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Abstract: Weeds are unwanted and invasive plants that proliferate and compete for resources such
as space, water, nutrients, and sunlight, affecting the quality and productivity of the desired crops.
Weed detection is crucial for the application of precision agriculture methods and for this purpose
machine learning techniques can be used, specifically convolutional neural networks (CNN). This
study focuses on the search for CNN architectures used to detect and identify weeds in different
crops; 61 articles applying CNN architectures were analyzed during the last five years (2019–2023).
The results show the used of different devices to acquire the images for training, such as digital
cameras, smartphones, and drone cameras. Additionally, the YOLO family and algorithms are
the most widely adopted architectures, followed by VGG, ResNet, Faster R-CNN, AlexNet, and
MobileNet, respectively. This study provides an update on CNNs that will serve as a starting point
for researchers wishing to implement these weed detection and identification techniques.

Keywords: precision agriculture; weed classification; machine learning; machine vision; image
processing; CNN

1. Introduction

According to the United Nations, the world population is estimated to reach
9.7 billion inhabitants by 2050 [1]. Against this backdrop, facing the challenge of feeding
this growing population with high quality and sustainable products becomes an impera-
tive task. Increasing crop productivity emerges as a measure to address this need. Thus,
a strategy that contributes to improving productivity is proper management of weeds,
given their direct impact on crop yields. Integrated weed management is essential to
preserve agricultural productivity [2]. Plants considered as weeds are fast-growing and
actively compete for vital resources, such as space, water, nutrients, and sunlight. This
competition not only affects resource availability but also has a negative impact on crop
yield and quality [3]. According to [4], damage due to weeds can represent up to 42% of
agricultural production.

Currently, diverse weeding techniques are used, such as pre-and post-emergence
herbicides, whose application not only generates environmental impacts but also affects
the health of the workers who apply them [5]. Mechanical weeding applies mechanized or
manual techniques, whose effectiveness in eliminating weeds is not always the desired one,
depending on their stage of development [5]. Other weeding alternatives are still under
development, or their feasibility has not been fully demonstrated. One is physical weeding
using plastic covers [5] and micro-biological weeding involving micro-organisms [6]. Tra-
ditional weeding methods present environmental challenges or economic disadvantages,
creating the need to explore innovative solutions based on new technologies to increase
treatment efficiency. For instance, precision weeding uses image sensors and computational
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algorithms to apply herbicides only when weeds are identified [7]. Precision weeding is
done by applying herbicides in a variable way, applying a specific amount in the exact place
where the weeds are located. Examples of this are commercial developments, such as Blue
River Technology from John Deere, WeedSeeker from Trimble, or Bosch Smart Agriculture,
among others, which use algorithms based on artificial intelligence (AI) to recognize weeds
in the field. In addition to variable rate herbicide application methods, new precision weed-
ing techniques have been introduced commercially, such as the use of lasers to eradicate
weeds by burning. For example, LaserWeeding from Carbon Robotics uses AI to identify
weeds and eliminate them with a high-power laser in real time; the development of this
type of technology reduces environmental impacts and lowers production costs.

Among the AI techniques used in precision weeding is Deep Learning (DL), which
is an advanced branch of machine learning (ML) that uses multi-layered artificial neural
networks (ANNs) to model and learn complex patterns in data. DL techniques are widely
used in agriculture, and their applications are increasing as algorithms are improved [8].
Several studies compiling DL applications in weed detection are presented in the works
of [9–12]. Among the different types of DL neural networks is Convolutional Neural
Networks (CNN), a type of ANN architecture specially designed to process visual data,
such as images and videos. CNNs efficiently detect spatial patterns in digital images by
using convolution layers that apply filters to local regions of the input image [9]. These
convolution layers allow the network to automatically learn hierarchical and complex
features, such as edges, textures, and shapes, instead of relying on predefined features. The
basic structure of a CNN model consists of three layers (Figure 1), a convolutional layer, a
clustering layer, and a connection layer [10].
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• The convolutional layer extracts features from the image using mathematical filters;
the features can be edges, corners, or alignment patterns, which give the output a
feature map that serves as input to the next layer.

• The pooling layer reduces the resolution by reducing the dimension of the feature map
in order to minimize the computational cost.

• The connection layer sends the feature maps obtained from the previous layer to the
fully connected neural network layer, which contains the activation function used to
recognize the final image.

The application of CNNs involves a series of steps: first, data preparation (image
acquisition and labeling); second, CNN selection and configuration (hyperparameter tun-
ing); third, CNN training (through GPU processing Graphics Units); fourth, evaluation of
CNN performance (usual metrics: average precision (mAP), recall, F1-score, and Confusion
Matrix, among others); and fifth, model deployment (real-world applications).

CNNs have gained popularity as an effective image classification method [9]; the
success of CNNs is attributed to their ability to process images effectively and extract
relevant features automatically, which allows them to generalize new images due to their
supervised learning, which has driven their wide use in practical applications and computer
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vision research. Although CNNs are efficient in object detection and classification, they
present some limitations, e.g., large, labelled datasets are required for training. Lack of
training data can lead to deficient performance or over-fitting problems. In addition,
computational equipment with high processing capabilities, specifically GPUs, is required,
since CNNs have a deep architecture with many parameters, which implies a higher need
for processor and memory power.

