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Abstract: The tarnished plant bug, Lygus lineolaris, and the red-banded stink bug, Piezodorus guildinii,
pose significant economic threats to cotton and soybean crops in the mid-southern USA. However, the
efficacy of insecticide spraying is comparatively low, and adjuvants play a crucial role in optimizing
insecticide performance. This study evaluated the impact of two adjuvants, sodium alginate (SA) and
polyacrylamide (PAM), on enhancing the efficacy of bifenthrin and imidacloprid via laboratory spray
bioassays. Both SA and PAM demonstrated insignificant variation in LC50 values with formulated
bifenthrin and imidacloprid. However, SA and PAM exhibited synergistic effects with two technical-
grade insecticides. High concentrations of PAM increased the efficacy of bifenthrin by 1.50- and
1.70-fold for L. lineolaris and P. guildinii, respectively. Conversely, no enhancement effect was observed
for the SA–technical-grade bifenthrin combination against either insect pests. Additionally, both
SA and PAM enhanced the effectiveness of imidacloprid in P. guildinii by up to 2.68- and 2.73-fold,
respectively. While a high concentration of PAM had a 1.45-fold synergistic effect on technical-
grade imidacloprid, no enhancement effect was observed for the SA/imidacloprid combination in
L. lineolaris. This study explored the synergistic impact of SA and PAM on the efficacy of technical-
grade and formulated bifenthrin and imidacloprid, providing valuable insights into optimizing pest
control strategies in agriculture.

Keywords: two hydrocolloid adjuvants; technical-grade and formulated insecticides; spray bioassay;
tarnished plant bug; red-banded stink bug; pesticide efficacy assessment; pest management

1. Introduction

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae),
and the red-banded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae),
are significant threats to cotton and soybeans, respectively, in the mid-southern United
States. L. lineolaris causes serious damage to cotton by feeding on squares and bolls, result-
ing in yield losses [1–3]. In recent years, P. guildinii has expanded its range, establishing
itself as an economically significant pest and causing substantial yield losses in soybean
fields in Mississippi and Arkansas [4]. The stink bug complex, with P. guildinii as the
most abundant species, has contributed to these losses [5]. Chemical control is widely
used for managing L. lineolaris and P. guildinii infestations, and insecticides, including
organophosphate, pyrethroids, and neonicotinoids, are key components of control tactics
against these pests [6,7]. However, the repeated use of pyrethroids and neonicotinoids
against L. lineolaris favors the selection of resistant populations, amplifies the economic
impact, and complicates management strategies [3].
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Insecticide resistance poses a significant challenge and requires higher insecticide
application concentrations, which may impact beneficial insects such as bees. An increase
in the concentration of neonicotinoid foliar sprays in Mississippi presents a potential
direct contact risk to foraging bees [7]. Moreover, the use of conventional pesticides
is considered unsustainable, as excessive or improper pesticide application results in
unintended contamination of pesticides and their residues in the environment, posing
risks to organisms and human health [8]. The intensive use of insecticides in agriculture,
homes, and gardens has led to high-level residual accumulations in the soil, surface,
groundwater, and food chain [8]. These chemicals may cause serious problems, such as
fetal health hazards, birth defects, and even death [9]. However, the utilization efficacy
of conventional insecticides is comparatively low in agricultural production, contributing
to their excessive application and environmental pollution. Research indicates that the
world’s annual pesticide output has reached 4.6 million tons, with over 90% of the applied
pesticides flowing into the environment and remaining in agricultural products, while the
actual utilization rate for targeted pests is less than 0.1% [10]. Spray drift from pesticide
applications is a major challenge that affects the efficiency of these applications [11]. The
U.S. Environmental Protection Agency (EPA) defines drift as the “movement of pesticide
dust or droplets through the air at the time of application or soon after, to any site other
than the area intended” [12]. Environmental conditions and operational parameters can
influence pesticide spray drift, and modifying the spray solution through tank mix additives
and product formulation is an important drift reduction strategy. Incorporating specific
spray adjuvants has been reported to result in up to 63% drift reduction, depending on the
formulation/adjuvant combination [11]. Different adjuvant products, such as surfactants,
drift retardants, mineral oil, and vegetable oil, have shown potential for reducing drift in
agricultural spray applications [13].

