on the WCM theory, combined with optical multispectral vegetation indexes and
SAR differential radar information (DRI), the VIDRI (vegetation index corrected by DRI)
estimation model was constructed without the need for other external data inputs. The
DRI represents the difference value of the backscattering coefficient between two SAR
images, and the SAR data need to be synchronized with the optical images. The model
establishment process was as follows:

∆σ0 = σ0
2

(
cos θnorm

cos θ2

)
− σ0

1

(
cos θnorm

cos θ1

)
=

(
σ0

2
cos θ2

−
σ0

1
cos θ2

)
(2)

θ1, θ2 is the radar incidence angle. σ0
1, σ0

2 is the radar backscatter coefficient observed
at different radar incidence angles in different observation times. θnorm is the parameter
used to normalize the incidence angle. Firstly, the backscatter coefficients at different radar
incidence angles are projected to a normal vector perpendicular to the ground surface. That
is, the value of the θnorm parameter is set to 0 to normalize the effect of the incidence angle
and unify the observation angle consistent with the optical remote sensing data. According
to the principle of the WCM, ∆σ0 can be expressed as follows:

∆σ0 = ∆σ0
veg +

(
τ2

2σ0
soil2

− τ1
2σ0

soil1

)
= ∆σ0

veg +
[
τ2

2(C + Dm2)− τ1
2(C + Dm1)

] (3)

where ∆σ0 describes the total difference value of the backscatter coefficient received by the
SAR satellite during two observation intervals, including the VV and VH channels (∆σ0

VV,
∆σ0

VH). ∆σ0
veg represents the difference value of the backscatter coefficient from the crop

vegetation layer. σ0
soil1 and σ0

soil2 represent the backscatter coefficient from the surface
soil layer, and τ1

2 and τ2
2 are the two-way attenuation coefficient caused by the vegetation

canopy. ∆σ0
veg and τ1

2, τ2
2 are related to the growth status of crop vegetation, and ∆σ0

veg
is positively correlated with the vegetation growth status, while τ1

2, τ2
2 is negatively

correlated with the growth status. Because the observation interval of two SAR images was
short, and the corn plants had large body sizes and high vegetation coverage during these
two periods, we considered τ1

2 ≈ τ2
2 = τ2. σ0

soil1 and σ0
soil2 are related to the surface soil

parameters and not the crop growth status. For two different observations of the same corn
field, we assume that the soil roughness parameter C remains unchanged. Moreover, for
the whole study area, we assume that the soil types and properties are essentially the same,
and that the sensitivity parameter D related to the soil moisture content remains consistent.
In addition, the changes in surface soil volume moisture contents of different fields within
the same observation interval are thought to be similar, making ∆mv = m, at this time:

∆σ0 = ∆σ0
veg + τ2

(
σ0

soil2
− σ0

soil1

)
= ∆σ0

veg + Dτ2[mv2 − mv1]

= ∆σ0
veg + Dmτ2

(4)
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where D and m are constants. ∆σ0 is mainly related to ∆σ0
veg and τ2. Both ∆σ0

veg
and τ2 are a function of the parameters related to the vegetation layer in the WCM, and
the value of these two parameters is related to the crop growth status. That is, ∆σ0 of
different fields calculated by differences weakens the influence of the surface roughness
and surface soil moisture content on SAR data, and it can better reflect the growth status of
the vegetation layer. Due to the close acquisition dates of the two SAR images, the plant
height increment in these two periods was essentially the same. Therefore, ∆σ0 reflects the
variation characteristics of the radar backscatter coefficient under the same plant height
increment of corn. Moreover, it shows the degree of complexity of the vegetation layer
structure in the cross-section. The higher the value of ∆σ0, the more complex the structure
of the vegetation layer in the unit cross-section, and the greater the LAI or biomass in the
unit volume. Therefore, we introduce the parameter ∆σ0 into the two-way attenuation τ2

model. It can be expressed as follows:

τ2 = exp(−2B · V2/ cos θ) = exp(−2 · ∆σ0) (5)

