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Abstract: The accurate and timely identification of crops holds paramount significance for effective
crop management and yield estimation. Unmanned aerial vehicle (UAV), with their superior spatial
and temporal resolution compared to satellite-based remote sensing, offer a novel solution for precise
crop identification. In this study, we evaluated a methodology that integrates object-oriented method
and random forest (RF) algorithm for crop identification using multispectral UAV images. The
process involved a multiscale segmentation algorithm, utilizing the optimal segmentation scale
determined by Estimation of Scale Parameter 2 (ESP2). Eight classification schemes (S1–S8) were then
developed by incorporating index (INDE), textural (GLCM), and geometric (GEOM) features based
on the spectrum (SPEC) features of segmented objects. The best-trained RF model was established
through three steps: feature selection, parameter tuning, and model training. Subsequently, we
determined the feature importance for different classification schemes and generated a prediction
map of vegetation for the entire study area based on the best-trained RF model. Our results revealed
that S5 (SPEC + GLCM + INDE) outperformed others, achieving an impressive overall accuracy
(OA) and kappa coefficient of 92.76% and 0.92, respectively, whereas S4 (SPEC + GEOM) exhibited
the lowest performance. Notably, geometric features negatively impacted classification accuracy,
while the other three feature types positively contributed. The accuracy of ginger, luffa, and sweet
potato was consistently lower across most schemes, likely due to their unique colors and shapes,
posing challenges for effective discrimination based solely on spectrum, index, and texture features.
Furthermore, our findings highlighted that the most crucial feature was the INDE feature, followed
by SPEC and GLCM, with GEOM being the least significant. For the optimal scheme (S5), the top
20 most important features comprised 10 SPEC, 7 INDE, and 3 GLCM features. In summary, our
proposed method, combining object-oriented and RF algorithms based on multispectral UAV images,
demonstrated high classification accuracy for crops. This research provides valuable insights for the
accurate identification of various crops, serving as a reference for future advancements in agricultural
technology and crop management strategies.

Keywords: crop classification; random forest (RF); segmentation algorithm; unmanned aerial vehicle (UAV);
multispectral images

1. Introduction

Crops, as essential economic crops, play a vital role in meeting human nutritional
needs and sustaining the agricultural economic system [1]. To efficiently organize and
utilize crop resources, precise identification of crop types and in-depth analysis of their
spatial distribution characteristics become particularly significant. Accurate identification
of crops provides data support for precise water and fertilizer management, accurate yield
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predictions, and optimized planting layouts, enhancing agricultural production efficiency,
and fosters sustainable agricultural development [2].

Traditional crop species identification mainly relies on manual ground surveys [3].
However, this method has drawbacks such as high cost, long time consumption, and
difficulty in obtaining large-scale data [4]. In recent years, the rapid development of remote
sensing technology has provided a new avenue for the accurate and rapid identification
of crop species [5]. Nevertheless, traditional satellite remote sensing faces challenges,
including low spatial and temporal resolutions, vulnerability to cloud cover, mixed pixel
issues, and limited spectral discrimination, all of which can compromise the accuracy of
crop extraction [6,7]. Recently, the swift advancement of unmanned aerial vehicle (UAV)
technology has presented new opportunities for crop identification and monitoring. UAV
remote sensing offers advantages of low cost, high spatial resolution, and reduced suscepti-
bility to adverse weather conditions [8,9]. However, current research on crop information
extraction from UAV remote sensing tends to focus on visible light image classification.
While visible light UAV remote sensing incurs lower costs, its limited spectral information
significantly restricts accurate crop classification [10,11], particularly for individual crop
plants. In contrast, multispectral and hyperspectral imaging can provide more comprehen-
sive information. Although hyperspectral imaging offers abundant spectral information,
its excessive cost limits widespread application [12]. Multispectral imaging, on the other
hand, provides a balance between information richness and cost-effectiveness, making it
imperative to explore crop identification research based on UAV multispectral imagery.

