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Abstract: Milk, known for its high content of short- and medium-chain fatty acids and unsaturated
fatty acids, has attracted substantial attention due to its nutritional and health value. The regulation of
fatty acid metabolism by non-coding RNAs has become a subject of growing attention, particularly in
relation to fatty acid production at the transcriptional/epigenetic and post-transcriptional levels. This
study established the circRNA-11228/miR-103/INSIG1 (insulin-inducible gene) regulatory network
using methods such as qRT-PCR, dual luciferase reporting, and Western blot, with INSIG1 serving
as the starting point. The experimental validation of circRNA-11228’s impact on cholesterol levels,
lipid droplet secretion, and unsaturated fatty acid content was conducted using various assays, in-
cluding triglycerides, cholesterol, oil red O, andEdU(5-ethynyl-2’-deoxyuridine) in bovine mammary
epithelial cells (BMECs). Furthermore, the transfection of mimics and inhibitors synthesized from
miR-103 into BMECs confirmed that miR-103 can promote cholesterol synthesis and lipid droplet
secretion. Conversely, the INSIG1 gene was found to inhibit cholesterol synthesis and lipid droplet
secretion. The “remediation” experiment validated the ability of miR-103 to alleviate the cellular
effect of circRNA-11228. Taken together, our findings indicate that the binding of circRNA-11228 to
miR-103 inhibits the expression of the target gene INSIG, thereby regulating milk fat production in
BMECs. This study offers novel insights into producing high-quality milk and new ways to improve
the dietary composition of residents.

Keywords: circRNA-11228; miR-103; INSIG1; bovine mammary epithelial cells; milk fat synthesis

1. Introduction

In recent times, circular RNAs (circRNAs) have garnered scholarly attention as a
type of non-coding RNAs (ncRNAs) [1,2]. Despite being initially observed under electron
microscopy in 1979, circRNAs have predominantly been considered as byproducts of RNA
splicing and thus have received limited attention due to their low abundance and insuf-
ficient functional research. However, recent advances in RNA sequencing, quantitative
PCR, and computational analysis methods have revealed their widespread occurrence
and specific expressions in tissues. Due to their long half-life, circRNAs become a key
post-transcriptional regulator of genes by binding to microRNAs and relieving their inhibi-
tion of mRNA targets. Moreover, they also exert an influence on gene expressions at the
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transcriptional level. Although the biological mechanism of circRNAs remains elusive, it is
widely accepted that the majority of circRNAs are generated by the conventional splicing
mechanism through head-to-tail dorsal splicing [3]. Interestingly, milk fat contains approx-
imately 14% of active transcriptional genes capable of producing circRNAs, indicating
that RNA cyclization is a prevalent cellular attribute. Extensive studies have shown that
circRNAs are emerging as a pivotal regulatory factor affecting diverse domains of life,
such as lactation, development, differentiation, and disease-related biological processes.
For example, circRNAs can interact with transcription factors and RNA-binding proteins
(RBPs) to form ribonucleoprotein complexes with specific functions [4]. Additionally, they
can form RNA-RNA complexes with non-coding RNAs (such as lncRNAs) and mRNAs [5].
These hybrid RNA complexes can alter the function or stability of these RNA molecules,
while circRNA mRNA complexes possess the ability to influence the stability or translation
of mRNAs [6,7]. In this study, insulin-inducible gene1 (INSIG1), which has already been
functionally defined, was chosen as the research object. Through sequence analysis, INSIG1
was determined to contain a binding site for miR-103, and another binding site was also
identified between circRNA-11228 and miR-103. Given the close association between INSIG
and cholesterol metabolism, it is speculated that circRNA-11228/miR-103/INSIG1 may
exert a regulatory effect on milk fat cholesterol synthesis. However, further research is
needed to investigate the regulatory role of circRNA-11228, its regulatory mechanism, and
the regulatory factors that respond to it.