In the WCM, τ2 represents two-way attenuation of the radar signal by the vegetation
layer. B represents the empirical coefficient, with a value depending on the crop type.
Since this study only focused on the corn crop, here, it is defined as 1 to simplify the
construction of the VIDRI model. θ is the radar incidence angle, and the incidence angle
effect is considered in ∆σ0 in this formula. V2 is a description of the vegetation canopy
related to the crop growth status, which is generally expressed by parameters such as LAI
or biomass of the vegetation. In the absence of ground-measured data, some scholars have
introduced optical vegetation indexes related to the LAI or the biomass of the vegetation
canopy to replace V2. However, due to the limited penetration ability of optical data,
optical vegetation indexes only reflect the spectral reflectance characteristics of the top of
the vegetation canopy. For a corn crop with a large plant size, ∆σ0 can better reflect the
internal structural characteristics of the vegetation canopy than optical vegetation indexes.
Therefore, this study used ∆σ0 to replace V2. The basic VIDRI estimation model combining
optical and SAR parameters was established as follows:

VIDRI =
VIopt

τ2
DRI

=
VIopt

exp(−2 · ∆σ0)
(6)

where VIopt represents a multispectral vegetation index extracted from the optical data,
such as the NDVI, NDVIre1, NDVIre2, or S2REP, which was correlated with the crop growth
state due to the influence of the chlorophyll content of the vegetation. τ2

DRI represents
the two-way attenuation coefficient of the crop and the radar wave described by the DRI,
and the value of τ2

DRI ranges from 0 to 1. With the continuous growth of the crop, the
attenuation effect of vegetation on the radar wave gradually increases, meaning the value of
τ2

DRI gradually decreases. That is, τ2
DRI is negatively correlated with the crop growth state,

and the newly established VIDRI parameter is positively correlated with the vegetation
growth state of corn. The whole technical process mainly includes data preprocessing,
image features construction and growth parameters estimation, as shown in Figure 3.
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3. Results
3.1. Correlation Analysis

In order to verify the superiority of the constructed VIDRI indexes in estimating corn
growth parameters (plant height and BBCH), the Pearson correlation (R) between the
vegetation indexes (VIopt and VIDRI) and the plant growth parameters (plant height and
BBCH) was analyzed by using the modeling data from experimental area 1, as shown in
Table 3 and Figures 4 and 5.

Table 3. Pearson Correlation (R) between the vegetation indexes and the growth parameters (plant
height and BBCH).

VIopt Plant Height BBCH VIDRI Plant Height BBCH

NDVI 0.35 0.08 NDVIDRI 0.47 0.28
NDVIre1 0.50 0.37 NDVIre1DRI 0.58 0.45
NDVIre2 0.69 0.71 NDVIre2DRI 0.74 0.75

S2REP 0.69 0.72 S2REPDRI 0.75 0.75
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Figure 5. Scatter plot of VIopt and corresponding VIDRI indexes with BBCH (NDVI, NDVIre1,
NDVIre2 and S2REP are multispectral vegetation indexes. NDVIDRI, NDVIre1DRI, NDVIre2DRI

and S2REPDRI are the corresponding VIDRI indexes. BBCH and R represents the phenology stage
and Pearson Correlation, respectively. (a–d) represent the relationship between the BBCH and
the multispectral vegetation indexes. (e–h) represent the relationship between the BBCH and the
corresponding VIDRI indexes. Black lines represent the linear fitting results).