According to classification units in remote sensing imagery, classification methods can
be categorized into two types: pixel-based and object-based [13]. Traditional pixel-based
classification methods encounter challenges related to spectral heterogeneity and similarity
in high-resolution remote sensing images, often resulting in the occurrence of salt-and-
pepper noise and suboptimal accuracy [14]. On the other hand, object-based image analysis
(OBIA) techniques segment images into objects with relatively homogeneous attributes.
These objects replace pixels as the fundamental units for classification, allowing for the
comprehensive utilization of each object’s spectral, textural, and geometric characteristics,
as well as contextual features [14]. This approach effectively enhances classification accu-
racy and result reliability [15,16]. However, with the increasing number of features, data
redundancy and noncollinearity pose significant challenges to traditional classification
algorithms, such as nearest neighbor algorithm. In recent years, machine learning algo-
rithms have made significant strides. Among various algorithms, the random forest (RF)
algorithm stands out by constructing multiple decision trees through bootstrap sampling
and random node splitting [8,17]. The final class membership is determined through a
voting mechanism, providing advantages such as fast computation, high classification
accuracy, and robustness against noisy data [18].

Due to the unique advantages inherent in the object-oriented method, many scholars
have tried to combine this method with various machine learning methods for remote
sensing image classification in recent years. Pádua et al. [15] accurately identified grape
crops using OBIA approach based on UAV imagery and three machine learning algorithms
(ANN, RF, SVM), and the results showed that the ANN algorithm was able to achieve
higher performance. Liu et al. [19] found that accurate classification of crops was realized
by combining hyperspectral remote sensing data with OBIA, and the results showed that
the texture and geometric features of object-oriented methods can significantly improve the
accuracy of crop classification. In the work of Su et al. [20], using feature importance scores
as a weighting factor, a weighted Euclidean distance criterion was designed for sample
creation; finally, crop classification was implemented based on the OBIA approach, and the
results showed that the overall accuracy of the new method was 90.52%. Although OBIA
combined with machine learning methods has been studied to achieve UAV image classifi-
cation, there is little research on how to efficiently use multispectral image information and
analyze the features most conducive to the extraction of various crop species.
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Therefore, this study proposes an approach for crop classification by combining the
object-based method and RF model based on UAV multispectral images. The objectives
of this work are to assess the feasibility and effectiveness of this approach, considering
spectral characteristics, spatial patterns, and contextual information. This research will
contribute to the advancement of precision agriculture, providing an efficient and accurate
means for mapping crop distribution.

2. Materials and Methods
2.1. Study Area

The study site is situated in Minqing county (25◦55′~26◦33′ N, 118◦30′~119◦01′ E),
located in the eastern part of Fujian province, China (Figure 1), covering an area of 1466 km2.
This region features a subtropical monsoon climate with an annual mean temperature
around 19.7 ◦C and annual precipitation ranging from 1400 to 1900 mm. Abundant water
and heat resources characterize the local environment, creating favorable climate conditions
for crop growth. The area is well suited for agriculture, hosting various types of crops such
as corn, luffa, sesame, soybean, water spinach, ginger, pak choi, scallion, sweet potato, and
more. This diversity makes it an ideal location for studying crop identification.

Figure 1. The geography of the study area.

2.2. UAV Image Acquisition and Preprocessing

The multispectral images of the study area were acquired on 26 July 2021, using
UAV of DJI Phantom 4 Multispectral version (DJI Technology Co., Ltd., Shenzhen, China).
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The UAV was equipped with five single-band camera lenses (blue: 450 ± 16 nm, green:
560 ± 16 nm, red: 650 ± 16 nm, red edge: 730 ± 16 nm and near-infrared: 840 ± 26 nm).
The position system of the UAV is based on the Global Navigation Satellite System-Real
Time Kinematic (GNSS-RTK) method (DGPS) and the positioning accuracy is 0.1~0.3 m.
Route planning of aerial photography mission was performed by the app of DJI GS Pro
(DJI Technology Co., Ltd., Shenzhen, China). The flight altitude was set at 12 m, the course
overlap was set to 70%, and the side overlap was set to 65%. A total of 5424 images with
size of 1600 pixels × 1300 pixels in the study area were obtained. The software of DJI
Terra (DJI Technology Co., Ltd., Shenzhen, China) was used for image mosaicking and the
orthophoto image with a spatial resolution of about 0.008 m was produced. The clipped
true color (RGB) image of the study area is shown in Figure 1.