INSIG1, a member of the INSIG family, is a transmembrane protein consisting of six
domains embedded in the endoplasmic reticulum membrane [8,9]. Its encoded protein
participates in regulating intracellular lipid metabolism homeostasis by modulating the
activation of sterol regulatory element-binding proteins (SREBPs) and the degradation
of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) [10,11]. A growing number of
experimental and clinical evidence indicates that INSIG1 possesses the ability to reduce
lipid accumulation in liver cells, thereby alleviating the progression of non-alcoholic fatty
liver disease, lowering plasma free cholesterol levels, and subsequently protecting against
β. The absence of fat toxicity in cells contributes to the mitigation of abnormal blood lipid
levels in individuals with diabetes. In addition, the inhibitory effects of INSIG1 on adipoge-
nesis and precursor adipocyte differentiation play a crucial role in preventing obesity [12].
Therefore, INSIG1 can serve as a key regulatory factor in maintaining intracellular lipid
metabolism homeostasis, making it a promising therapeutic target for lipid disorders [13].
Despite the increasing interest among researchers, there is still a limited understanding
of the regulatory relationship between INSIG1 and its upstream factors, especially in the
context of circRNA regulation.

MicroRNAs (miRNAs) can regulate multiple target genes, while individual genes
can also be regulated by diverse miRNAs [14,15]. The critical role of miRNAs in cellular
processes, such as cell proliferation, apoptosis, lipid and protein synthesis, and body
metabolism, is attributed to their regulation of various signaling pathway molecules [16].
In order to investigate this phenomenon, a group of researchers constructed miRNA
expression profiles in breast tissues of mice, goats, and cows at different lactation stages and
conducted a comprehensive analysis of these profiles. Their findings revealed significant
differences in miRNA expression profiles across these stages. The differential expression of
miRNAs is hypothesized to be related to breast development and lactation-related milk
fat metabolism activities [17]. In the mouse 3T3-L1 cell line, miR-103 has been found to
promote intracellular triglyceride synthesis by targeting the MEF2D (myocyte enhancer
factor 2D) gene and activating the AKT/mTOR signaling pathway [18,19]. Moreover,
the expression level of miR-199-3p in human adipocytes is influenced by free fatty acids,
insulin resistance, and inflammatory factors, making it a potential marker for fatty acid
content [20]. The aforementioned studies provide compelling evidence that miRNAs play
an important role in animal fatty acid metabolism. Bioinformatics analysis has discovered
that the 5′ untranslated region (5′-UTR) of the INSIG1 gene contains a binding site for
miR-103. However, limited reports exist regarding the regulatory relationship between miR-
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103 and INSIG1. Therefore, we hypothesized that the circRNA-11228/miR-103 pathway
might regulate lipid compositions via competitively binding INSIG1 in bovine mammary
epithelial cells (BMECs). To test the hypothesis, various molecular biological techniques
and functional experiments, such as gene overexpression, dual-luciferase reporter vectors,
and Western blotting, were employed to further evaluate the function and regulatory
relationship of circRNA-11228/miR-103/INSIG1.

2. Materials and Methods
2.1. Culture of BMECs (Bovine Mammary Epithelial Cells)

Cows selected in this study were 60 days postpartum (peak lactation) Holstein cows
(body weight: 650 ± 50 kg) and daily milk yields (40 ± 5 kg), and in vivo udder tissues
were collected surgically. After washing with PBS (phosphate-buffered saline), visible
adipose tissues and connective tissues surrounding the breast tissue were removed. The
remaining tissues were then placed in a frozen tube containing D-Hank’s solution and
kept on ice before transporting them to the laboratory. Tissue block separation was used to
separate BMECs. The acinus structure was cut from the tissue block and finely shredded
into cubes of approximately 1 mm3. Then, they were placed in a pre-soaked culture dish
containing serum and cultured with 5% CO2 at 37 ◦C. The culture medium was replaced
every 2–3 days. Upon migration of cells from the tissue block, they were digested for
passage. Following passage culture, breast epithelial cells were purified using differential
digestion and frozen. BMECs were cultured in a complete growth medium consisting of
DMEM-F12, 10% fetal bovine serum (FBS, Wisent, Nanjing, China), and 50 U/mL penicillin
streptomycin in a 37 ◦C 5% CO2 incubator for subsequent experiments.