Firstly, for the plant height, the VIDRI constructed by introducing radar DRI could ef-
fectively improve the sensitivity of the multispectral vegetation indexes VIopt to the change
in the corn plant height. The Pearson correlation coefficients (R) between the measured
plant height and the NDVI, NDVIre1, NDVIre2, and S2REP were 0.35, 0.50, 0.69, and 0.69,
respectively. Compared with the four VIopt indexes, the correlation between the NDVI
and the measured plant height was the lowest (R = 0.35), which indicated that the VIopt
based on the red-edge band was more sensitive to the growth change in crops, especially
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for NDVIre2 and S2REP with the red-edge 2 band, where the correlation coefficient with
plant height could reach 0.69. According to the scatter plot in Figure 4, the value of NDVI
from the corn canopy in the experimental area was generally above 0.7, and showed a
serious saturation phenomenon (R = 0.35) in this situation, while NDVIDRI weakened
this saturation phenomenon to some extent (R = 0.47). In addition, NDVIre2 and S2REP
calculated by introducing the red-edge 2 band showed better correlations with plant height
than NDVIre1 calculated by introducing the red-edge 1 band. This verified the advantages
of the Sentinel-2 red-edge 2 band in monitoring vegetation growth. In addition, compared
with the four constructed VIDRI indexes, the correlation coefficients between NDVIDRI,
NDVIre1DRI, NDVIre2DRI, and S2REPDRI and the measured plant height were 0.47, 0.58,
0.74, and 0.75, respectively. Among them, the correlation between NDVIDRI and the mea-
sured plant height was the lowest (R = 0.47), while S2REPDRI calculated by introducing the
red-edge 2 band had the highest correlation with plant height (R = 0.75). Essentially, the
VIDRI indexes constructed by introducing radar DRI showed higher correlations with plant
height than using the multispectral vegetation indexes VIopt alone.

As for the BBCH, according to the scatter plot in Figure 5, the correlation coefficients
between the measured BBCH and the NDVI, NDVIre1, NDVIre2, and S2REP were 0.08, 0.37,
0.71, and 0.72, respectively. It can be seen that the high vegetation coverage of the canopy
makes it difficult to distinguish different phenological periods of corn just based on NDVI
features. Among them, the correlation between the NDVI and the measured BBCH was the
lowest (R = 0.08), showing a complete saturation phenomenon. However, the correlation
coefficients between the indexes of NDVIre2 and S2REP constructed from the red-edge
2 band and BBCH reached 0.71 and 0.72, respectively. The correlation was much better than
NDVIre1 constructed from the red-edge 1 band (R = 0.37), indicating that the multispectral
indexes based on the red-edge 2 band are more sensitive to the corn BBCH than those
based on the red-edge 1 band. Further comparison of the Pearson correlation coefficients
(R) between the measured BBCH and the constructed VIDRI revealed that the correlation
coefficients between NDVIDRI, NDVIre1DRI, NDVIre2DRI, and S2REPDRI and the measured
BBCH of corn were 0.28, 0.45, 0.75, and 0.75, respectively. Among them, NDVIDRI had
the lowest correlation with the measured BBCH (R = 0.28). Essentially, the introduction of
red-edge multispectral features or SAR features to some extent improved the sensitivity of
the vegetation indexes to the BBCH. In particular, NDVIre2DRI and S2REPDRI constructed
by introducing the red-edge 2 band and DRI features showed the best correlations with
BBCH (R = 0.75). Similar to the plant height estimation, the introduction of radar DRI
when constructing each VIDRI index could effectively enhance the sensitivity of VIopt to the
BBCH. The results indicated that the VIDRI indexes combined with optical and SAR data
also have certain advantages in improving the accuracy of corn BBCH estimation.

3.2. Estimation Model and Accuracy

In order to compare and analyze the accuracy of VIopt and its corresponding VIDRI
indexes in estimating corn plant height and BBCH parameters, a simple linear regression
equation determined by least squares combined with the Leave-One-Out cross-validation
method was used to establish the estimation models of plant height and BBCH, respectively.
We used the coefficient of determination (R2), root mean square error (RMSE), and normal-
ized root mean square error (nRMSE) to analyze the performance of each regression model.
Finally, combined with the field investigation data, a total of 78 iterations were carried
out for the two periods of measurement data of 39 sample fields for experimental area 1.
Tables 4 and 5 and Figures 6 and 7 show the estimation model and the model accuracy for
the plant height and BBCH parameters from experimental area 1.