To improve the efficiency of CNNs, transfer learning (TL) techniques are adopted;
these techniques take advantage of the knowledge acquired from pre-trained CNNs to
improve their performance in new training [13,14]. TL aims to transfer knowledge from
the source domain to the target application by improving its learning performance [15];
this is quite useful when the dataset for the target application is small or limited, as
the pre-trained model can provide useful representations of the data and speed up the
training process.

The application of CNNs in agriculture, specifically for weed identification, has sig-
nificantly improved traditional weeding, which employs classical computer vision, where
the analysis is carried out pixel by pixel, and is computationally expensive in processing,
especially in execution time, so the use of CNNs in weed identification has improved
the detection, localization and recognition of weeds, besides, being faster in achieving
real-time applications [8,9,16]. Although, in practice, weed detection faces several prob-
lems, such as similarities in color, textures, and shapes, as well as occlusion effects and
variations in lighting environments, CNNs supported by large-scale datasets have shown
great robustness to biological variability and diverse imaging conditions [13], leading to
more accurate classification or detection [17,18], which allows for much more accurate and
efficient automation of weeding processes [7,16].

One of the examples of using TL with CNN is AlexNet, which was trained on the
ImageNet dataset [19]. In agriculture, the TL approach has been implemented in weed
detection and classification, helping to minimize the need for large-scale image data collec-
tion and reduce the computational costs associated with the training hours of a new CNN
model [20–22]. In addition to the use of TL in agriculture, some generative adversarial
network (GAN) techniques have been applied to generate artificial images in order to aug-
ment the training set with TL [23]. The evolution of CNNs has been marked by significant
advances in terms of architecture, training techniques, efficiency, and applications, starting
from the need to implement fast solutions in image analysis; some of the most used CNN
architectures in weed detection are mentioned below:

- AlexNet: Developed by [19] in 2012, consists of eight convolutional layers and five
fully connected layers, with the deep architecture allowing learning of complex hierar-
chical features from images. It introduced the effective use of Rectified Linear Unit
(ReLu) activation functions, which helped mitigate the gradient fading problem and
accelerated training. It won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) competition, demonstrating the impact of CNNs in computer vision, and is
considered one of the most influential architectures in the field. Its main advantage
is efficiency in training by using GPUs, allowing faster and more efficient training
compared to previous methods. Among its disadvantages is that it requires large
datasets to learn the complex hierarchical features of the image; therefore, it is also
computationally demanding to train and run.

- GoogLeNet (Inception): Developed in 2014 by the Google Research team, it intro-
duced the concept of Inception modules with multiple filter sizes in parallel [24].
The modules are complex network structures with multiple convolution operations
operating in parallel with different filter sizes. These modules allow the capturing of
features at different scales and hierarchies, significantly improving the model’s ability
to recognize complex image patterns. One of the most significant advantages is its
high performance with fewer parameters than other architectures, making it computa-
tionally efficient. In addition, this architecture captures complex features at different
scales, which improves its generalization capability and helps to reduce the risk of
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overfitting in large datasets. As for drawbacks, Inception modules can be complex to
implement and understand, making them difficult to use for some developers, and
they require large amounts of memory to train and execute, due to their depth and
complexity. Although the original GoogLeNet architecture (Inception v1) has been
widely used, there have been several versions incorporating improvements; Incep-
tion v2 and v3 integrate Batch Normalization techniques, Inception v4 incorporates
larger and more complex modules, as well as residual connections inspired by ResNet,
and opens the door to versions such as Inception-ResNet and Inception-ResNet v2,
improving efficiency and accuracy.

- VGG: Developed in 2014 by the Visual Graphics Group (VGG) at Oxford University,
it is known for its simplicity and depth [25]. It is characterized by its depth and
uniform structure, mainly composed of 3 × 3 convolutional layers and 2 × 2 pooling
layers, followed by fully connected layers. The VGG architecture can have different
configurations, from VGG16 (with 16 layers) to VGG19 (with 19 layers), depending on
the number of convolutional layers. As an advantage of VGG, this architecture allows
efficient feature extraction at different scales and abstraction levels due to its simple
structure of 3 × 3 convolutional layers, and its easy implementation due to its uniform
and symmetric architecture. Among the disadvantages of VGG is the computational
cost in training and execution, due to the depth and number of parameters; also,
the large number of parameters in VGG models can increase the risk of overfitting,
especially in small datasets.

- ResNet (Residual Network): Developed by [26] in 2015, this architecture was high-
lighted as using residual blocks, which allow the training of very deep networks.
The residual blocks are based on facilitating the flow of information by creating a
direct connection path (known as “skip connection” or “shortcut connection”) that
prevents the gradient from disappearing during training. ResNet has undergone
several versions where the number of layers is increased to improve prediction. The
main ones are: ResNet-50, ResNet-101, and ResNet-152, variants with different depths,
having 50, 101 and 152 layers, respectively. Their main advantage is based on the
ability to train deeper networks by their residual connections, which decreases the
degradation in performance, in addition to minimizing overfitting and improving
the generalization capability of the model, which allows taking full advantage of the
power of deep learning. Despite its efficiency, a disadvantage of ResNet is a higher
requirement of significant resources in terms of memory and computational power,
especially when training very deep architectures.