The primary goal of adjuvant products is to enhance the effectiveness of agrochemicals
by facilitating the spreading and sticking of spray droplets and improving the penetration
of active ingredients through the leaf cuticle or targeted pests, thereby reducing the amount
of pesticide required for effective pest control [14]. Adjuvants fulfill various roles; they are
used as surfactants to enhance insecticide coverage and penetration, emulsifiers in stabiliz-
ing formulations, compatibility agents to improve the interaction of insecticides with other
ingredients, tools for enhancing insecticide retention on plant foliage [15], off-target drift
reducers [11], products to improve wetting and spreading of insecticide formulations [16],
and rainfastness providers [17]. The Council of Producers and Distributors of Agrotechnol-
ogy (CPDA) has certified 221 adjuvants as approved tank-mix products [18]. Additionally,
many adjuvant products not certified by the CPDA are widely used by commercial-scale
producers, although their effectiveness remains uncertain. Studies on pollinator safety
indicate that some adjuvants can be as or more toxic to pollinators than pesticide active
ingredients [14,19–24]. Therefore, there is an urgent need to develop and utilize adju-
vants that are less toxic to insect pollinators. Challenges such as insecticide resistance also
highlight the importance of testing new adjuvants for pesticide applications.

The main chemical classes of principal functional agents listed on spray adjuvant la-
bels include non-ionic surfactants, crop oil concentrates, modified seed oils, organosilicone
surfactants, and hydrocolloid polymers [25]. In this study, we focused on two hydrocol-
loid polymers: sodium alginate (SA) and polyacrylamide (PAM). Sodium alginate (SA)
(C6H7 O6Na)n is nontoxic, biocompatible, and biodegradable [26]. It is nearly odorless and
tasteless [27]. Upon dissolving in water, it forms a thick colloidal solution of higher pH
and concentration, exhibiting significantly increased viscosity. However, it does not cause
substantial reductions in surface tension at higher doses. SA solutions effectively endure
freeze and thaw cycles. It is recognized by the United States Food and Drug Administra-
tion [28] as a “generally recognized as safe” (GRAS). Additionally, SA is registered as a food
improvement agent in the European Union (EU) [29]. The United States Environmental
Protection Agency (U.S. EPA) rates SA as a safer chemical [30]. SA is applied in the medical
and food industries [31–34], water and wastewater treatment practices, oil and gas pro-
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duction, and a variety of other industries. Polyacrylamide (PAM) [–CH2CH(CONH2)–]n
is a non-ionic [34], water-soluble, and biocompatible polymer. Upon dissolving in water,
it forms a thick colloidal solution with increasing pH and concentration, leading to a sig-
nificant decrease in surface tension. However, it does not exhibit appreciable increases in
viscosity at higher doses. PAM is used in the water and wastewater treatment industry as a
flocculant [35,36], soil conditioning and erosion control agent [37–39], and in the oil and gas
industry [40]. However, high levels of acrylamide in PAM have been associated with cancer
in laboratory animals and are reasonably anticipated to be a human carcinogen [41,42]. The
risk posed by acrylamide compounds to humans is not fully understood. This reiterates the
importance of the current research to identify pesticide adjuvants that are safer for humans
and other animals (e.g., pollinators) important in our food production system.

This research evaluated the potential of two adjuvants, SA and PAM, to enhance the
efficacy of bifenthrin and imidacloprid, shedding light on their practical application in pest
management. The combination of technical-grade or formulated bifenthrin or imidacloprid,
with or without the adjuvant SA or PAM, is referred to as the spray solution. Bioassays were
conducted on L. lineolaris and P. guildinii, which are the two main economically detrimental
pests of cotton and soybean in Mississippi, respectively. The potential synergistic and
antagonistic effects of SA (a new adjuvant) were evaluated in two target insect pests,
and similar assessments were conducted with the commercial pesticide adjuvant PAM
for comparison.

2. Materials and Methods
2.1. Insect Populations

The adult tarnished plant bug (Lygus lineolaris) used in this study was obtained from a
colony established in 1998 [43]. The colony was maintained on a non-autoclaved semisolid
artificial diet following a protocol described by Portilla et al. (2011) without exposure to any
pesticide [44]. A population of the red-banded stink bug, Piezodorus guildinii (Westwood),
was collected from a soybean field at the Southern Insect Management Research Unit Farm,
Leland, MI, USA, in October 2023.