Table 4 shows the corn plant height estimation model and accuracy based on the
multispectral vegetation indexes VIopt and the corresponding VIDRI indexes in exper-
imental area 1. Essentially, the VIDRI indexes show higher estimation accuracy than
the VIopt indexes. According to Figure 6a–d, comparing the corn plant heights esti-
mated by four multispectral vegetation indexes NDVI, NDVIre1, NDVIre2, and S2REP,
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whether for R2, RMSE, or nRMSE, NDVI shows the lowest estimation accuracy (R2 = 0.12,
RMSE = 29.15, nRMSE = 20.84%), and S2REP shows the highest estimation accuracy
(R2 = 0.48, RMSE = 22.45, nRMSE = 16.05%). NDVIre1 has a limited ability to improve
the accuracy of corn plant height estimation based on NDVI, while NDVIre2 and S2REP
constructed with the red-edge 2 band have more advantages in improving the accuracy of
the NDVI estimation model. This further verifies that the red-edge 2 band of Sentinel-2
data is more sensitive than the red-edge 1 band to crop height variation. In Figure 6e–h,
the VIDRI indexes corresponding to each multispectral vegetation index are compared and
analyzed. NDVIDRI shows the lowest model estimation accuracy (R2 = 0.22, RMSE = 27.47,
nRMSE = 19.64%), while S2REPDRI shows the highest model estimation accuracy (R2 = 0.57,
RMSE = 20.48, nRMSE = 14.64%). Essentially, the VIDRI indexes uniformly improve the
accuracy of using VIopt indexes to estimate the corn plant height. According to the scatter
plots of corn plant height estimated by various vegetation indexes (VIopt and VIDRI), as
shown in Figure 6, during the tasseling stage of corn, high vegetation coverage leads to a se-
vere saturation phenomenon of corn plant height estimation results based on the NDVI and
NDVIre1 indexes. Meanwhile, NDVIre2 and S2REP significantly weaken this phenomenon,
especially the NDVIre2DRI and S2REPDRI indexes constructed by further introducing radar
DRI. All of these results verify that the combination of an optical red-edge band and radar
DRI feature may effectively improve the plant height estimation accuracy for corn even
under a high vegetation coverage condition.

Table 4. Plant height estimation model and accuracy based on the data from experimental area 1.

VI Types VIs Models R2 RMSE (cm) nRMSE

VIopt

NDVI y = 178.13x + 80.74 0.12 29.15 20.84%
NDVIre1 y = 219.38x + 80.63 0.25 26.96 19.27%
NDVIre2 y = 635.14x + 130.06 0.47 22.64 16.18%
S2REP y = 331.55x − 2.14 0.48 22.45 16.05%

VIDRI

NDVIDRI y = 171.42x + 78.57 0.22 27.47 19.64%
NDVIre1DRI y = 203.65x + 83.28 0.34 25.33 18.11%
NDVIre2DRI y = 616.50x + 127.89 0.55 20.99 15.00%
S2REPDRI y = 283.30x + 19.20 0.57 20.48 14.64%

Table 5. BBCH estimation model and accuracy based on the data from experimental area 1.

VI Types VIs Models R2 RMSE (cm) nRMSE

VIopt

NDVI y = 4.55x + 45.10 0.006 1.93 24.17%
NDVIre1 y = 17.51x + 37.55 0.14 1.80 22.49%
NDVIre2 y = 51.64x + 41.35 0.50 1.36 17.04%
S2REP y = 24.36x + 32.39 0.53 1.33 16.60%

VIDRI

NDVIDRI y = 8.36x + 41.79 0.08 1.86 23.24%
NDVIre1DRI y = 13.72x + 39.44 0.20 1.73 21.58%
NDVIre2DRI y = 48.30x + 41.43 0.56 1.26 15.79%
S2REPDRI y = 19.24x + 35.07 0.57 1.27 15.91%