2.2. Triglycerides and Cholesterol Analysis

Once the treated cells reached a fusion degree of 90–100%, they were collected, and the
culture medium was discarded from the culture plate. Subsequently, the cells were washed
three times with pre-cooled PBS at 4 ◦C and then subjected to ice lysis for 20 min using the
lysate. Then, a cell scraper was used to scrape the cells and lysate into a centrifuge tube,
followed by sonication. After standing on ice for 10 min and fully crushing, the sample
was centrifuged at 2000 rpm at 4 ◦C for 5 min. Following centrifugation, a portion of the
supernatant was extracted, and the total protein concentration was determined using the
BCA(bicinchoninic acid assay) protein detection kit. The remaining supernatant was heated
at 70 ◦C for 10 min, followed by centrifugation at 2000 rpm for 5 min at room temperature.
To ascertain the concentration of triglycerides or cholesterol, the reaction was shielded from
light for 10 min and subsequently carried out for 20 min. The blank control group was
set up simultaneously, and the absorbance at 550 nm was employed to detect intracellular
concentrations of triglycerides or cholesterol. Based on the measurement results, a standard
curve was drawn and the concentration of triglycerides was calculated. Triglyceride content
was quantified using protein concentration per milligram. For specific methods, please
refer to Chen et al. [21,22].

2.3. Oil Red O Staining

Cells were inoculated into a 12-well plate, followed by the removal of the culture
medium and gentle rinsing of the cells twice with pre-cooled PBS buffer. Subsequently, the
cells were fixed with 4% paraformaldehyde at room temperature for 30 min. The fixative
was then removed, and cells were rinsed twice with pre-cooled PBS buffer. Then, cells were
stained with oil red O working solution at room temperature for 30 min. The oil red O
working solution was discarded, and cells were gently rinsed twice with pre-cooled PBS
buffer. Then, cells were stained with hematoxylin staining solution in the dark for 3 min.
Following this, the hematoxylin staining solution was discarded and cells were rinsed twice
with pre-cooled PBS buffer. Then, a fluorescence microscope was employed to observe and
take photos.
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2.4. EdU Cell Proliferation Detection

Cells were inoculated into a 24-well plate and diluted in a ratio of EdU (10 mM) to
growth medium 1:500 to obtain 2× of EdU working solution (20 µM). After preheating
at 37 ◦C, the same volume of culture medium was added to a 24-well plate. The final
concentration of EdU was reduced to 1×, and the plate was placed in a cell incubator
for further cultivation for 6 h. Next, the culture medium was removed and 500 µL of 4%
paraformaldehyde was added, allowing for fixation at room temperature for 15 min. The
fixed solution was then removed, and each well was incubated with 500 µL PBS buffer at
room temperature for 15 min. Hoechst 33342 (1000×) was diluted with PBS buffer at a ratio
of 1:1000. Then, 100 µL 1× Hoechst 33342 was added to each well, followed by incubation
at room temperature in darkness for 10 min to facilitate nuclear staining. Subsequently, the
staining solution was removed. Fluorescence detection was conducted using a fluorescence
microscope.

2.5. Double Luciferase Report

After digestion, 293A cells were inoculated into a 48-well plate, with an approximate
density of 7 × 104 cells per well. After 24 h, the state and density of 293A cells were
observed. Once 293A cells stably adhered to the wall and reached a density of 75%, the
reporter gene plasmid vector was transferred into them through PEI (polyethyleneimine)
transfection reagent. After 4 h, the fluorescence was observed using a fluorescence micro-
scope. After 48 h, the cells were washed 3 times with PBS, followed by treatment with 40 µL
of 1× passive lysis buffer. The resulting mixture was then shaken for 15 min using a shaker,
after which the liquid was collected in a 1.5 mL EP (Eppendorf) tube and centrifuged for
10 min at 3500 rpm. From the resulting supernatant, 4 µL was taken for detection and
mixed with 20 µL Mix LARII well. Then, the fluorescence value was measured using
Lumit3 LB9508, and 20 µL of Stop & Go solution was added. The experimental data were
subsequently analyzed and normalized to obtain fluorescence report detection results. To
verify the targeting relationship, PCDNA-miR-103 was co-transfected with recombinant
psiCHECK-2-circ003429-W/psiCHECK-2-circ003429-Mut vector into HEK293T cells, and
dual-luciferase gene reporter vector test was employed.