2.2. Insecticides and Adjuvant Sources

The formulated insecticides used in this study included Advise Four (imidacloprid,
40.4%, Winfield Solutions LLC, St. Paul, MN, USA) and Tundra ®EC (bifenthrin, 25.1%,
Winfield Solutions LLC, St. Paul, MN, USA), which were obtained from local agricultural
chemical suppliers near Stoneville, Mississippi. In addition, technical-grade imidacloprid
(purity 98.3%) and bifenthrin (purity 98.0%) were purchased from Chem Service, Inc. (West
Chester, PA, USA). All pesticides were stored at 4 ± 1 ◦C prior to use. For the exper-
iments, commercially available sodium alginate (SA) produced by Spectrum Chemical
Manufacturing Corporation (Gardena, CA, USA and New Brunswick, NJ, USA) and com-
mercially available polyacrylamide (PAM) made by Precision Laboratories (Kenosha, WI,
USA) were purchased.

In all experiments, the adjuvant concentrations were 1.25 or 2.5 g/L for sodium alginate
(SA 1.25 and SA 2.5) and 0.08 or 0.31 mg/L for polyacrylamide (PAM 0.08 and PAM 0.31).
The concentrations used for the two adjuvants were very different. This is because PAM
is a ready-to-use product that has existed on the market for several decades as a proven
pesticide adjuvant, and we used the minimum to the maximum recommended label rate.
However, SA is only a thickener that was explored in this study as a potential pesticide
adjuvant. For SA, we determined the minimum and maximum rates based on limited
spray experiments in the laboratory. An insecticide efficacy experiment was conducted
to test the differences between technical-grade or formulated insecticides (bifenthrin and
imidacloprid) against P. guildinii and L. lineolaris with or without SA or PAM treatments.
Formulated bifenthrin or imidacloprid was dissolved in deionized H2O, whereas technical-
grade insecticide was dissolved in acetone to make a stock solution of 1000 mg/L and then
diluted with H2O, ensuring that the amount of acetone remained below 20%. Each technical-
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grade or formulated pesticide was combined with/without low or high concentration of
the adjuvants (SA 1.25 and SA 2.5; PAM 0.08 and PAM 0.31). Serial dilutions were prepared
using deionized water, 1.25 and 2.5 g/L SA, or 0.08 and 0.31 mg/L PAM adjuvant solutions
to obtain the four desired test concentrations for each treatment. In total, 20 treatments
were applied to either L. lineolaris or P. guildinii.

2.3. Laboratory Spray Tower Bioassays

Either 20 adult L. lineolaris or 15 P. guildinii were placed into plastic cups (500 mL
round wide-mouth polypropylene cup; D × H: 9.3 × 10 cm) with fabric mesh-covered
holes (5.0 cm in diameter) cut on both the lid and the bottom. The procedure of the spray
bioassays was identical to that described previously [45]. Prior to spraying the insecticide
solutions, a control treatment was conducted by spraying 0.5 mL of water, 20% acetone, SA
1.25, SA 2.5, PAM 0.08, or PAM 0.31 only.

2.4. Data Analysis

For the bioassay data, the LC50 values and 95% confidence intervals were calculated
by Probit analysis using SPSS software (version 19.0, SPSS Inc., Chicago, IL, USA, 2003),
and the data are presented as means ± S.D. The significance of the LC50 values among the
different treatments was determined when there was no overlap in the 95% confidence
intervals. The synergistic ratio (SR) was calculated as the ratio of the lethal concentration
(LC50) of P. guildinii or L. lineolaris treated with bifenthrin or imidacloprid without SA or
PAM divided by the LC50 of P. guildinii and L. lineolaris treated with SA or PAM combined
with each test pesticide solution.