2.3. Methodology

The framework of crop classification based on UAV imagery and RF algorithm is de-
picted in Figure 2. The whole process is primarily divided into three key steps: (1) data
acquisition and data preprocessing; (2) eight schemes construction and image classification;
(3) accuracy assessment and crop mapping. Data preprocessing involves images acquisition
and orthographic image generation. Image classification was performed based on eight
schemes which were designed according to eight different feature subsets. Feature sub-
sets were constructed based on four types of features, including spectral features (SPEC),
index features (INDE), textural features (GLCM), and geometric (GEOM) calculated from
segmented objects. Based on spectral features, three other types of features were added to
form eight feature subsets and then to form eight classification schemes, namely, S1 (SPEC),
S2 (SPEC + GLCM), S3 (SPEC + INDE), S4 (SPEC + GEOM), S5 (SPEC + GLCM + INDE), S6
(SPEC + GLCM + GEOM), S7 (SPEC + INDE + GEOM), and S8 (All). Object-based classifi-
cation was performed using an RF model based on the above eight schemes and training
samples. Due to the different number of samples in different categories, the stratified
sampling method was used to construct the sample datasets, which were used for model
training and accuracy assessment, respectively. Finally, the crop map of for the whole study
area was predicted by the optimal RF model.

2.3.1. Image Segmentation

Image segmentation is a crucial step in object-oriented classification, as it defines
the smallest classification unit. This process involves merging smaller objects into larger
ones from the bottom to the top using the multiresolution segmentation (MRS) algorithm,
forming unit objects with uniform spectrum, texture, and geometric properties [21]. The
segmentation scale, a key parameter in image segmentation, significantly influences clas-
sification accuracy. In this study, the ESP2 plug-in is employed to determine the optimal
segmentation scale [22]. The local variation (LV) of image object homogeneity, induced by
different segmentation scales, is calculated as the average standard deviation of the segmen-
tation object layer. The rates of change of LV are then utilized to identify alternative scales
for optimal segmentation, and the final optimal segmentation scale is selected through
visual discrimination. Additional parameters are configured as follows: each band’s weight
is set to 1, the shape factor is set to 0.1, and the compactness is set to 0.5. Image segmen-
tation is conducted using eCognition Developer 9.0 (Trimble Germany GmbH, Munich,
Germany) based on the determined optimal segmentation scale.

2.3.2. Feature Extraction for Each Object

There are eighty features for each segmented object in this study, including four types
of features as follows:

(1) SPEC features include blue band (B), green band (G), red band (R), rededge band
(RE), near-infrared band (NIR), the mean of each band, the standard deviation of each band,
and the maximum of difference and total brightness (12 in total).
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(2) INDE features include normalized difference vegetation index (NDVI), normalized
difference vegetation index of rededge (NDRE), green normalized difference vegetation
index (GNDVI), NIR-red ratio vegetation index (NIRRR), NIR-green ratio vegetation index
(NIRGR), difference vegetation index (DVI), difference vegetation index of green (DVIGRE),
modified shade water index (MSWI), optimized soil adjusted vegetation index (OSAVI),
infrared percentage vegetation index (IPVI), enhanced vegetation index (EVI), and bright-
ness index (BI). There are 12 index features in total and the formula of each index is listed
in Table 1.

Figure 2. Workflow of crop classification combining unmanned aerial vehicle (UAV) images and
random forest (RF) model.
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Table 1. Formulas of index features.