2.6. Quantitative Real-Time PCR (qRT-PCR)

To detect mRNA expression levels, mRNA reverse transcription fluorescence quantita-
tive PCR (qRT-PCR) was employed following the protocols provided by the PrimeScriptTM

reverse transcription kit and TB GreenTM quantitative PCR kit. The relative expression
levels of genes were calculated by UXT (ubiquitously expressed prefoldin-like chaperone)
as an internal reference. The purpose and quantitative PCR primers for internal reference
genes can be found in Supplementary Materials (Table S1).

The detection of miRNA through reverse transcription fluorescence quantitative PCR
involved diluting the cDNA by a factor of 10, ensuring the thorough mixing of the reaction
system. Following this, it was pre-denatured at 95 ◦C for 3 min in the CFX-96 real-time
fluorescence quantitative PCR instrument. Subsequently, PCR amplification was performed
at 60 ◦C for 30 s following a 10-s denaturation at 95 ◦C, with a total of 40 cycles. The
relative expression levels of miRNA were quantitatively calculated using 18S rRNA as an
internal reference.

2.7. Western Blot

The culture medium was discarded, and the cells were gently rinsed with pre-cooled
PBS buffer. Cells were then treated with 4 ◦C pre-cooled RIPA cracking solution and
cleaved on ice for 30 min. Next, the lysate was transferred into a centrifuge tube and
centrifuged at 10,000 rpm for 10 min. The supernatant was collected, and the protein
concentration was determined using the BCA reagent kit. The denatured protein was
subjected to SDS-PAGE (dodecyl sulfate, sodium salt-polyacrylamide gel electrophoresis)
electrophoresis and transferred onto the PVDF (polyvinylidene fluoride) membrane, which
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was then sealed with a blocking solution. Following the instructions provided by the
antibody, antibodies specific to the target gene were used. The first antibody was incubated
overnight at 4 ◦C, and the second antibody was incubated in darkness for 1.5 h at room
temperature. ECL (electrogenerated chemiluminescence) luminescent liquid was prepared
and used in conjunction with a chemiluminescence imaging system to detect the intensity
of the protein signal.

2.8. Data Analysis

The data were presented using the mean ± standard deviation. Statistical analysis was
conducted using SPSS 19.0 software, particularly through two-tailed F-tests and one-way
ANOVA, to compare and analyze the differences between groups. All experiments were
duplicated and repeated three times. The results are expressed as the means ± standard
errors. Differences were considered significant at * p < 0.05; ** p < 0.01.

3. Results
3.1. Targeting INSIG1 with miR-103 Specificity

The online software TargetScan 6.2 was utilized to identify that miR-103 exhibited a
perfect match with its target gene 3′-UTR, and it is suggested that INSIG1 may serve as the
target gene for miR-103. Our findings also revealed that the overexpression of miR-103
led to a downregulation of the INSIG1 gene, while inhibition of miR-103 resulted in the
upregulation of mRNA expression levels of the INSIG1 gene (Figure 1A). Similarly, the
protein expression and mRNA expression trends of INSIG1 remained consistent under the
overexpression and inhibition of miR-103 (Figure 1B). The 3′-UTR of the INSIG1 gene was
bound to the miR-103 site (Figure 1C). Luciferase reporter gene analysis showed that the
overexpression of miR-103 downregulated the activity of the wild-type INSIG1 gene 3′-UTR,
while the activity of the INSIG1 gene in the mutant remained unchanged (Figure 1D).
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Figure 1. Targeting INSIG1 with miR-103 specificity. (A) The effect of miR-103 mimic and inhibitor
on the expression level of INSIG1 mRNA. Yellow bars: negative control; blue bars: miR-103 mimic or
inhibitor. (B) The effect of miR-103 mimic and inhibitor on INSIG1 protein levels. (C) Analysis of
binding sites of miR-103 on INSIG1 3′-UTR. (D) The effect of miR-103 on the activity of INSIG1 gene
3′-UTR wild-type and mutant luciferase reporter vectors. WT: a luciferase reporter vector containing
wild-type INSIG1 3′-UTR (1033 bp to 1039 bp); MUT: a mutant luciferase reporter vector containing
the miR-103-binding site on INSIG1 3′-UTR. Yellow bars: negative control; blue bars: miR-103 mimic.
All experiments were duplicated and repeated three times. Values are presented as means ± standard
errors, * p < 0.05, ** p < 0.01. Significant differences * or ** compare the variables studied (blue bars)
with their negative controls (yellow bars)?
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3.2. CircRNA-11228 Competitive Binding to miR-103