3. Results

In the spray bioassays of commercially formulated and technical-grade bifenthrin
and imidacloprid combined with SA or PAM, applied in L. lineolaris populations, the LC50
values for formulated bifenthrin alone ranged from 19.28 to 24.78 µg/mL (Table 1), and
when bifenthrin was combined with SA, the LC50 values slightly increased at a high con-
centration of 2.5 g/L, while at 0.08 mg/L or 0.31 mg/L PAM, the LC50 values slightly
decreased but did not significantly differ (Table 1). Formulated imidacloprid alone had
LC50 values ranging from 17.74 to 27.03 µg/mL (Table 1), and the addition of SA or PAM
resulted in slight changes in LC50 values, although these values were not significantly
different from those of imidacloprid alone. When technical-grade insecticides were used,
the bifenthrin LC50 ranged from 37.47 to 46.35 µg/mL (Table 2). Bifenthrin with 1.25 g/L or
2.5 g/L SA had an insignificant slightly higher LC50 value, while with PAM, the LC50 was
significantly lower at a higher concentration of 0.31 mg/L, leading to a 1.50-fold increase in
toxicity (Figure 1A; Table 2). For technical-grade imidacloprid alone, the LC50 ranged from
31.24 to 51.28 µg/mL, and the SA or low-concentration PAM/imidacloprid combination
had slightly lower LC50 values, while a higher concentration of 0.31 mg/L PAM resulted in
a significantly lower LC50 value and increased imidacloprid toxicity by 1.45-fold (Figure 1B;
Table 2). Overall, the addition of SA or PAM did not consistently enhance the efficacy of
formulated bifenthrin or imidacloprid. In contrast, a high concentration of PAM signifi-
cantly increased the residual activity of technical-grade bifenthrin and imidacloprid, while
no enhancement effect was observed for the combination of SA–bifenthrin or imidacloprid
against L. lineolaris.

The results from P. guildinii aligned with those from L. lineolaris for formulated
bifenthrin and imidacloprid in spray bioassays. Bifenthrin alone had an LC50 ranging
from 21.28 to 33.71 µg/mL, and imidacloprid alone had an LC50 ranging from 18.76 to
38.70 µg/mL for P. guildinii (Table 3). When bifenthrin was combined with SA or PAM, its
LC50 slightly increased with SA and slightly decreased with PAM at both low and high
concentrations, but the difference was not significant (Table 3). The addition of SA or
PAM also did not significantly affect the efficacy of formulated imidacloprid in P. guildinii,
regardless of whether the LC50 value slightly increased or decreased. However, significant
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enhancements were observed when SA or PAM was paired with technical-grade bifenthrin
or imidacloprid, with the exception of the SA–bifenthrin combination. The LC50 values of
technical-grade bifenthrin alone ranged from 42.53 to 56.72 µg/mL, which were slightly
lower with 1.25 g/L SA and 0.31 mg/L PAM but significantly lower (22.35 to 35.29 µg/mL)
at a high concentration of PAM (0.31 mg/L). Correspondingly, a high concentration of PAM
increased the efficacy of technical-grade bifenthrin by 1.70-fold (Figure 2A; Table 4). Both
SA and PAM significantly reduced the LC50 value of imidacloprid at lower and higher
concentrations, especially at higher concentrations, effectively enhancing the efficacy by
2.68-fold and 2.73-fold, respectively, and led to relatively less enhancement at lower con-
centrations in P. guildinii (Figure 2B; Table 4). Overall, the addition of SA or PAM also did
not consistently enhance the efficacy of formulated bifenthrin or imidacloprid in P. guildinii.
However, PAM significantly increased the efficacy of both technical-grade bifenthrin and
imidacloprid, while SA only enhanced imidacloprid at high concentrations in P. guildinii.

Table 1. Toxicity of formulated insecticides with the adjuvants sodium alginate (SA) and polyacry-
lamide (PAM) against Lygus lineolaris adults 48 h after application.

Compounds Population Slope LC50 (µg/mL) 95% Confidence Limits (µg/mL) χ2 p ER

Bifenthrin (F) alone 4.298 ± 0.538 21.78 19.28–24.78 0.58 0.45 --
+SA 1.25 2.714 ± 0.341 22.75 19.33–27.94 1.93 0.38 0.96
+SA 2.5 2.384 ± 0.254 30.16 25.71–35.92 0.99 0.80 0.72

+PAM 0.08 2.108 ± 0.254 20.59 16.70–25.47 0.07 0.80 1.06
+PAM 0.31 2.573 ± 0.299 17.48 14.88–21.12 1.29 0.27 1.25

Imidacloprid (F) alone 1.806 ± 0.202 21.72 17.74–27.03 0.33 0.85 --
+SA 1.25 1.596 ± 0.188 21.26 16.90–27.25 2.93 0.23 0.85
+SA 2.5 2.597 ± 0.306 29.81 25.11–35.10 1.04 0.60 0.73

+PAM 0.08 3.712 ± 0.467 31.09 27.46–35.26 1.38 0.24 0.70
+PAM 0.31 3.721 ± 0.405 27.54 24.16–31.31 1.62 0.45 0.79

Table 2. Toxicity of technical-grade insecticides with the adjuvants sodium alginate (SA) and poly-
acrylamide (PAM) against Lygus lineolaris adults 48 h after application.