Index Features Formula Reference

NDVI (NIR − R)/(NIR + R) [23]
NDRE (NIR − RE)/(NIR + RE) [24]

GNDVI (NIR − G)/(NIR + G) [25]
NIRRR NIR/R [26]
NIRGR NIR/G [27]

DVI NIR − R [28]
DVIGRE NIR − G [29]

MSWI (B − NIR)/NIR [30]
OSAVI (NIR − R)/(NIR + R + 0.16) [31]

IPVI NIR/(NIR + R) [32]
EVI 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) [33]
BI (R2 + NIR2) × 0.5 [34]

B, G, R, RE, and NIR represents blue, green, red, red edge, and near-infrared bands, respectively.

(3) GLCM features are calculated from gray-level co-occurrence matrix (GLCM) and
the total number of texture features are forty [4], including the mean, standard deviation,
entropy, homogeneity, contrast, dissimilarity, angular second moment, and correlation of
each band (B, G, R, RE, and NIR) in five directions (0◦, 45◦, 90◦, 135◦, and All).

(4) GEOM features refer to the shape and range features of an object, and the total
number is sixteen, including area, length/width, length, width, border length, shape index,
main direction, asymmetry, roundness, boundary index, number of pixels, compactness,
ellipse fitting, rectangle fitting, maximum ellipse radius, and minimum ellipse radius.

2.3.3. Schemes Construction Based on Various Feature Subsets

The selection of feature subsets has an important impact on the object-oriented classifi-
cation results. In order to understand the effect of different features on the classification
result, eight feature subsets were set up in this study, forming eight different corresponding
classification schemes (Table 2). Scheme 1 only includes spectral features (SPEC), scheme 2
adds texture features (SPEC + GLCM) on the basis of spectral features, scheme 3 adds expo-
nential features (SPEC + INDE) to scheme 1, scheme 4 includes spectral features and geomet-
ric features (SPEC + GEOM), scheme 5 adds exponential features (SPEC + GLCM + INDE)
to scheme 2, scheme 6 adds geometric features (SPEC + GLCM + GEOM) to scheme 2, and
scheme 7 adds geometric features (SPEC + INDE + GEOM) to scheme 3. Scheme 8 includes
all feature types (SPEC + GLCM + INDE + GEOM).

Table 2. The feature subsets of various classification schemes.

Classification
Schemes Feature Subsets SPEC

Feature
GLCM
Feature

GEOM
Feature

INDE
Feature

Total
Features

S1 SPEC 12 - - - 12
S2 SPEC + GLCM 12 40 - - 52
S3 SPEC + INDE 12 - - 12 24
S4 SPEC + GEOM 12 - 16 - 28
S5 SPEC + GLCM + INDE 12 40 - 12 64
S6 SPEC + GLCM + GEOM 12 40 16 - 68
S7 SPEC + INDE + GEOM 12 - 16 12 40
S8 SPEC + GLCM + INDE + GEOM 12 40 16 12 80

2.3.4. Random Forest Algorithm

The random forest is composed of various decision trees which are generated based
on sample training. Each decision tree grows independently without pruning. The charac-
teristic variable parameters are randomly selected at the nodes for bifurcation. A single
decision tree forms a decision tree cluster, and the final prediction result is generated by
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the voting of the decision tree group [4]. Two important parameters need to be set to
run the random forest model: the number of decision trees and the number of features
contained in each decision tree. These two parameters are usually determined by traversal
based on the out-of-bag (OOB) error rate [8]. Firstly, the number of decision trees is set to
1000, the number of feature parameters (1~94) is traversed in turn, and the feature number
with the smallest OOB error is selected as its best value; then the number of features is
fixed as the best value, the number of decision trees (1~1000) is traversed, the number of
decision trees with the smallest OOB error rate as its best value is selected, and the best
combination of the number of decision trees and the number of features is determined
through the above methods. The importance of features of different classification schemes
is mainly determined based on the average decline accuracy [8]. The randomForest package
of R language software (4.0.2) was used to perform the classification based on random
forest algorithm.