Sequence analysis demonstrated that circRNA-11228 originated from a specific region
on chromosome X between 90989590 and 90994621. Additionally, the circRNA-11228
sequence was found to contain a miR-103-binding site. To verify the potential binding
between circRNA-11228 and miR-103, we employed PCR to amplify and recombine the
sequence containing the miR-103-binding site into the psiCHECK-2 vector to form a wild-
type recombinant vector. Furthermore, we introduced mutations to the binding site by
overlapping PCR to generate a mutant psiCHECK-2 vector (Figure 2A, Table S2). To
determine whether circRNA-11228 possesses the ability to target miR-103, we conducted a
dual-luciferase reporter gene assay. The results showed a significant decrease (p < 0.05) in
activity subsequent to the co-transfection of miR-103 with wild-type vectors (comparison
between yellow and blue), whereas no substantial change in activity was observed with
mutant vectors compared to the control group (Figure 2B, comparison between yellow and
green). Moreover, circRNA-11228 significantly reduced (p < 0.01) the expression of miR-103
(Figure 2C), indicating its ability to adsorb and bind to miR-103.
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Figure 2. CircRNA-11228 competitive binding miR-103. (A) The potential binding site between
circRNA-11228 and miR-103. (B) MiR-103 mimic reduces the activity of pCK circRNA-11228 luciferase.
(C) CircRNA-11228 reduces the expression of miR-103. All experiments were duplicated and repeated
three times. Values are presented as means ± standard errors, * p < 0.05, ** p < 0.01.

3.3. Transfection Efficiency of circRNA-11228, miR-103, and siRNA INSIG1

In order to determine the function of circRNA-11228 in BMECs, an overexpression
vector containing the circRNA-11228 sequence (pcDNA circRNA11228, Tables S3 and S4)
was constructed. After transfection with the overexpression vector, it was observed that the
overexpression efficiency of circRNA-11228 increased by 18 times (Figure 3A), indicating
that its overexpression can be used for subsequent studies. The expression levels of miR-103
in the miR-103 mimic treatment group were approximately 37.5 times higher than that in
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the control group, whereas these levels were downregulated by about 70% in the group
treated with miR-103 inhibitor. This finding demonstrated that the transfection efficiency
of miR-103 mimic and inhibitor was substantial, rendering them suitable for experiments
(Figure 3B). The transfection of SiRNA-INSIG1 resulted in a significant downregulation
(p < 0.01) of intracellular INSIG1 expression of over 60% (Figure 3C).
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Figure 3. Transfection efficiency of circRNA-11228, miR-103, and siRNA-INSIG1 in BMECs.
(A) Detection of circRNA-11228 after transfection with pcDNA-circRNA11228. (B) Detection of
miR-103 after transfection with miR-103 mimic/inhibitor. Yellow bars: negative control; blue bars:
miR-103 mimic or inhibitor. (C) Detection of INSIG1 after transfection with siRNA-INSIG1. All
experiments were duplicated and repeated three times. Values are presented as means ± standard
errors, ** p < 0.01, *** p < 0.001. Significant differences ** or *** compare the variables studied (blue
bars) with their negative controls (yellow bars).