- Fast R-CNN: an object detection model introduced in 2015, significantly improving
its predecessor’s speed and efficiency, is the R-CNN (Region-Based Convolutional
Neural Network) model. It was developed by the Microsoft Research group to address
the speed and computational efficiency limitations associated with R-CNN, providing
a faster and more practical solution for object detection in images [27]. Fast R-CNN
uses a pre-trained CNN network to extract features from the input image. Then,
regions of interest (ROIs) are generated using a technique called region proposal
(e.g., using algorithms such as Selective Search), and these regions are transformed
into a fixed region to be input to the CNN network. Finally, bounding boxes of these
proposed regions are classified and fitted using classification and regression layers,
respectively [27]. The advantage of Fast R-CNN is the runtime efficiency of using a
single CNN network to extract features and perform region classification rather than
passing each proposed region through a separate network. A disadvantage is that it
may have difficulty detecting small objects, or in cases of object overlap. Likewise, this
architecture has variants, such as Mask R-CNN, which adds an additional branch to
the network to perform semantic segmentation of objects in the image, object detection,
and classification.

- DenseNet (Densely Connected Convolutional Network): In 2017, proposed by [28],
this is notable for its densely connected structure, where each layer is directly con-



Agriculture 2024, 14, 568 5 of 19

nected to all subsequent layers. This dense connectivity can potentially improve
information flow and mitigate the problem of gradient fading. It has influenced the
design of subsequent architectures and continues to be a popular choice in research
and practical implementation in computer vision tasks. Although DenseNet has
been used primarily in its original form since its introduction, there have been some
proposed extensions and variants, such as DenseNet 121, 169, and 201, each with a
different depth. These numbers represent the total number of layers in the network,
including convolutional layers, pooling layers, fully connected layers, and normaliza-
tion layers. The main advantage of DenseNet is the direct flow of information from
the input layers to the output layers, facilitating the learning of complex features and
the propagation of gradients through the network. In addition, having a direct data
flow mitigates the problem of gradient fading, which facilitates the training of deeper
networks. As a disadvantage, it has a higher computational cost, mainly in memory,
due to its dense connections requiring more training and inference computations.

- MobileNet: Proposed in 2017 by [29], it is specially designed for implementations on
mobile devices and uses lightweight and efficient operations to balance performance
and resource consumption. The main feature of MobileNet is its ability to strike a
balance between network accuracy and computational efficiency through a series of
building blocks called “Depthwise Separable Convolution” that significantly reduce
the number of parameters and the amount of computation. The building blocks
divide the standard convolution into two separate stages: a depthwise convolution
followed by a pointwise convolution; this allows for drastically reduced computational
cost without sacrificing too much accuracy [29]. The advantages of MobileNet are
computational efficiency and low resource consumption, which makes it ideal for
running on resource-constrained devices, such as cell phones and IoT devices. Its
main disadvantage is lower accuracy compared to other larger and more complex
architectures in certain computer vision tasks. Attempts have been made to improve
the architecture by obtaining versions such as MobileNetV2 and MobileNetV3, which
improve accuracy and performance.

- YOLO (You Only Look Once): Developed in 2016 by [30], it is a fast and efficient object
detection architecture, as it approaches this task as a regression problem; instead of
a separate classification for each region, this feature allows several versions from
YOLOv1 up to YOLOv8 in 2023. Starting with the fifth version, released in 2020,
known as YOLOv5, this was built on PyTorch [31], maintaining the original YOLO
approach of dividing the image into a grid and predicting bounding boxes with class
probabilities for each cell. The overall architecture includes convolutional layers,
attention layers, and other modern techniques; it is important to mention that this
version was developed by the Ultralytics team, not by the original authors. In 2022,
the YOLOv6 and YOLOv7 versions were developed, presenting improvements in their
architecture and training scheme, and improving object detection accuracy without
increasing the cost of inference, a concept known as “trainable feature bags” [32].
Finally, in 2023, YOLOv8 was presented; its improvements included new features,
better performance, flexibility, and efficiency. Additionally, it includes improvements
for detection, segmentation, pose estimation, tracking, and classification [33].

The following is a systematic review of the latest work on the detection and identi-
fication of weeds with CNN techniques to serve as a starting point for researchers wish-
ing to implement this technique; for this purpose, the following sections are introduced:
(a) Methods, using the PRISMA statement; (b) Results: developing the research question
and producing statistics for the literature analysis, of the CNNs used for the detection
and identification of weeds, of the sources of image acquisition for training and the study
species in the articles reviewed; (c) Discussion: analysis of the articles found based on
the proposed objectives; and (d) Conclusions: conclusions and proposals for future work
are developed.
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2. Methods

In this study, a systematic review was carried out to identify and analyze the scien-
tific literature published on weed detection using CNNs. The guidelines of the PRISMA
statement [34] were followed in this review.