Compounds Population Slope LC50 (µg/mL) 95% Confidence Limits (µg/mL) χ2 p ER

Bifenthrin (T) alone 2.740 ± 0.256 39.81 37.47–46.35 1.56 0.46 --
+SA 1.25 4.494 ± 0.498 46.94 42.31–52.18 0.48 0.49 0.85
+SA 2.5 4.897 ± 0.511 46.75 42.40–51.42 0.07 0.80 0.85

+PAM 0.08 3.041 ± 0.254 32.30 26.70–35.47 0.07 0.80 1.23
+PAM 0.31 2.879 ± 0.290 26.47 24.33–29.13 1.64 0.44 1.50

Imidacloprid (T) alone 1.474 ± 0.212 39.70 31.24–51.28 0.53 0.77 --
+SA 1.25 2.127 ± 0.218 35.56 30.30–41.83 1.48 0.48 1.12
+SA 2.5 2.205 ± 0.412 31.75 26.86–37.53 0.35 0.84 1.25

+PAM 0.08 3.681 ± 0.462 32.79 29.19–37.19 0.10 0.80 1.21
+PAM 0.31 3.801 ± 0.472 27.40 24.06–31.32 1.53 0.22 1.45

Table 3. Toxicity of formulated insecticides with the adjuvants sodium alginate (SA) and polyacry-
lamide (PAM) against P. guildinii adults 48 h after application.

Compounds Population Slope LC50 (µg/mL) 95% Confidence Limits (µg/mL) χ2 p ER

Bifenthrin (F) alone 2.321 ± 0.413 26.36 21.28–33.71 0.07 0.79 --
+SA 1.25 2.560 ± 0.392 32.15 26.84–40.66 0.86 0.35 0.82
+SA 2.5 2.369 ± 0.401 40.53 32.64–56.87 1.43 0.23 0.65

+PAM 0.08 2.361 ± 0.369 22.54 18.79–27.56 0.10 0.75 1.17
+PAM 0.31 1.552 ± 0.355 19.65 15.73–35.65 1.39 0.24 1.34

Imidacloprid (F) alone 1.871 ± 0.356 25.54 18.76–38.70 0.38 0.84 --
+SA1.25 2.450 ± 0.452 20.63 15.81–25.88 0.38 0.54 1.24
+SA 2.5 2.481 ± 0.441 30.59 24.60–39.70 0.90 0.34 0.80

+PAM 0.08 1.996 ± 0.411 20.61 15.19–26.95 0.04 0.85 1.23
+PAM 0.31 2.463 ± 0.434 22.31 17.63–28.09 1.04 0.31 1.14
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Figure 2. Mortality (%) of the population of adult Piezodorus guildinii following treatment with
technical-grade bifenthrin (A) or imidacloprid (B) alone or combined with 1.25 and 2.5 g/L sodium
alginate (SA) and/or 0.08 and 0.31 mg/L polyacrylamide (PAM) adjuvant solutions 48 h after
application. The data were fitted using a sigmoidal curve with SigmaPlot 15.0 software.

Table 4. Toxicity of technical-grade insecticides with the adjuvants sodium alginate (SA) and poly-
acrylamide (PAM) against P. guildinii adults 48 h after application.