Table 5 shows the corn phenological stage (BBCH) estimation models and accuracies
based on the multispectral vegetation indexes VIopt and the corresponding VIDRI indexes
in experimental area 1. The same as the plant height estimation results, the VIDRI indexes
show a higher estimation accuracy than the VIopt indexes. According to Figure 7a–d, when
comparing the BBCH estimation results by the four multispectral vegetation indexes NDVI,
NDVIre1, NDVIre2, and S2REP with the measured BBCH data on the ground, it can be
seen that the NDVI shows the lowest accuracy of BBCH estimation results (R2 = 0.006,
RMSE = 1.93, nRMSE = 24.17%) with a serious saturation phenomenon. Meanwhile,
NDVIre2 and S2REP have an obvious effect on weakening the saturation phenomenon, and
the improvement effect is far better than with NDVIre1. This indicates that the red-edge
2 band of Sentinel-2 was more sensitive to the variation in the corn BBCH than the red-edge
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1 band. According to Figure 7e–h, essentially, the VIDRI indexes show a higher BBCH
estimation accuracy than the VIopt indexes. Among them, NDVIDRI shows the lowest
BBCH estimation accuracy (R2 = 0.08, RMSE = 1.86, nRMSE = 23.24%), while the S2REPDRI
index constructed by combining the Sentinel-2 red-edge 2 band and radar DRI shows the
highest accuracy (R2 = 0.57, RMSE = 1.27, nRMSE = 15.91%), which further verifies that the
combination of an optical red-edge band and radar DRI feature can effectively improve the
BBCH estimation accuracy for corn even under a high vegetation coverage condition.
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Figure 7. Estimated BBCH and measured BBCH results based on the data from experimental
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Dashed line represents a 1:1 relationship line).

In addition, we compared and analyzed the accuracy of NDVIre2, S2REP, and the
corresponding NDVIre2DRI and S2REPDRI parameters, which were highly correlated with
the growth status of corn, in estimating the plant height and the BBCH parameters. For the
plant height, the accuracy of R2 and nRMSE based on NDVIre2DRI increased by 0.08 and
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1.18% compared to NDVIre2, and the accuracy (R2, nRMSE) based on the S2REPDRI indexes
increased by 0.09 and 1.41% compared to S2REP. For the estimation of BBCH, the accuracy
(R2, nRMSE) based on NDVIre2DRI increased by 0.06 and 1.25% compared to NDVIre2, and
the accuracy (R2, nRMSE) based on S2REPDRI increased by 0.04 and 0.69% compared to
S2REP. This indicated that introducing radar DRI could better improve the accuracy of corn
plant height estimation compared to BBCH. Through further analysis, it was found that
the plant height reflects the characteristics of the crop in the vertical direction. Meanwhile,
the BBCH difference of corn entering the tasseling stage is mainly reflected in the tassel
extraction situation in the vegetation canopy, which shows the two-dimensional plane
changes at the top of the crop canopy. Meanwhile, due to a certain penetrability, the SAR
data can provide vertical structural information for the crop. Therefore, NDVIre2DRI and
S2REPDRI are superior in improving the estimation accuracy for the corn plant height
parameter compared to the BBCH.

3.3. Accuracy Verification

In order to further verify the superiority of the VIDRI indexes in estimating the corn
plant height and BBCH, and to test the accuracy of the estimation model in Tables 4 and 5,
the NDVIre2 and S2REP, as well as the corresponding VIDRI indexes, which were sensitive
to plant height and BBCH, were directly selected for comparative verification based on
experimental area 2. The validation results and the accuracies are shown in Table 6 and
Figure 8.

Table 6. Further accuracy verification of the estimation model based on the data from experimental
area 2.