2.1. Research Question and Review Objectives

1. Research question: What are the Convolutional Neural Network (CNN) architectures
most frequently used for weed detection and what are the most commonly used image
acquisition sources for training these CNNs??

2. Main Objective: Analyze the different CNN architectures used for weed detection
and identify the sources of image acquisition for CNN training.

3. Specific Objectives:

• To identify and analyze the most commonly used CNN architectures for weed
detection in different crops.

• To determine the image acquisition sources most commonly used in CNN train-
ing for weed identification in different forms of production.

2.2. Sources of Information

The following databases were used for the systematic search: Web of Science and Scopus.

2.3. Search for Keywords

A primarily search was carried out to establish the relevant words for the systematic
search; for this, the Scopus database was used with the words “weeds detection deep
learning,” establishing the “search within all fields,” (ALL (weeds AND detection AND
deep AND learning); in this search, 6096 results were obtained. With the filtering options in
“Filter by keyword,” we found the five most commonly used keywords with their number
of matches: “Deep Learning” (1800), “Machine Learning” (988), “Remote Sensing” (704),
“Crops” (647), and “Convolutional Neural Networks” (638). The initial search covered
the topics of importance for this systematic review and took “Weed detection,” “Deep
Learning,” and “Convolutional Neural Networks” as keywords for the search.

2.4. Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were used and implemented through
the filters of each database:

1. The search field is selected where the search is directed through titles, abstracts, and
keywords, among others; this is specific to each database:

• In Scopus, “search within Article title, Abstract, Keywords” was established.
• In Web of Science, the search was established in “Topic”; this includes title,

abstract, author keywords and keywords plus.

2. The date range of the search is the last five years, from 2019 to 2023.
3. Document type: “Document type: Article”.
4. Excluded are reviews, book chapters, narrative articles, conference or congress articles,

unofficial notes or communications, and studies from other areas, such as social,
human, biological, chemical, legislative, social and economic impacts.

5. Language: “English Language”.

2.5. Search String in Bibliographic Databases

The search equation is established by restrictively connecting all the results containing
the keywords “weeds detection” AND “Deep learning” AND “Convolutional Neural
Networks.” With this, the search equation is established according to each platform:

• Scopus: TITLE-ABS-KEY (“weed detection” AND “deep learning” AND “Convolu-
tional Neural Networks”)



Agriculture 2024, 14, 568 7 of 19

• WOS: TS = (“weed detection” AND “deep learning” AND “Convolutional Neural
Networks”)

2.6. Initial Search Results

1. Initial records: Scopus 104 and WOS 40. Initial results obtained, 144.
2. Records eliminated by exclusion criteria: 65 results eliminated and 79 results remained,

61 from Scopus and 18 from WOS.

2.7. Duplicates and Screening

The free access tool Zotero 6.0.30 was used to eliminate duplicate results, and
14 duplicate results were eliminated, obtaining a total of 65 results.

2.8. Additional Records

16 articles obtained from reading book chapters and reviews were added to the results,
obtaining 81 results.

2.9. Records Excluded

A total of 20 records were excluded because they do not meet the objective of this
review or cannot be accessed.

Finally, 61 articles that meet the established criteria were gathered and analyzed.
Figure 2 illustrates the process in a flow chart using the PRISMA methodology.
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3. Results
3.1. Literature Analysis

A detailed analysis of the 61 bibliographic articles was conducted. The analysis
indicated that, in the last two years, there has been a growth in the number of articles
published on weed detection (Figure 3). The increasing amount of research in this area
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is mainly due to the development of new and more efficient CNN architectures, the
increase in the processing capacity of computers, and the reduction in the price of cameras
and GPU.
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3.2. Source of Images for the Training of the CNNs

In the review of the selected articles, it was found that the authors used different
types of sources for the acquisition of the images used in the training and validation of
the CNNs, such as digital cameras, professional Reflex type, industrial high-speed and
low-cost cameras, such as those using Raspberry cards. UAVs had various types of cameras,
both RGB and multi-spectral. Smartphones with high-resolution cameras were also used.
In addition, it was found that some researchers did not acquire images and used free
databases or previous works. Figure 4 shows the number of publications according to the
source used, where 49.2% used digital cameras, 29.5% used UAV as a mean of acquisition,
11.5% used smartphones, and 9.8% used already built datasets.
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18 [52] 
YOLOv5 and Classic K-Nearest Neighbors, Random Forest, and 

Decision Algorithms tree UAV multi-spectral camera 

19 [53] Faster R-CNN and Mask R-CNN Digital Camera 
20 [54] Faster R-CNN and VGG16 Digital Camera 
21 [55] VGG16, ResNet-50 and Inception-V3 Digital Camera 
22 [56] AlexNet vs. VGG-16 UAV Camera 
23 [57] YOLOv4, YOLO- sesame. Digital Camera 
24 [58] VGG16 and ResNet16 Digital Camera 
25 [59] YOLOv3-Tiny Digital Camera 

30

18

7

6

Digital Camera

UAV Cameras

Smartphones
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Number of publications

Figure 4. Number of publications by image source for training of CNNs.

