ﬁ\ﬁ agriculture

Article

Research on Entity and Relationship Extraction with Small
Training Samples for Cotton Pests and Diseases

Weiwei Yuan !, Wanxia Yang "*(, Liang He 234, Tingwei Zhang %, Yan Hao !, Jing Lu ! and Wenbo Yan !

check for
updates

Citation: Yuan, W.; Yang, W.; He, L.;
Zhang, T.; Hao, Y; Lu, J.; Yan, W.
Research on Entity and Relationship
Extraction with Small Training
Samples for Cotton Pests and
Diseases. Agriculture 2024, 14, 457.
https://doi.org/10.3390/
agriculture14030457

Academic Editor: Roy Kennedy

Received: 16 January 2024
Revised: 26 February 2024
Accepted: 9 March 2024

Published: 11 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China;
yuanww@st.gsau.edu.cn (W.Y.); 18298362960@163.com (Y.H.); luj@st.gsau.edu.cn (J.L.);
yanwb@st.gsau.edu.cn (W.Y.)

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
heliang@mail.tsinghua.edu.cn

Xinjiang Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830017, China
College of Computer Science and Technology, Xinjiang University, Urumgi 830017, China

College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; zhangtw@gsau.edu.cn
*  Correspondence: yangwanxia@gsau.edu.cn

[S I NN

Abstract: The extraction of entities and relationships is a crucial task in the field of natural language
processing (NLP). However, existing models for this task often rely heavily on a substantial amount
of labeled data, which not only consumes time and labor but also hinders the development of
downstream tasks. Therefore, with a focus on enhancing the model’s ability to learn from small
samples, this paper proposes an entity and relationship extraction method based on the Universal
Information Extraction (UIE) model. The core of the approach is the design of a specialized prompt
template and schema on cotton pests and diseases as one of the main inputs to the UIE, which, under
its guided fine-tuning, enables the model to subdivide the entity and relationship in the corpus. As
a result, the UIE-base model achieves an accuracy of 86.5% with only 40 labeled training samples,
which really solves the problem of the existing models that require a large amount of manually
labeled training data for knowledge extraction. To verify the generalization ability of the model in
this paper, experiments are designed to compare the model with four classical models, such as the
Bert-BiLSTM-CREF. The experimental results show that the F1 value on the self-built cotton data set
is 1.4% higher than that of the Bert-BiLSTM-CRF model, and the F1 value on the public data set is
2.5% higher than that of the Bert-BILSTM-CRF model. Furthermore, experiments are designed to
verify that the UIE-base model has the best small-sample learning performance when the number of
samples is 40. This paper provides an effective method for small-sample knowledge extraction.

Keywords: cotton pests and diseases; entity and relationship extraction; UIE; small-sample learning;

fine-tuning

1. Introduction

The cultivation of cotton is a vital component of China’s agricultural industry, and
the presence of pests and diseases can significantly impact both the quantity and quality
of cotton production. Therefore, it is imperative to effectively manage and control cotton
pests and diseases [1,2]. There is a need for agricultural producers and operators to rapidly
acquire accurate and specialized knowledge in pest and disease management. However,
with the advancement of the Internet and the Internet of Things in agriculture, there is an
ever-increasing accumulation of data in this field, including cotton pests and diseases. This
has led to a progressively complex data structure, making manual processing of big data
retrieval nearly impossible. Therefore, the adoption of Natural Language Processing (NLP)
technology [3] and deep learning technology becomes essential for extracting knowledge
from agricultural big data and constructing a specialized knowledge base. However, when
utilizing machine learning models for entity and relationship extraction (ERE), a substantial
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amount of annotated data is often required to train the models. Nevertheless, in the case of
cotton pests and disease data, the abundance of data, high specialization requirements, and
complex semantic structure leads to the high cost of manual annotation. Consequently, inte-
grating small-sample learning with knowledge extraction models represents an appropriate
approach to address this issue.