Parameters VI Types VIs Models R2 RMSE (cm) nRMSE

Plant
height

VIopt
NDVIre2 y = 1078.6x + 62.80 0.52 28.38 15.42%
S2REP y = 531.55x − 140.36 0.59 26.31 14.30%

VIDRI
NDVIre2DRI y = 1072.6x + 64.47 0.55 27.28 14.83%
S2REPDRI y = 505.89x − 121.17 0.63 25.51 13.86%

BBCH
VIopt

NDVIre2 y = 45.40x + 40.97 0.49 1.29 16.12%
S2REP y = 23.23x + 31.84 0.59 1.15 14.37%

VIDRI
NDVIre2DRI y = 45.44x + 41.00 0.52 1.25 15.62%
S2REPDRI y = 22.27x + 32.57 0.64 1.09 13.62%

Table 6 and Figure 8 show the plant height and BBCH estimation models and accuracies
based on NDVIre2, S2REP, and the corresponding VIDRI indexes, which are sensitive
to the corn growth parameters, using the data from experimental area 2. Essentially,
the VIDRI indexes constructed by combining optical and SAR data information show
higher estimation accuracies than the optical vegetation indexes. However, different from
experimental area 1, the constructed VIDRI indexes used in experimental area 2 are relatively
poor in improving the VIopt indexes’ estimation accuracy. This is because of the long interval
between the two SAR images used in experimental area 2 and the poor synchronization
with the optical images. Compared with the estimation results in Figures 6 and 8, for
experimental area 1, the plant height estimation accuracy of R2 and nRMSE based on
NDVIre2DRI increased by 0.08 and 1.18% compared to NDVIre2, and the plant height
estimation accuracy (R2, nRMSE) based on the S2REPDRI indexes increased by 0.09 and
1.41% compared to S2REP. However, in experimental area 2, the accuracy of R2 and nRMSE
based on NDVIre2DRI increased by 0.03 and 0.55% compared to NDVIre2, and the accuracy
(R2, nRMSE) based on S2REPDRI increased by 0.04 and 0.44% compared to S2REP. As for
the BBCH parameter, compared to the results in Figures 7 and 8, for experimental area
1, the BBCH estimation accuracy of R2 and nRMSE based on NDVIre2DRI increased by
0.06 and 1.25% compared to NDVIre2, and the estimation accuracy (R2, nRMSE) based
on the S2REPDRI indexes increased by 0.04 and 0.69% compared to S2REP. However, in
experimental area 2, the accuracy of R2 and nRMSE based on NDVIre2DRI increased by
0.03 and 0.5% compared to NDVIre2, and the accuracy (R2, nRMSE) based on the S2REPDRI
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indexes increased by 0.05 and 0.75% compared to S2REP. That is, the constructed VIDRI
indexes used in experimental area 2 are relatively poor in improving the accuracy of
using VIopt indexes alone to estimate the crop growth parameter. The findings further
indicate that a larger SAR data interval will reduce the VIDRI indexes’ ability to improve the
estimation accuracy of corn growth parameters using the VIopt indexes alone. In practice,
the two SAR datasets used to calculate the DRI should be synchronized with the optical
satellite data as much as possible, and the image time interval should not be too large.
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4. Discussion

Optical satellite sensors have developed rapidly in recent years, with the advantages
of low cost and high accuracy. Multispectral remote sensing data have a unique advan-
tage in crop growth monitoring due to their rich spectral reflectance characteristics. The
existing research has shown that the optical vegetation indexes are highly related to the
aboveground biomass, LAI, vegetation coverage, etc., of crops [37]. However, the optical
vegetation indexes are always sensitive to low vegetation coverage, and there is a serious
saturation phenomenon when the vegetation coverage is medium to high [5,6]. In recent
years, scholars have discovered important spectral bands, which are highly related to
crop growth in the red-edge spectral regions [7]. It has been found that the multispectral
vegetation indexes based on the red-edge bands are closely related to the physical and
chemical parameters of the vegetation [8]. Based on Sentinel-2 multispectral data, this
study compared and analyzed the correlations between the multispectral vegetation in-
dexes NDVI, NDVIre1, NDVIre2, and S2REP and the corn growth parameters (plant height
and BBCH). It was found that the NDVI had the lowest correlation with the measured
plant height and BBCH when compared with the multispectral vegetation indexes based
on the red-edge bands, confirming that the multispectral vegetation indexes based on the
red-edge bands are more sensitive to the growth parameters of the corn crop. In addition,
the NDVIre2 and S2REP indexes calculated by introducing the red-edge 2 band showed
better correlations with plant height and BBCH than the NDVIre1 index calculated by in-
troducing the red-edge 1 band, which verified that the Sentinel-2 red-edge 2 band has great
advantages in monitoring vegetation growth parameters. This result is consistent with the
research of Dong et al., who found that introducing the red-edge band to multispectral
vegetation indices can effectively improve the estimation accuracy of crop biomass [38].
However, even the red-edge band indexes, which are sensitive to crop growth, only display
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the spectral reflectance characteristics at the top of the vegetation canopy. Especially for a
corn crop with a large plant size, the optical-based vegetation indexes cannot reflect the in-
ternal structural characteristics of the vegetation layer. Therefore, this study investigated a
method of estimating corn growth parameters by combining multispectral and backscatter
features based on optical and SAR data during the crop growth season.