3.3. CNN Architecture Used

Table 1 summarizes relevant information extracted from the selected reviewed studies
on CNN architectures.
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Table 1. Summary of articles describing CNN architecture and source of image.

No. Reference CNN Architecture Source of Image

1 [35] Specifically designed CNN Database

2 [36] Design-specific CNN with SVM Digital Camera

3 [37] AlexNet, GoogLeNet and VGGNet Digital Camera

4 [38] SegNet, UNet, VGG16 and ResNet-50. Digital Camera

5 [39] CRowNet is based on SegNet and the Hough
transform UAV multi-spectral camera

6 [40] YOLOv3 and YOLOv3-Tiny Digital Camera

7 [41] ResNet50, VGG16, VGG19, Xception and
MobileNetV2. Digital Camera

8 [42] Mask R-CNN Digital Camera

9 [43]
YOLOv3, Mask R-CNN, and CNN with

SVM-HOG (histograms of oriented
gradients)

UAV multi-spectral camera

10 [44] YOLO-WEED, based on YOLOv3 UAV Camera

11 [45] Faster R-CNN and Single Shot Detector
(SSD) UAV Camera

12 [46] CNN-LVQ-specific design based on Learning
Vector Quantization (LVQ) UAV Camera

13 [47] YOLOv3, YOLOv3-Tiny and
YOLOv3-Tiny-PRN Digital Camera

14 [48] Faster R-CNN and ResNet50 Digital Camera

15 [49] Detectron2, EfficientDet, YOLOv5, and Faster
R-CNN. Digital Camera

16 [50] Faster R-CNN, ResNet-101, VGG16 and
Yolov3 UAV Camera

17 [51] VGG-Beet based on VGG16 UAV multi-spectral camera

18 [52]
YOLOv5 and Classic K-Nearest Neighbors,
Random Forest, and Decision Algorithms

tree
UAV multi-spectral camera

19 [53] Faster R-CNN and Mask R-CNN Digital Camera

20 [54] Faster R-CNN and VGG16 Digital Camera

21 [55] VGG16, ResNet-50 and Inception-V3 Digital Camera

22 [56] AlexNet vs. VGG-16 UAV Camera

23 [57] YOLOv4, YOLO- sesame. Digital Camera

24 [58] VGG16 and ResNet16 Digital Camera

25 [59] YOLOv3-Tiny Digital Camera

26 [60] YOLOv5 Digital Camera

27 [61] Faster R-CNN, SSD, YOLOv3, YOLOv3-tiny
and YOLOv4-tiny Smartphone

28 [62] Faster R-CNN and ResNet Smartphone

29 [63] UNet based on ResNet50 Digital Camera

30 [64] MobileNetV2, ResNet50 UAV Camera

31 [65] YOLO-v3 and faster R-CNN Digital Camera
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Table 1. Cont.

No. Reference CNN Architecture Source of Image

32 [66]
Faster R-CNN, ResNet-101, YOLOv4,

SSD-Inception-v2, MobileNet, ResNet-50,
EfficientDet and CenterNet

Database

33 [67]
SSD-MobileNet, SSD-InceptionV2, Faster

R-CNN, CenterNet, EfficientDet, RetinaNet
and YOLOv4

Database

34 [68] YOLOv4 and Faster R-CNN. Digital Camera

35 [69] Mask R-CNN and GAN Digital Camera

36 [70] Alexnet, GoogLeNet, InceptionV3, Xception Smartphone

37 [71] VGGNet (16 and 19), GoogLeNet (Inception
V3 and V4) and MobileNet (V1 and V2) Digital Camera

38 [72] VGG, Resnet, DenseNet, ShuffleNet,
MobileNet, EfficientNet and MNASNet UAV Camera

39 [73] AlexNet, GoogLeNet, VGGNet and ResNet Digital Camera

40 [74] Faster R-CNN UAV Camera

41 [75] YOLOv5, RetinaNet, and Faster R-CNN UAV Camera

42 [76] Hybrid CNN, AlexNet, GoogLeNET,
VGG-Net, ResNet, and GAN Digital Camera

43 [77] VGGNet, VGG16, VGG19 and SVM Database

44 [78] WeedFocusNet based on ResNet152v2 Database

45 [79] Faster R-CNN and VGG16 Digital Camera

46 [80]
YOLOv7, YOLOv7-m, YOLOv7-x,

YOLOv7-w6, YOLOv7-d6s, YOLOv5,
YOLOv4 and Faster R-CNN

UAV Camera

47 [81] Inception-V3, VGG-16 and ResNet-50 Digital Camera

48 [82] YOLOv3, YOLOv3-tiny, YOLOv4 and
YOLOv4-tiny Digital Camera

49 [83] DenseNet, EfficientNet and ResNet Digital Camera

50 [84] 2D-CNN of specific design UAV Camera

51 [85] Alexnet, DarkNet53, GoogLeNet,
InceptionV3, ResNet50 and Xception Smartphone

52 [86] Yolov8l, RetinaNet, and GAN Digital Camera

53 [87] AlexNet and CNN-RF specifies UAV Camera

54 [88] ResNet-18, YOLOv3, CenterNet, and Faster
R-CNN Smartphone

55 [89]
DenseHHO is based on Harris Hawk (HHO),

DenseNet-121, and DenseNet-201
optimization algorithms.