3.4. Functional Validation of circRNA-11228 in BMECs

We detected levels of triglycerides, cholesterol, and lipid droplet secretion in response
to the overexpression of circRNA-11228. The findings showed significant decreases (p < 0.05)
in triglyceride levels (Figure 4A) and cholesterol levels (Figure 4B). On the other hand, oil
red O staining results revealed that the circRNA-11228 overexpression substantially reduced
lipid droplet accumulation of BMECs (Figure 5A). The EdU assay results demonstrated
that overexpression of circRNA-11228 did not lead to a decrease in cell count (Figure 5B).
Concurrently, examination of the expression levels of genes related to milk fat metabolism
demonstrated a substantial downregulation of cholesterol transport genes (ABCA1 (ATP-
binding cassette subfamily A member 1) and ABCG1 (ATP-binding cassette subfamily G
member 1)), triglyceride-synthesis-related genes (ACACA (acetyl-CoA carboxylase alpha),
SCD (stearoyl-CoA desaturase), and DGAT1 (diacylglycerol O-acyltransferase 1)), lipid
droplet formation-related genes (ADRP (PLIN2)) (Figure 4C), and fatty acid synthesis-
related genes (FASN (fatty acid synthase) and ACSS1 (acyl-CoA synthetase short-chain
family member 1)) (Figure 4D), whereas upregulation of lipolysis-related genes (HSL
(homo sapiens)) and oxidation-related genes (ACSL1 (acyl-CoA synthetase long-chain
family member 1) and ACOX (acyl-CoA oxidase 1)) (Figure 4E).
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means ± standard errors, * p < 0.05, ** p < 0.01. Significant differences * or ** compare the variables
studied (blue bars) with their negative controls (yellow bars).

Agriculture 2024, 14, x FOR PEER REVIEW 9 of 16 
 

 

4C), and fatty acid synthesis-related genes (FASN (fatty acid synthase) and ACSS1 (acyl-

CoA synthetase short-chain family member 1)) (Figure 4D), whereas upregulation of lipol-

ysis-related genes (HSL (homo sapiens)) and oxidation-related genes (ACSL1 (acyl-CoA 

synthetase long-chain family member 1) and ACOX (acyl-CoA oxidase 1)) (Figure 4E). 

 

Figure 4. Functional validation of circRNA-11228 in BMECs. (A) The level of triglyceride synthesis 

in BMECs treated with circRNA-11228. (B) The level of cholesterol in BMECs treated with circRNA-

11228. (C–E) The effect of circRNA-11228 on the expression level of genes related to milk fat metab-

olism. Yellow bars: negative control; blue bars: overexpression of circRNA-11228. * p < 0.05, ** p < 

0.01. All experiments were duplicated and repeated three times. Values are presented as means ± 

standard errors, * p < 0.05, ** p < 0.01. Significant differences * or ** compare the variables studied 

(blue bars) with their negative controls (yellow bars). 

 

Figure 5. Lipid droplet secretion and differentiation of circRNA-11228 in BMECs. (A) The accumu-

lation of lipid droplets dealt with circRNA-11228 in BMECs. (B) Cell differentiation dealt with 

circRNA-11228 in BMECs. 

Figure 5. Lipid droplet secretion and differentiation of circRNA-11228 in BMECs. (A) The accu-
mulation of lipid droplets dealt with circRNA-11228 in BMECs. (B) Cell differentiation dealt with
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3.5. Functional Validation of miR-103 in BMECs

The results revealed that inhibiting miR-103 expression significantly reduced (p < 0.05)
triglyceride content (Figure 6A). Conversely, overexpression of miR-103 resulted in an
approximately 1.7-fold increase in cholesterol concentration (Figure 6B). Additionally,
inhibiting miR-103 led to a 0.7-fold reduction in cholesterol content, whereas miR-103
mimics significantly increased (p < 0.01) intracellular lipid droplet accumulation in BMECs
(Figure 6C).
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blue bars: miR-103 mimic or inhibitor. (C) The accumulation of lipid droplets in BMECs treated with
miR-103 mimic. All experiments were duplicated and repeated three times. Values are presented as
means ± standard errors, * p < 0.05, ** p < 0.01. Significant differences * or ** compare the variables
studied (blue bars) with their negative controls (yellow bars).