Compared with optical satellite sensors, Synthetic Aperture Radar (SAR) can obtain
internal information on the crop vegetation layer and even soil layer due to its certain
penetration ability. Directly using the original backscatter coefficient to estimate crop
growth parameters can cause significant errors. This is similar to the research conducted
by Baghdadi et al., where SAR signals could penetrate the crops to obtain vegetation
and soil information under the crop cover, while directly using the backscatter coefficient
for retrieving the soil moisture was not advantageous in presence of a well-developed
vegetation cover [39]. However, a radar vegetation scattering model can accurately describe
these scattering mechanisms between the vegetation and soil. Among them, the WCM is
the most concise and widely used, and is applicable to explain the microwave scattering
mechanism in areas with a relatively uniform vegetation coverage such as crop fields [40].
According to the principle of the WCM, the total backscatter received by the radar is related
to the vegetation growth parameters (LAI, biomass, etc.) and the surface soil parameters
(including surface roughness and soil moisture) [23–25]. Therefore, in this study, based
on the WCM theory, we developed a corn crop growth parameter estimation model that
combines optical and SAR data without any other external data input. By calculating the
difference value ∆σ0 between the backscatter coefficients of two SAR images synchronized
with optical images, it was found that ∆σ0 weakened the influence of the surface layer on
SAR data, revealing the internal structural characteristics of the crop vegetation layer. It
also described the differences in radar backscatter coefficient characteristics of a corn crop
under the same plant height increment, reflecting the complexity of the vegetation layer
structure in a cross-section for different fields. The larger the ∆σ0 value, the more complex
the structural characteristics of the vegetation layer in a unit cross-section, and the larger
the LAI or biomass per unit volume of the crop. As Wang et al. proposed, the scattering
intensity of vegetation layers increases with the increase in crop LAI [41]. Therefore,
in this study, we introduced the DRI into the attenuation coefficient τ2 of the WCM to
calibrate the optical vegetation indexes VIopt, and we constructed corn growth parameter
estimation models VIDRI. Essentially, the introduction of radar DRI when constructing the
VIDRI indexes proved to have a better correlation with the corn plant height and BBCH
than the use of multispectral indexes VIopt. Among them, the S2REPDRI index calculated
based on the red-edge 2 band showed the highest estimation accuracy of corn plant height
and BBCH phenology, indicating that the VIDRI indexes constructed based on the WCM
principle, combined with the red-edge multispectral vegetation indexes and radar DRI,
had certain advantages in improving the estimation accuracy of corn growth parameters.
Similarly, based on various regression learning algorithms, David et al. proposed that
the combination of optical SAR and optical data can improve the accuracy of vegetation
biomass estimation. At the same time, the study found that the Sentinel-2 red-edge 2 band
has greater advantages in this regard [42]. However, the existing models were established
based on different phenological periods of crops, and the accuracy of the models is difficult
to guarantee when the vegetation coverage is high [43,44]. Therefore, this study directly
constructed a growth parameter inversion model based on the corn heading phenology,
which has important research value for effectively improving the inversion accuracy of a
model under a high vegetation coverage.