UAV Camera

56 [90] AlexNet and AlexNet -SVM Database

57 [91] YOLOv3, YOLOv3-tiny, YOLOv4 and
YOLOv4-tiny Digital Camera

58 [92]
CoFly-WeedDB is based on SegNet, VGG16,
ResNet50, DenseNet121, EfficientNetB0 and

MobileNetV2
UAV Camera
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Table 1. Cont.

No. Reference CNN Architecture Source of Image

59 [93]

Xception, VGG (16, 19), ResNet (50, 101, 152,
101v2, 152v2), InceptionV3,

InceptionResNetV2, MobileNet,
MobileNetV2, DenseNet (121, 169, 201),

NASNetMobile, NASNetLarge

UAV Camera

60 [94] MobileNetV3 and ShuffleNet Smartphone

61 [95] YOLOv3, Faster R-CNN, AlexNet,
GoogLeNet and VGGNet Digital Camera

Regarding the types of images found in the study, 56 articles used images in the RBG
color space, captured with different types of cameras, four articles worked with multi-
spectral images, captured with multi-spectral cameras integrated into UAVs, and one article
used Generative Adversarial Networks (GAN) to create its own RBG images.

Figure 5 illustrates the frequency of use of the different CNNs for segmentation, detec-
tion, and classification of weeds. The YOLO family of algorithms with its multiple versions
is the most commonly applied architecture, followed by the VGG, ResNet, and Faster
R-CNN architectures, and the previous one in various versions. Alexnet and MobileNet
are also commonly used.
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As for the species used by the researchers, they are characterized by their great variety;
a total of 27 species of cash crops and 77 species of weeds were counted. Figure 6 shows the
frequency of the crop species used in the different studies, showing that the five most widely
studied crops are Sugar Beet (Beta vulgaris), Soybean (Glycine max), Cotton (Gossypium
hirsutum), Corn (Zea mays), and Wheat (Triticum aestivum L.).

Figure 7 shows the frequency of the families of the weed species used in the different
studies. The weed species were grouped into their families due to the variety found,
obtaining 22 in total. It was found that the most studied weed families are Poaceae,
Asteraceae, Amaranthaceae, Convolvulaceae, and Brassicaceae.
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4. Discussion

Figure 5 shows that the YOLO family of algorithms with its different versions is used
most frequently in the investigations analyzed, followed by the VGG family of algorithms.
ResNet and Faster R-CNN are used less frequently. These architectures are noted for their
high accuracy but differ in speed; the case of VGG, ResNet, and Faster R-CNN require
more time to process images, which may not be practical for applications that need fast
responses. On the other hand, the YOLO family of architectures is widely recognized for its
efficiency in real-time object detection, with a high ability to predict bounding boxes and
classify multiple objects in a single pass of the network, which makes it extremely fast and
suitable for real-time detection applications, for example, [49,96] claim that YOLO CNNs
have higher speed in detecting weeds.

The least frequently used architectures are UNet, ShuffleNet, and EfficientNet. In
the case of UNet, it is mainly used in medical image segmentation applications, which
explains its low frequency of use in weed detection, but different researchers have made
comparisons seeking to evaluate its performance with other specific CNNs for object
detection, for example, in [38], using the CNNs SegNet, UNet, VGG16, and ResNet-50, for
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the detection of weeds in canola fields, the best model was SegNet. Similarly, the work
of [63] combined U-Net with ResNet50, using it as a coding block for semantic segmentation
of sugar beet, weeds, and soil, obtaining satisfactory results in the segmentation; this opens
a window to evaluate different CNN architectures in different applications for which they
were not designed. In the case of ShuffleNet and EfficientNet, these are architectures used
in applications where computational efficiency is required; they are usually used in devices
with limited resources, for tasks such as semantic segmentation, image classification, or
resource optimization, which limits their direct applicability in object detection tasks and,
in this case, for weed detection. Despite this, they have been used in works such as [72]
which compared the CNNs VGG, Resnet, DenseNet, ShuffleNet, MobileNet, EfficientNet,
and MNASNet to detect Rumex obtusifolius in grasslands and found that the best CNN
was MobilNet.

Selecting the most suitable CNN architecture for weed detection should focus on
aspects such as speed, accuracy, adaptability to different types of weeds and crops, environ-
mental conditions, and computational efficiency. Although the YOLO family algorithms
stand out for their real-time speed and ability to detect multiple objects in a single pass,
other architectures, such as VGG, ResNet, and Faster R-CNN, offer higher accuracy. How-
ever, they may require more processing time. Therefore, speed becomes a parameter whose
relevance depends on the application. For example, in developing in-field systems (weed-
ing robots), where working speed is essential to ensure optimal performance, the fastest
CNNs should be considered while maintaining a balance with accuracy. On the other hand,
if precision is prioritized, hardware with higher processing capacity should be considered
to increase speed as much as possible, leading to a higher economic cost in developing this
type of machine.