Compounds Population Slope LC50 (µg/mL) 95% Confidence Limits (µg/mL) χ2 p ER

Bifenthrin (T) alone 3.488 ± 0.442 48.55 42.53–56.72 0.02 0.89 --
+SA1.25 3.164 ± 0.470 43.63 37.12–51.63 0.43 0.51 1.11
+SA 2.5 3.206 ± 0.441 43.93 38.07–51.68 0.36 0.55 1.10

+PAM 0.08 2.642 ± 0.412 47.45 39.54–57.08 0.24 0.63 1.03
+PAM 0.31 2.278 ± 0.341 28.60 22.35–35.29 2.91 0.23 1.70

Imidacloprid (T) alone 1.474 ± 0.212 39.70 31.24–51.28 0.53 0.77 --
+SA 1.25 1.274 ± 0.388 26.86 17.45–44.66 1.00 0.32 1.48
+SA 2.5 1.670 ± 0.396 14.78 8.63–20.16 0.19 0.66 2.68

+PAM 0.08 3.092 ± 0.449 22.04 18.19–26.35 0.95 0.33 1.80
+PAM 0.31 2.032 ± 0.421 14.51 9.57–19.00 0.48 0.49 2.73
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4. Discussion

In this study, we investigated the impact of two hydrocolloid polymer adjuvants, SA
and PAM, in combination with technical-grade or formulated bifenthrin and imidacloprid
on P. guildinii and L. lineolaris. PAM significantly improved the efficiency of technical-grade
bifenthrin and imidacloprid, while SA specifically enhanced the efficiency of imidacloprid
at high concentrations against P. guildinii. Furthermore, both SA and PAM at high concentra-
tions effectively enhanced the effectiveness of technical-grade bifenthrin and imidacloprid
for L. lineolaris. However, no significant enhancement was observed with any formulated
insecticide for SA or PAM in either L. lineolaris or P. guildinii. This disparity in formula-
tion may explain the results. Compared with formulated insecticides, which are mixtures
containing additional components such as solvents or stabilizers for application readiness,
technical-grade insecticides are characterized by their purity and high concentration of
active ingredients (imidacloprid (purity 98.3%) and bifenthrin (purity 98.0%)). In this study,
the percentage of active ingredients in formulated bifenthrin and imidacloprid were only
25.1% (Tundra ®EC) and 40.7% (Advise Four), respectively. Previous studies have utilized
hydrocolloid polymer adjuvants for various purposes in pest management. SA has been
employed as a hydrophilic pesticide carrier to enhance the insecticidal efficacy of phloxine
B [46]. Additionally, a combination of SA, PAM, and montmorillonite (MMT) has been
used to create a stretchable double-network nanocomposite hydrogel for the sustained
release of acetamiprid for pest control [47]. Moreover, a PAM hydrogel matrix has been
explored for developing a novel liquid delivery system targeting pest ant species attracted
to sugary liquids. Thiamethoxam was successfully absorbed into the interior of the PAM
matrix, suggesting that the PAM hydrogel has potential as a cost-effective alternative for
controlling Argentine ants [48]. Several studies have highlighted the synergistic application
of hydrocolloid polymer adjuvants and pesticides in pest management across various insect
pests, including mosquito larvae [49], Argentine ants [50], and Ambrosia beetles [51].

A comparison between SA and PAM revealed similar improvements in the efficacy
of imidacloprid against P. guildinii. However, the high concentration of PAM significantly
augmented the efficacy of bifenthrin by 1.70-fold, whereas no enhancement effect was
observed for the SA–bifenthrin combination in P. guildinii. In L. lineolaris, only the combina-
tions of high concentrations of PAM with bifenthrin or imidacloprid exhibited synergistic
interactions, with no effect observed for SA. The quantification of drift reduction due to
formulation and adjuvant type, as emphasized by Oliveira et al. [13], suggested that the
formulation type influences the efficacy of adjuvant–pesticide combinations. While the
SA/PAM–imidacloprid combination displayed high synergy, high-concentration PAM
showed less synergistic effects on bifenthrin in P. guildinii. Furthermore, SA and PAM
exhibited different enhancement efficiencies in P. guildinii compared to L. lineolaris. The
varying effects of bifenthrin and imidacloprid on L. lineolaris and P. guildinii indicated
species-specific responses.