The primary characteristic of small-sample learning [4] lies in its ability to distinguish
between different entity and relationship models with only a limited number of labeled
samples. This approach effectively reduces the burden of annotating large amounts of
data and significantly accelerates the pace of knowledge mining [5]. While small-sample
learning has been extensively explored in computer vision and image classification, its
progress in NLP has been relatively sluggish due to the complexity of textual data. However,
with the continuous advancement of deep learning techniques, small-sample learning has
gained traction in areas such as knowledge extraction [6]. For instance, Han et al. [7] used
a small-sample learning model to evaluate the constructed relational extraction dataset
FewRel with good results. Therefore, we investigate the use of fine-tuning models to
achieve ERE on small-sample datasets.

ERE is one of the important tasks in knowledge extraction [8-10]; the traditional ERE
models rely heavily on the quality of manually annotated data, which in turn affects the
effectiveness of the model’s ERE. These models improve the efficiency of the ERE task to a
certain extent but require a large number of samples to pre-train the model. To improve
the small-sample learning ability of the machine, the method for ERE is designed in this
paper based on the UIE model. In particular, ERE prompt templates and schema in the field
of cotton pests and diseases are designed to serve as inputs to the UIE model, such that
only a small number of labeled samples are required to enable the UIE model to achieve
significant results. Further, by fine-tuning the model, the ambiguity of words is effectively
resolved, which reduces the errors in entity recognition and significantly improves the
overall performance of the model.

2. Related Research

The existing methods for ERE [11] mainly comprise rule-based approaches, traditional
machine learning-based techniques, and deep learning-based methodologies. Rule-based
methods for ERE primarily rely on experts to manually construct rule templates, which are
less commonly used due to their reliance on specific languages, domains, and text styles.
On the other hand, traditional machine learning-based approaches aim to learn statistical
models from a large number of annotated corpora to extract entities and relationships. Such
models include Hidden Markov Models, Conditional Random Fields (CRF), and maximum
entropy models. For example, Kambhatla et al. [12] used a maximum entropy model
combined with feature vectors for relationship classification. Chunyu Wang et al. [13] first
applied CRF models to agricultural entity recognition in the field of agriculture.

The effectiveness of traditional machine learning methods, however, is often hindered
by intricate syntactic structures and lengthy texts. As a result, deep learning-based models
for ERE have sprung up. For example, Guo et al. [14] proposed the agricultural pest
entity extraction model JMCA-ADP, which introduces a Convolutional Neural Network
(CNN) on the basis of the Att-BiLSTM-CRF model and is able to extract the semantic
feature information effectively. Song et al. [15] introduced Word2Vec into the BILSTM-CRF
model and achieved good ERE results. Later, some researchers [16,17] demonstrated that a
BiLSTM incorporating attention mechanism is able to extract complex semantic features of
rice pests and weed texts. With the development of BERT pre-trained language models,
Qiao et al. [18] combined BERT with the joint extraction model LSTM-LSTM-Bias, which
well extracted the entities and relationships from the agricultural dataset. However, all the
above methods require the labeling of the experimental corpus. For this reason, remotely
supervised learning applicable to large amounts of unlabeled data has attracted much
attention. For example, Mintz et al. [19] were the first to apply remote supervision to the
task of relation extraction and extracted textual features with the help of a trained relational
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classifier. Lin et al. [20] performed remote supervision based on a CNN with sentence-level
attention to solve the problem of mislabeling arising from remote supervision. To effectively
solve the data noise problem brought by remote supervision methods, Le et al. [21] and
Cui [22] designed the segmented Convolutional Neural Network model MPCNN based on
multiple heads of attention, which achieved certain results. Although remote supervision
can perform ERE on unlabeled data, the method is susceptible to high mislabeling due
to the interference of noisy data, and its accuracy is very unsatisfactory. To this end, this
paper proposes a UIE-base model for ERE with a strong small-sample learning capability.
By leveraging a limited number of labeled samples and employing fine-tuning techniques,
the proposed model achieves satisfactory results on both dedicated and public datasets.
The work in this paper has three main points of contribution:

(1) Since there are no publicly available datasets in the field of cotton pests and diseases,
a corpus of cotton pest and disease data is first constructed in this paper. By analyzing and
pre-processing the unstructured textual data within the corpus set, a professional-grade
collection of 4475 instances pertaining to cotton pests and diseases is established;

(2) Based on the UIE model, the focus is on designing a specialized ERE prompt
and schema on cotton pests and diseases, which are used as inputs to the UIE model to
enhance the ability of ERNIE to extract specific features of cotton pests and diseases. The
optimization and fine-tuning of the model by this method resulted in a great improvement
in the small-sample learning capability of the UIE-base model, i.e., the model achieved an
accuracy of 86.5% with only 40 training samples;

(3) The UIE model demonstrates strong information extraction capabilities in general,
but its performance in specialized domains, especially in terms of few-shot learning capa-
bilities, remains under-researched. In this paper, we address this gap by fine-tuning the
UIE model using a limited amount of labeled data on cotton pests and diseases.