In relation to the adaptability to different types of weeds and crops and various
environmental conditions, the efficiency of CNNs is intrinsically related to the quality
and diversity of the training set of images. This diversity should contain the highest
representativeness of field conditions, ensuring the model can be effectively generalized
to real conditions. Therefore, the training images must cover a wide range of scenarios
and environmental conditions, including variations in weed types (morphological and
color diversity), crops (variability in planting density), lighting conditions (brightness and
shadows), soil textures, and crop residues, among other conditions present in the field.
When selecting a CNN architecture for weed detection, carefully considering computational
efficiency and available resources is essential. This involves balancing accuracy, efficiency,
and speed to ensure optimal system performance.

One of the promises in weed detection and classification is the YOLO family of algo-
rithms that stand out for their speed and efficiency in detecting objects in real-time. Other
architectures, such as MobileNet, ShuffleNet, SqueezeNet, and EfficientNet, show promise
in specific applications requiring particularly high computational efficiency or image seg-
mentation with limited computational resources, such as mobile devices or development
boards deployed in low-cost field systems. The constant evolution of algorithms allows
any CNN to be implemented in field applications, e.g., VGG, ResNet, and Faster R-CNNN
offer higher accuracy but require high computational resources, which opens a window for
researchers to optimize CNNs or combine them to reduce computational consumption and
improve speed, while maintaining accuracy.

The selected papers analysed in this review show the use of a range of sources to
capture images, from multi-spectral cameras on UAVs, to low-cost system development,
to smartphones available to everyone. Several articles integrated different sources, as, for
example, [60], who used a Nikon 7000 camera (Nikon Corporation, Tokyo, Japan) to build
the image dataset for training using YOLOv5. Additionally, they built a spraying system
using Raspberry cameras to distinguish dicotyledonous from monocotyledonous weeds.
In [68] study, they used an UAV, a multi-copter drone (Hylio Inc., Houston, TX, USA)
equipped with a Fujifilm GFX100 (100 MP) camera (Fujifilm Corporation, Tokyo, Japan),
using YOLOv4 and Faster R-CNN architectures. In [37], they used two cameras, Sony
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Cyber-Shot (Sony Corporation, Tokyo, Japan) and Canon EOS Rebel T6 (Canon Inc., Tokyo,
Japan), for image acquisition, with AlexNet, GoogLeNet, and VGGNet architectures to
detect Perennial ryegrass, dandelion (Taraxacum officinale), ground ivy (Glechoma hederacea
L.) and spotted spurge (Euphorbia maculata L.).

The static digital camera is the most commonly used source of image capture due
to its higher image quality and speed compared to that of a smartphone or a camera
integrated into a UAV; in addition, the digital camera allows greater configuration of the
capture adjustment parameters, unlike the cameras integrated into UAVs, which allow
specific configurations but cannot be compared to the performance of professional cameras.
Additionally, factors such as the movement of the UAV, either by wind or high speeds
at the time of capture, cause some images to be out of focus, losing relevant information
and making it difficult to label objects. On the other hand, the image quality depends
on the type of camera sensor; the charge-coupled device (CCD) sensor is used in some
digital cameras due to its image quality and lower noise, but they have a higher power
consumption and manufacturing cost. The CCD has been replaced in many digital cameras
by CMOS (Complementary metal-oxide-semiconductor) sensors that are more energy
efficient and less expensive to manufacture but have a slightly lower quality than the CCD
in low light conditions. These types of sensors are used in cameras integrated into UAVs
and smartphones, so the choice between the two sensors depends on the application’s
needs. For example, [59] evaluated three digital cameras, a Canon T6 DSLR camera
(Canon Inc., Tokyo, Japan), an LG G6 smartphone (LG Electronics, Seoul, South Korea),
and a Logitech c920 camera (Logitech International S.A., Lausanne, Switzerland), and the
detection results were higher for the Canon T6 camera. In contrast, the Logitech c920 camera
was not suitable for weed detection, demonstrating that SLR-type cameras are preferred
for the development of mobile platforms, field carts, or robots due to their image quality
and different adjustment options. In the work of [65], a semi-professional Nikon P250
camera (Nikon Corporation, Tokyo, Japan) was used to develop a prototype autonomous
sprayer; similarly, in [36], a field robot was designed to detect weeds in high-density crops
using a 20-Mpixel JAI camera (JAI A/S, Copenhagen, Denmark), which is a high-speed
industrial camera.

Regarding the cameras integrated into the UAVs, the cameras manufactured by DJI
(DJI, Shenzhen, China) are mainly used in the Phanton 3 and 4, Matrice 600, Spark and
Mavic versions. Therefore, they are limited to the performance and sensor configuration
used by the brand. In addition, [72] used UAV Phantom 3 Professional imaging at three
flight altitudes (10 m, 15 m, and 30 m); the VGG, ResNet, and DenseNet architectures,
along with smaller ShuffleNet, MobileNet, EfficientNet, and MNASNet models were used
to detect Rumex obtusifolius. In [51], they used a Mavic pro UAV integrated with a Parrot
Sequoia camera, modified the CNN VGG-16 to detect weeds in sugar beet (Beta vulgaris
subsp.), and used a Mavic pro UAV integrated with a Parrot Sequoia camera, modified the
CNN VGG-16 to detect weeds in augar beet (Beta vulgaris subsp.).