3.6. Functional Validation of INSIG1 in BMECs

Levels of triglycerides, cholesterol concentration, and lipid droplet secretion in cells
were evaluated in response to SiRNA-INSIG1 treatment in cells. Compared with the control
group, the concentration of triglycerides in BMECs was upregulated albeit not significantly
(Figure 7A). Conversely, we detected a more than 1.7-fold increase in the cholesterol content
(Figure 7B). Meanwhile, we employed oil red O staining and found that siRNA-INSIG1
promoted fat droplet formation (Figure 7C).
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3.7. CircRNA-11228 Regulates Cholesterol Metabolism in BMECs by Adsorbing miR-133a

CircRNA-11228 was found to diminish cholesterol levels in BMECs, and this reduction
was mitigated upon treatment with miR-103 (Figure 8A). In addition, we detected the
expression level of the INSIG1 gene in response to the overexpression of circRNA-11228.
The results revealed that circRNA-11228 significantly enhanced (p < 0.05) the mRNA
expression of the INSIG1 gene. Moreover, miR-103 significantly declined INSIG1 gene
expression. When cells were treated with circRNA-11228 + miR-103, the expression level of
INSIG1 did not change (Figure 8B).
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Figure 8. CircRNA-11228 promotes cholesterol metabolism in BMECs by adsorbing miR-103.
(A) TAG levels in cells transfected with control, circRNA-11228, or circRNA-11228 + miR-103.
(B) INSIG1 expression levels in cells transfected with control, miR-103, circ007071, and circRNA-
11228 + miR-103. All experiments were duplicated and repeated three times. Values are presented as
means ± standard errors, * p < 0.05, ** p < 0.01.
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4. Discussion

The acylation reaction of glycerol-3-phosphate serves as the initial stage in the biosyn-
thesis of glycerol lipid, which is catalyzed by GPAM (glycerol-3-phosphate acyltransferase,
mitochondrial) [23,24]. The reduction in cellular triglyceride content by INSIG1 may be
attributed to the inhibitory effect of INSIG1 on the expression levels of GPAM gene mRNA.
The activation of AMPK (adenosine 5′-monophosphate (AMP)-activated protein kinase)
can induce the phosphorylation of many proteins, thereby increasing glucose uptake and
metabolism and promoting fatty acid oxidation, while concurrently inhibiting liver adi-
pogenesis, cholesterol synthesis, and glucose production [25]. The elevated expression
of INSIG1 may be responsible for the general increase in saturated fatty acid, monoun-
saturated fatty acid, and polyunsaturated fatty acid content in cells. This effect could
potentially be attributed to the presence of AMPK α 1, which is encoded by PRKAA1
(protein kinase AMP-activated catalytic subunit alpha 1) and functions as a cell energy
sensor [26,27]. Activation of AMPK α 1 also deactivates energy-consuming processes such
as fatty acid biosynthesis, while simultaneously activating production processes such as
fatty acid oxidation. Consequently, the expression of the INSIG1 gene can cause changes
in gene expression closely related to lipid metabolism, including leptin, SCD, FASN, and
HSL. These findings strongly suggest that the INSIG1 gene is a functional gene that sig-
nificantly influences lipid metabolism. Additionally, both INSIG1 and FASN genes have
been identified as target genes for miR-24 in mice and goats [28–30]. By transfecting siRNA
to interfere with the INSIG1 gene, we observed that interfering with the INSIG1 gene in
miR-24 knockout cells can partially reverse the decrease in lipid droplets, triglycerides, and
cholesterol content caused by miRNA knockout. This investigation serves as the initial
validation of the regulatory relationship between miR-103 and INSIG1, demonstrating the
specific targeting of INSIG1 by miR-103. Consequently, this study establishes a fundamental
basis for subsequent in vivo experiments.

MiRNAs are a class of short-stranded, non-coding RNAs that exert their regulatory
effects by inducing degradation and inhibiting translation of target genes through specific
binding to 3′-UTR. A growing body of studies has demonstrated their regulatory roles in
various biological processes [14,15], including cell proliferation [31], differentiation [32],
apoptosis [33], and so on. In addition, it has been observed that a single miRNA may target
multiple genes, thereby exerting a multifaceted impact [34]. For instance, miR-143 [35],
miR-369-5p [36], and miR-27b [37,38] have been implicated in adipocyte differentiation
processes. It can be seen that the investigation of miRNAs holds considerable significance
in elucidating the molecular mechanisms underlying fat metabolism. The oil red O staining
and EdU results of this study demonstrate that miR-103 enhances the accumulation of
lipid droplets in BMECs without affecting cell proliferation. This indicates that miR-103
primarily promotes intracellular secretion of lipid droplets rather than stimulating cell
proliferation.