Adjuvant products generally do not exhibit any pesticidal activity, and neither of
the hydrocolloid polymer adjuvants (SA or PAM) at the two concentrations induced any
mortality on their own in either P. guildinii or L. lineolaris. However, their interaction with
technical-grade bifenthrin or imidacloprid demonstrated enhanced efficacy. The mecha-
nisms underlying this synergy are not fully understood. The conventional expectation
is that pesticide and adjuvant combinations in a tank mix would show additive toxicity
without chemical interaction. However, the adjuvant–pesticide combinations exhibited syn-
ergistic interactions, surpassing what was predicted by concentration addition [52]. SA or
PAM hydrogels act as hydrophilic polymeric media with polymeric chains, allowing for the
absorption of a large amount of liquid [53]. Some adjuvants improve pesticide performance
through better absorption, while others enhance spray qualities by modifying the physical
properties of the spray solution [13]. SA composites have been reported to have promising
adsorption potential, suggesting their use in wastewater containing imidacloprid [54].
Additionally, drug carriers based on SA have been reported to improve the solubility of
hydrophobic drugs [55,56] and inhibit the photodegradation of active compounds such
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as imidacloprid [57]. Adjuvants may also enhance permeability through insect cuticular
waxes, similar to mechanisms allowing for increased ion permeability through the leaf
cuticle [58]. The cuticular waxes between P. guildinii and L. lineolaris may differ. On the
other hand, considering spray application, using a spray tower with SA/PAM–insecticide
composition may impact droplet size. The size of droplets influences their behavior during
application; larger droplets may fail to penetrate obstacles, while very small droplets may
not deposit effectively on the target insect [59]. While antagonistic effects are possible with
adjuvant–pesticide combinations [52], no significant antagonistic effects of SA or PAM were
observed in P. guildinii and L. lineolaris.

Adjuvants can be incorporated into pesticide formulations or added separately to
pesticide tank mixes, each serving specific enhancement purposes [13]. Different tech-
niques, such as encapsulation, coacervation, electrostatic gelation, matrix embedding, and
hydrogel formulation, can be employed. The bioencapsulation of pesticides, through
methods such as using a cholesteryl-grafted SA derivative in the presence of Ca2+, has
proven effective in creating self-assembled nanoparticles encapsulating acetamiprid [10].
Alginate–gelatin hydrogel beads offer an effective alternative for extended mosquito at-
traction and control [52]. The incorporation of liquid bait with hydrogel PAM matrices can
significantly reduce pesticide use while ensuring effective control [48]. Nanocomposite
hydrogels containing SA, PAM, and 5.0% MMT exhibited a maximum acetamiprid loading
rate of 13.32% and a minimum pesticide release rate of 76.11% [47]. In recent years, the
application of nanotechnology in agriculture has shown significant potential for developing
innovative insecticide formulations. Nanoencapsulation provides advantages such as safer
handling, more efficient pesticide use, and reduced environmental exposure. In insect con-
trol, nanotechnology addresses specific agricultural challenges in plant–pest interactions,
providing novel approaches for crop protection. For example, the delivery of the pesticide
imidacloprid (Admire), an SA nanoparticle nanoformulation, to plants represents a novel
technology for improving crop yield and safety [60].

This study demonstrated that SA and PAM serve as sustainable and effective carriers
of technical-grade pyrethroid and neonicotinoid insecticides used for the economically
significant insect pests P. guildinii and L. lineolaris. This approach offers a promising
alternative to conventional formulations, presenting an innovative solution to improve
pest management practices. However, the observed increase in insecticide efficiency is
specific to the evaluated combinations, and additional factors influencing spray efficacy
need to be considered in field applications. The comprehensive testing of various spray
mixtures is necessary before defining reference sprays for comparing and rating drift
reduction treatments. Similar to the adoption of adjuvants, the adoption of improved and
safer application technologies can reduce pesticide waste, protect farmers, enhance the
economics of pest control, and promote environmental and ethical practices.

5. Conclusions

Two hydrocolloid polymer adjuvants, sodium alginate (SA) and polyacrylamide
(PAM), enhanced the efficacy of two technical-grade insecticides against L. lineolaris or P.
guildinii. However, no significant effects were observed with any SA or PAM in combination
with formulated insecticide. High concentrations of PAM exhibited significant synergistic
effects with technical-grade bifenthrin or imidacloprid on either P. guildinii or L. lineolaris. In
particular, PAM improved the efficiency of technical-grade imidacloprid by up to 2.72-fold
in P. guildinii. In contrast, a high concentration of SA also had a 2.68-fold synergistic effect
on technical-grade imidacloprid in P. guildinii, while no enhancement effect was observed
for the SA–technical-grade bifenthrin or imidacloprid combination in L. lineolaris.
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