2.3.5. Accuracy Evaluation

In this study, object samples were meticulously chosen from UAV high-resolution
images through visual interpretation and field verification. The total number of samples for
11 types of objects was determined based on the distribution characteristics observed in the
study area (Table 3). The sample counts for various objects ranged from 60 to 250 (Figure 3),
resulting in a total of 1340 samples. To ensure that the distribution of different features in
the training and test samples aligns with that of the total samples, a hierarchical sampling
method was employed to construct both the training and verification sample sets. For each
sample type, a random sampling approach was applied in a 7:3 ratio (Table 3), where 70%
of the samples were used for establishing the classification model, and the remaining 30%
were designated for validating the classification accuracy.

Table 3. Training and test samples for various categories.

Crop Types Total Samples Training Samples Test Samples

Corn (Zea mays L.) 100 60 40
Ginger (Zingiber officinale Roscoe) 60 36 24
Luffa (Luffa cylindrica (L.) Roem.) 70 42 28

Pak choi (Brassica pekinensis (Lour.)
Rupr.) 120 72 48

Plastic film 80 48 32
Scallion (Allium fistulosum Linn.) 90 54 36
Sesame (Sesamum indicum Linn.) 160 96 64

Soil 260 156 104
Soybean (Glycine max (Linn.) Merr.) 60 36 24

Sweet potato
(Lycopersicon esculentum Miller) 90 54 36

Water spinach
(Ipomoea aquatica Forsskal) 250 150 100

The accuracy assessment of classification results relies on the confusion matrix [9],
from which various metrics, including overall accuracy (OA), producer accuracy (PA), user
accuracy (UA), kappa coefficient (kappa), and F1-score, can be computed. Kappa coefficient
and OA serve as indicators for the overall classification effectiveness, with kappa coefficient
having a value range of approximately −1 to 1, while OA falls within the range of 0~1.
The F1-score, calculated based on PA and UA, is an indicator assessing the consistency
between predicted and actual category values. The closer the F1-score is to 1, the higher the
classification accuracy for the category. The calculation formulas for each index (Equations
(1)–(5)) are as follows:

OA =
∑K

i=1 Nii

Ntotal
(1)
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Kappa =
Ntotal∑

K
i=1 Nii − ∑K

i=1 Ni+N+i

Ntotal
2 − ∑K

i=1 Ni+N+i
(2)

PA =
Nii
N+i

(3)

UA =
Nii
Ni+

(4)

F1-score = 2 × PA × UA/(PA + UA) (5)

where Nii is the number of correctly classified samples, N+i is the number of real samples
for the i class, Ni+ is the predicted number of samples for the i class, Ntotal is the total
number of samples, and K is the total number of categories.

Figure 3. The spatial distribution of samples for various crops.

3. Results
3.1. Determination of the Best Image Segmentation Scale

The ESP2 plug-in was employed for image segmentation, and the local variance and
its change rate corresponding to different scales are illustrated in Figure 4. According to
the established rules, the scale corresponding to the peak point is considered one of the
alternative scales for the best scale. Therefore, the determined alternative scales for the



Agriculture 2024, 14, 548 9 of 17

best were 86, 116, 134, 140, 151, 162, 169, and 177. To finally determine the best scale, the
aforementioned alternative scales were individually used to segment the image, and the
segmentation results are presented in Figure 5. Upon comparing the actual segmentation
results at different scales, it becomes evident that scales less than 151 led to oversegmenta-
tion of ground objects, posing challenges for subsequent classification. Conversely, scales
greater than 151 resulted in inadequate segmentation, manifesting a mixed phenomenon
in segmented objects that hindered effective classification. At a segmentation scale of 151,
the object boundaries were clear, there was substantial heterogeneity among objects, and
distinct objects could be well distinguished. Consequently, the optimal segmentation scale
was conclusively determined as 151. The compactness and shape factor also played a role
in the segmentation effect. Considering the flat terrain and concentrated crop planting, the
compactness and shape factor were set to 0.5 and 0.1, respectively.