Additionally, when comparing the estimation results using data from experimental
area 1 and experimental area 2, the results showed that the VIDRI indexes had slightly
better accuracy in improving the VIopt indexes for estimating corn plant height and BBCH
in experimental area 1 than in experimental area 2. This is because the SAR images of
experimental area 1 were largely synchronized with the optical images, and there was a
small interval between the two SAR images. Meanwhile, the interval between the two
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SAR images in experimental area 2 was relatively large, and the synchronization between
the SAR and optical images was also relatively poor. This indicates that a larger interval
between SAR image data will affect the sensitivity of the DRI feature to estimate the crop
growth parameters, thereby affecting the accuracy of the VIDRI model in estimating crop
growth parameters. Therefore, in practical applications, the interval between the two SAR
images used for calculating DRI should not be too large, and the optical and SAR satellite
images should be synchronized as much as possible to ensure that the ground object states
observed by the two types of satellites are consistent. In addition, this study found that the
VIDRI indexes have a slightly better accuracy in improving the VIopt indexes for estimating
corn plant height than estimating the BBCH parameter. This is because the plant height
reflects the structural characteristics of crops in the vertical direction. SAR data, due to
their certain penetrability, can offer insights into the interior of the corn canopy and vertical
structural information on the crop. Meanwhile, the phenotypic differences of the corn plant
during the tasseling stage are mainly reflected in the extraction status of male spikes at the
top of the vegetation canopy, demonstrating the characteristics of two-dimensional plane
changes at the top of the corn canopy. This viewpoint is consistent with Caicoya et al.,
who proposed that SAR features are beneficial for detecting vertical structural information
on the vegetation [45]. As such, it seems that the VIDRI index proposed in this article is
more conducive to improving the estimation accuracy of corn plant height compared to the
BBCH parameter.

However, the conclusion of this study is mainly based on dual-polarization (σ0
VH,

σ0
VV) SAR satellite data in the C-band. Beyond these, there are many full-polarization

(σ0
VV, σ0

VH, σ0
HH, σ0

HV) SAR data, and different polarization modes have different abil-
ities in estimating growth parameters of crops. Furthermore, the radar electromagnetic
wave scattering characteristics of crop fields vary in different wave bands and polarization
modes [2]. Therefore, it is necessary to further verify the applicability of the estimation
model in other radar bands and polarization modes. In addition, we mainly studied the
corn crops normally planted on the North China Plain. Although we have achieved satis-
factory estimation results, due to the limitations of the crop planting region and varieties,
additional layout experiments are needed to further verify the universality of the research
methods proposed in this paper, by testing them in other corn planting areas such as
China’s southwest mountainous areas, southern hilly areas, and the Qinghai Tibet Plateau.

5. Conclusions

Based on the theory of the vegetation scattering model, in this study, we developed
a corn growth parameter estimation model VIDRI that combines the use of multispectral
vegetation indices (VIopt) extracted from partially available optical satellite data covering
the research area and the differential radar information (DRI) parameter ∆σ0, which reflects
the internal structural characteristics of the vegetation layer and is only related to the
growth status of the crop vegetation. After comparing and analyzing the correlation and
parameter estimation accuracies of various multispectral vegetation indexes VIopt and
their corresponding VIDRI indexes with corn plant height and BBCH phenology, the results
indicate that the VIDRI indexes constructed by combining rich multispectral features from
the corn vegetation canopy and SAR features related to the vegetation layer structure show
a better correlation with growth parameters. Furthermore, we have found that using a
combination of red-edge multispectral and SAR DRI features to construct VIDRI indexes
is advantageous in improving the accuracy of corn growth parameter estimation. This is
especially the case for the NDVIre2DRI and S2REPDRI indexes constructed in conjunction
with the Sentinel-2 satellite data red-edge 2 band, which showed the best correlations with
growth parameters compared to the other vegetation indexes.
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