Intracellular fatty acids mainly contribute to the formation of triglycerides, which are
stored in cells [39]. Triglycerides and cholesterol jointly participate in the formation of
intracellular lipid components [40]. The promotion of cholesterol and triglyceride levels,
together with circRNA-11228, may be attributed to ABCA1 and ABCG1 responsible for
cholesterol transport, as well as ACACA, SCD, and DGAT1 responsible for triglyceride
synthesis. Lipid droplets, consisting of triglycerides and cholesterol encapsulated in phos-
pholipid monolayers, are synthesized and secreted through the participation of ADFP,
XDH, and TIP47 genes. ACACA catalyzes the conversion of acetyl CoA to malonyl CoA,
a rate-limiting enzyme for the synthesis of C16:0 fatty acids from scratch [41,42]. The
potential mechanism by which circRNA-11228 inhibits the upregulation of C16:0 and C18:0
fatty acid content in BMECs may involve the co-regulatory effect of intracellular ELOVL6
and SCD1 proteins.

When studying the function of circRNA, it is crucial to consider its expression abun-
dance in relation to its linear RNA copies (mRNA or lncRNA). Although most circRNAs
are generally less abundant than linear RNAs, there are instances where circRNAs ex-
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hibit higher levels of abundance [43,44]. The competitive binding between circRNAs and
miRNAs can affect the translation and/or stability of mRNAs [1,2,4,15,31]. In addition,
circRNAs can directly interact with various RNA molecules such as mRNAs and lncR-
NAs [1,4,45], influencing their stability, translation, and localization [44]. For example,
the formation of a loop by mRNA can lead to an enhancement of its translation efficiency
due to the proximity facilitated by circRNAs between the 5′ and 3′ ends of the target
mRNA, thereby affecting mRNA translation. Additionally, circRNAs can also interact with
RBPs and even function as RBP sponges. Through their interaction with RBPs, circRNAs
may affect the splicing, transportation, storage, and translation of target mRNAs. On the
contrary, the binding of RBPs to mRNAs can exert an influence on the formation, function,
abundance, and subcellular localization of circRNAs [46]. It is worth noting that despite
the recognized stability of circRNAs, their turnover remains unexplored in response to
changes in RBP levels that interact with it. Similarly, the interaction between circRNAs and
transcription factors (TF) can affect TF translocation to the nucleus or transcriptional activ-
ity. For example, circ-Foxo3 can serve as bait for TF. Notably, research has described that
circRNA-11228 promotes cholesterol and fatty acids by adsorbing miR-103. Through soft-
ware prediction and a dual luciferase reporter gene detection system, the binding between
circRNA-11228 and miR-103 has been experimentally proven. Interestingly, circRNA-11228
and miR-103 exhibit completely opposing effects on the metabolism of cholesterol and
fatty acids. Specifically, circRNA-11228 inhibits their metabolism, while the overexpression
of miR-103 can counteract this effect. In addition, circRNA-1128 has been observed to
inhibit milk fat metabolism, and this effect can be reversed when miR-103 is overexpressed.
Also, circRNA-1128 has been determined to decrease triglyceride synthesis. However,
when circRNA-1128 and miR-103 are overexpressed concurrently, the triglyceride levels
are not different from those of the control group. These results indicate that circRNA-1128
functions as a molecular sponge of miR-103.

5. Conclusions

Our data reveal that during the dry milk period of cows, circRNA-11228 binds to
miR-103, thereby alleviating the inhibitory effect of miR-103 on INSIG1 expression. On the
other hand, after lactation in cows, circRNA-11228 did not interfere with miR-103’s specific
targeting of INSIG1; INSIG1 does not have an effect on milk fat metabolism (Figure 9). These
findings provide a solid theoretical and experimental basis for comprehending molecular
mechanisms underlying the regulation of milk fat synthesis.
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