Figure 4. Estimation of scales based on ESP2 tool.

Figure 5. Segmentation result of different scales.
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3.2. Parameter Debugging of Random Forest Model

The parameters setting of the RF model play a crucial role in the final classification
results. To identify the optimal values for the number of feature and the number of decision
trees, parameter debugging was conducted, and the results are illustrated in Figure 6.
Notably, when the decision tree is set to 1000, varying the number of features causes the out-
of-bag (OOB) error rate of different schemes to exhibit a similar trend of initially decreasing
and then fluctuating. Consequently, the number of features corresponding to the smallest
OOB error rate of each scheme is considered as the optimal value for that scheme. Once
the number of features is set to the optimal value, altering the number of decision trees
results in a similar trend of OOB errors decreasing initially and then fluctuating for different
schemes. Subsequently, the number of decision trees corresponding to the smallest OOB
error rate for each scheme is considered as the optimal value for that scheme. Ultimately,
the optimal combinations of the number of features and decision trees of the eight schemes
(S1, S2, S3, S4, S5, S6, S7, and S8) are summarized in Table 4.

Figure 6. Out-of-bag error rate of different numbers of features (a) and different numbers of decision
trees (b) for various schemes.

Table 4. Optical number of features and decision trees for various schemes.

Scheme Optical Number of Features Optical Number of Decision Trees

S1 7 763
S2 33 565
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Table 4. Cont.

Scheme Optical Number of Features Optical Number of Decision Trees

S3 16 716
S4 23 84
S5 38 313
S6 40 939
S7 12 219
S8 36 669

3.3. Accuracy Assessment

As depicted in the histogram illustrating OA and kappa (Figure 7), each scheme
demonstrates high accuracy, with the average OA consistently exceeding 86%, and the
average kappa surpassing 0.84. Notably, S5 stands out with the highest accuracy, with
its mean value of OA and kappa of 92.76% and 0.92, respectively. In contrast, S4 exhibits
the lowest accuracy, with mean OA and kappa values of 86.19% and 0.84, respectively.
The incorporation of index features and texture features proves beneficial for enhancing
classification accuracy. For instance, adding texture features to spectral features result in
a 0.71% improvement in accuracy for S2, and the addition of index features to spectral
features leads to a substantial 5.38% accuracy improvement for S3. Conversely, geometric
features have a negative effect on the classification results. For example, incorporating
geometric features into the spectral features results in a 1.13% decrease in accuracy for S4.
Furthermore, the addition of geometric features to S2 and S3 causes a 0.49% and 1.04%
decrease in accuracy for S6 and S7, respectively. Therefore, different types of features
exhibit varying impacts on classification outcomes, with SPEC features, INDE features, and
GLCM features demonstrating positive effects, while GOEM features exert negative effects.

Figure 7. Box blot of classification accuracy of different schemes.

Upon scrutinizing the classification accuracy across different categories (Figure 8), it
becomes evident that most classes exhibit an F1-score larger than 0.8. However, the accuracy
of ginger, luffa, and sweet potato is notably smaller compared to other crop classes across
most schemes. Particularly, the F1-score of luffa in the S6 scheme is merely 0.58, significantly
lower than that of other classes. While the ginger and sweet potato have a mean F1-scores
of 0.82 and 0.73 across all the schemes (S1–S8), slightly higher than that of luffa, they
still fall significantly short of the F1-scores achieved by other crop classes. Among all
crop classes, onion stands out with the highest F1-score, ranging from 0.92 to 0.97 across all
schemes. Additionally, sesame exhibits relatively high accuracy, with F1-score ranging from
0.88 to 0.94. The highest accuracy of these two crops is observed in the classification result
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of S3. Therefore, it is speculated that the identification accuracy of onion and sesame is
particularly sensitive to SPEC and INDE features. In contrast to crop classes, the recognition
accuracy of noncrop classes is obviously higher. The F1-scores of plastic film and soil are
close to 1 in all schemes, with a range of 0.95 to 0.98 and 0.985 to 0.997, respectively.