The use of smartphones for imaging source capture has increased in recent years,
as there are more efficient and faster CNNs, such as MobileNet, specifically designed to
be integrated into mobile devices that perform image capture and processing but lack
professional settings. In the work of [62], a Huawei Y7 Prime smartphone (Huawei Tech-
nologies Co., Ltd., Shenzhen, China) was used to take images in pea (Pisum sativum) to
work with the Faster RCNN ResNet 50 model. Similarly, [70], a Xiaomi Mi 11 smartphone
(Xiaomi Corporation, Beijing, China) was used on bell pepper (Capsicum annum L.) to apply
Alexnet, GoogLeNet, InceptionV3, and Xception. In addition, researchers take advantage
of existing databases and image repositories, which are inexpensive, and many authors
make images and training sets freely available. However, they do not exist for all weed
species and crops. In [67], the DeepWeeds dataset was used to train SSD-MobileNet, SSD-
InceptionV2, Faster R-CNN, CenterNet, EfficientDet, RetinaNet, and YOLOv4 models.
Ref. [77] used the agri_data dataset, available on Kaggle, on Falsethistle grass and walnut
(Carya illinoinensis), to train VGGNet, VGG16, VGG19, and SVM models.
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In terms of the infrastructure required to train CNNs, Graphics Processing Units
(GPU) are necessary, allowing the processor to offload training work to take care of general
management tasks, such as data loading, workflow coordination, and communication
with other system components. NVIDIA, known primarily for its development and manu-
facturing of GPUs, developed a parallel computing platform, CUDA (Compute Unified
Device Architecture), allowing developers to utilize NVIDIA GPUs’ processing power. This
technology has been instrumental in the field of artificial intelligence (AI), especially in
the training and inference of CNNs, so many researchers use it to train and validate their
architectures. The following are the versions of GPUs found in this study:

- Google Services—NVIDIA Tesla K80
- NVIDIA GeForce GTX Serie 10, versions 1050, 1050Ti, 1060, 1070 y 1080Ti.
- NVIDIA GeForce RTX Serie 20, versions 2060, 2070, 2070Ti, 2080, 2080Ti.
- NVIDIA GeForce RTX Serie 30, versión 3090.
- NVIDIA GeForce GTX TITAN X
- NVIDIA Quadro, versions RTX 5000, RTX 8000 y T2000
- NVIDIA Tesla A100
- NVIDIA TITAN X
- NVIDIA GeForce GT525M

5. Conclusions

In this systematic review, following the guidelines of the PRISMA statement, 61 scientific
articles on the detection of weeds using CNN were analysed, using the following databases:
Web of Science and Scopus. The review covers the last five years (2019–2023).

The CNN architectures were identified as the most commonly applied for weed
segmentation, detection, and classification, followed by the YOLO family of algorithms,
with its different versions. The VGG architecture and its versions are the third most widely
used, followed by the ResNet and Faster R-CNNN. The Alexnet and MobileNet were the
least widely used architectures.

The sources used to acquire the images used to train and validate the CNNs were
identified. Fixed digital cameras, reflex type, or low-cost cameras which allow a wide
configuration and higher image quality are the main sources used. Cameras integrated into
UAVs are also used, despite their speed limitation and lower configurations compared to
an SLR camera, which can be RGB or multi-spectral. Smartphones with high resolution
cameras have also been used, with the drawback of low processing speed. In this review,
it was noted that some authors used free databases or databases from previous studies to
avoid image acquisition and the difficulties associated with it.

Despite the demonstrated effectiveness of CNNs in weed detection, several limitations
and challenges arise that deserve attention in future research. One critical limitation is
the need for large data sets representing a wide range of weed species and images at
different growth stages of both the weeds and the crop. Another significant disadvantage
is the limited ability of CNNs to generalize new images under untrained environmental
conditions. Therefore, datasets must include different lighting conditions, shadows, glare,
and the presence of elements commonly found in the crop. This diversity of data is crucial
to ensure that the model can effectively generalize across different scenarios encountered
under field conditions.

However, collecting and labeling these datasets are costly and laborious tasks that
often require experts, so using new techniques such as GANs is an alternative to exploring
with TL. Likewise, it is necessary to explore combining CNN structures to make them less
complex and shallower, implying less processing time.

Finally, CNNs require significant computational resources, especially when using
deep architectures or large datasets. This computational demand can be a limitation in
resource-constrained environments, such as mobile devices or embedded systems. There-
fore, computational efficiency should be carefully considered when selecting a CNN archi-
tecture for applications in these environments, seeking a balance between model accuracy
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and the required computational load. As future work, it is expected that the review will
be extended to focus on the search for the most appropriate CNN architectures for weed
detection and classification. Finally, it is hoped that this review article will help researchers
to create new technological developments that will improve weed detection.
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