Figure 8. F1-scores of different schemes for different crop categories.

3.4. Accuracy Assessment

Figure 9 presents the feature importance ranking results for various classification
schemes, with S1 showcasing all 12 features and other schemes displaying the top 20 most
important features. Notably, significant differences exist in the feature ranking among
the various schemes. It is evident that none of the top 20 most important features in the
eight schemes includes GEOM features, establishing GEOM as the least important among
the four types of selected features. Among the SPEC, INDE, and GLCM features, GLCM
features consistently rank relatively low in importance. For instance, in S2, the top 8
importance features are SPEC features, while GLCM features following after the top 8. In
S8, the top 7 features comprise SPEC and INDE features, with only 3 GLCM features among
the 20 important features. Notably, compared to SPEC features, INDE features hold greater
importance. For example, in S3, S5, S7, and S8, the top two features are INDE features,
and the number of INDE features among the top 20 most important features in S7 and S8
surpasses that of SPEC features. Consequently, among the four types of features selected in
this experiment, the most important feature is INDE feature, followed by SPEC feature and
GLCM feature, with GEOM feature ranking as the least important. In the optimal scheme
(S5), the top 20 most important features comprise 10 SPEC features, 7 INDE features, and
3 GLCM features.

Figure 9. The 20 most important features for random forest based on S1–S8 (S1 only has 12 features).
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3.5. Prediction Map

The best mapping result for the crops in the study area based on the optimal scheme
is depicted in Figure 10. The majority of target crops are successfully identified in the
mapping results and the spatial distributions of each category are also confirmed. The
accuracy of all the categories aligns with the prior analysis of selected samples. Notably,
noncrop categories, such as soil and plastic film, exhibit distinctive characteristics, ensuring
consistent identification with the actual situation and comprehensive coverage. Distinct
spectral, geometric, and textural features set corn, scallion, and pak choi apart from other
crops, resulting in fewer areas of overestimation and underestimation. Figure 10 accurately
maps the majority of pak choi and gingers. However, the accuracy of sesame mapping is
not as robust. Specifically, certain areas in the southwest of the map are undervalued and
mistakenly identified as sweet potato or water spinach. This misinterpretation primarily
arises due to spectral similarities between sweet potato and water spinach, which resemble
those of luffa and sesame. Consequently, sesame mapping results in lower estimation
accuracy. Furthermore, it is noteworthy that the accuracy of luffa mapping is comparatively
lower, with areas exhibiting both decreased precision and underestimation when compared
to other crops.

Figure 10. Classification result based on the optimal scheme using random forest model.
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4. Discussion

Our study reveals a significant variation in the accuracy among different schemes for
the RF classifier, with S5 (SPEC + GLCM + INDE) achieving the best classification results
among all eight schemes. This underscores the distinct roles played by various feature
types in determining classification accuracy. Among the selected features, INDE, SPEC,
and GLCM features positively impact classification accuracy, while GEOM features exhibit
a negative impact, which is consistent with findings in other research [8]. GEOM features
encompass shape index, density, roundness, aspect ratio, area, and other information
commonly utilized in geological research, such as landslide mapping and rock identifi-
cation [8,35]. However, since most subjects in this study lack a relatively regular shape,
GEOM features seem to contribute minimally to the positive effects on crop identification
and could potentially lead to reduced accuracy due to data redundancy. Furthermore,
our study highlights the prominence of the INDE feature as the most crucial for the opti-
mal scheme S5, occupying four out of the top-six positions. It is followed by SPEC and
GLCM features, while GEOM features rank as the least important. Scrutinizing the feature
importance ranking map (Figure 8) reveals that the leading INDE features encompass
the near-infrared or red-edge bands. Guo et al. [8] and Abdollahnejad et al. [36] have
similarly emphasized the significance of the red-edge band in plant identification. This is
attributed to the sharp increase in plant reflectivity in the near-infrared band, resulting in a
distinctive reflection peak at the red edge [4,37]. Consequently, plants exhibit sensitivity to
the near-infrared and red-edge bands, making the addition of the INDE features with these
two bands highly beneficial for crop species identification. In summary, the study suggests
that the random forest algorithm, combined with an object-based method, performed well
in crop classification and can effectively identify the importance of each feature.

The results unveil significant variations in recognition accuracy across different cat-
egories. Notably, onion and sesame emerge as standout performances with the highest
accuracy among crops, showcasing an impressive F1-score of approximately 0.95. This
heightened accuracy can be attributed to their distinct phenotypes, sharply contrasting
with those of other crops. Conversely, ginger, luffa, and sweet potato generally exhibit
lower precision compared to their crop counterparts. The suboptimal accuracy of these
crops can be ascribed to two primary factors. Firstly, the limited sample size, with only
60 and 70 samples for ginger and luffa, respectively, plays a significant role in supervised
classification. Insufficient samples lead to incomplete classifier training, resulting in mis-
classification and omitted data points [38]. Secondly, an analysis of the confusion matrix
indicates that luffa and sweet potato are prone to misclassification due to similarities in
color, shape, and texture of their leaves. The current feature set struggles to accurately
differentiate between these two crops. To enhance recognition accuracy, future studies
should explore additional features, such as crop height, which enhance the distinctiveness
of luffa and sweet potato. In contrast to crops, noncrop categories consistently exhibit
higher accuracy, aligning with findings from other vegetation classification studies [39].
The distinctive spectral characteristics of plastic film and soil, significantly different from
those of crops, contribute to this heightened accuracy. The inclusion of texture and index
features of plastic film and soil can further improve recognition accuracy. This analysis
underscores the crucial role of sample number and quality in classification accuracy.

While this study demonstrates favorable outcomes in crop recognition, there are still
noteworthy limitations outlined below. Firstly, the study exclusively relied on a single ma-
chine learning model. Amidst the abundance of evolving machine learning methods [35],
this research opted solely for the random forest algorithm. This choice introduces a chal-
lenge in delivering a comprehensive evaluation of the effectiveness of machine learning
in crop recognition. Secondly, the study relied on imagery captured during a specific
timeframe. Given that vegetables exhibit variations in spectral characteristics and mor-
phological features across different growth stages [40,41], relying solely on results from
a singular imaging period proves inadequate in representing conditions in other time.
Lastly, despite employing the ESP2 plug-in for optimal scale selection, it can only identify
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relatively superior alternatives for the optimal scale [4]. The final scale still necessitates
determination through visual discrimination, to some extent, introducing subjectivity into
the scale determination process and limiting the level of automation. It is imperative
to explore methods for achieving fully automated optimization of image segmentation
parameters in future research.

5. Conclusions

In this study, we propose an approach for classifying crops by combining object-
oriented and RF algorithm, utilizing UAV multispectral images. The results indicate
that most of the schemes exhibit high classification performance. Notably, scheme 5
(SPEC + GLCM + INDE) emerged as the most successful, achieving an overall accuracy
of 92.76% and a kappa coefficient of 0.92. It was observed that different features exert
varying effects on classification accuracy. SPEC, GLCM, and INDE features have a positive
effect while GEOM has a negative impact. Moreover, among the four selected feature
types, the most important feature is the INDE feature, followed by SPEC and GLCM,
with GEOM being the least significant. While this study marks an initial exploration
into the crop classification using object-oriented and RF algorithm, there is a need for a
more extensive dataset comprising images of crops at different growth stages. This will
allow for a comprehensive evaluation of the RF model’s performance and enhance its
adaptability across diverse scenarios. The current research validates the efficacy of the
proposed vegetation classification method based on UAV multispectral imagery and RF
model, providing a new technique for crop classification in precision agriculture, which
holds significant promise for optimizing crop management strategies, resource allocation,
and decision-making processes in the agricultural sector.
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