3. Materials and Methods
3.1. Dataset Construction
3.1.1. Data Acquisition and Pre-Processing

Due to the limited availability of publicly accessible corpus data on cotton pests and
diseases, this study established a comprehensive knowledge corpus in the field by employ-
ing data acquisition, preprocessing, and data annotation techniques. The primary sources
of data were diverse agricultural websites, including the National Agricultural Science
Data Center, China Crop Germplasm Resource Information Network, China Agricultural
Information Network, etc. The acquisition method primarily relied on utilizing the Python
request library. After pre-processing the raw corpus using character format normalization
and Python regular expressions, a normalized corpus of knowledge on cotton pests and
diseases is formed, with a total of 4475 instances, which is used for subsequent experiments.

3.1.2. Classification of Entity and Relationship

Before using the constructed model to extract entities and relationships in the cotton
pests and diseases corpus, consulting the professional books Chinese Agri-cultural The-
saurus and Special Classification for Agriculture, as well as consulting the plant protection
experts, this paper first explores and defines the categories of entities and relationships
related to pests and diseases [23]. By conducting a comprehensive analysis of the corpus
features, this study further subdivides the entity and relationship types within the cotton
pests and diseases corpus, resulting in a total of 13 defined entity types and 12 relationship
types. The specific categorization of entities and relationships is presented in Table 1.
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Table 1. The Categorization of Entities and Relationships.

Entity Category

Relationship Category

Name of disease/pest
Nickname

Damage parts
Symptom

Parasitic place
Pathogen

Pathogen characteristics
Transmission path
Occurrence condition
Control methods
Genus order

Genus family

Region

Alternative name

Harm

Resulted in
Parasitical
Pathogen
Pathogen characteristics
Transmission path
Etiology

Control methods
Genus order
Genus family
Distribution

3.1.3. Data Annotation

In this paper, a small amount of the cotton pests and diseases corpus is manually
annotated to fine-tune the training of the UIE model. In order to ensure the high quality of
annotation data, this paper has formulated a comprehensive and explicit annotation policy
based on the processed samples. Furthermore, expert consultation was sought for accurate
data annotation. Finally, considering that the training data of this model is in JSON format,
an existing advanced text annotation tool called Doccano was adopted in this study to
achieve efficient data annotation. Random quality checks and audits were conducted on
the annotated data to ensure adherence to the established guidelines. Specific examples of
annotations are shown in Figure 1.

distribution

alternative name

genus families

genus order

Cotton Tetranychus urticae, Acarina, Tetranychidae. Alias cotton red spider. The national

pest name

oenus .
©~ " genus family

ordeil

cotton producing areas have occurred.

region

Figure 1. Doccano annotation method.

The tool facilitates the direct conversion of annotated data into JSON format for fine-
tuning the training of models. The resulting JSON data structure comprises two main
components: entities and relationships. Entities encompass entity labels along with their
corresponding start positions (start_offset and end_offset), while relationships consist of
relationship types and their respective start positions (from_id and to_id). An illustrative
example structure is presented in Figure 2.
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i Cotton two-spotted spider mite, Acarina, Tetranychidae, alias red spider. National cottonw
i producmg areas have occurred. It damages cotton leaves and bolls, causing a large number of
I cotton leaves and bolls to fall off. i
i

{ “id” :1535, “label” : “pest name” , “start_offset” : 0, “end_offset” :6}, !
{ “id” : 1536, “label” : “genus order” , “start_offset” :7, “end_offset” :10}, :
{ “id” :1537, “label” : “genus families” , “start_offset” :11, “end_offset” :14}, 3
{ “id” :1538, “label” : “nickname” , “start_offset” :26, “end_offset” :30}, !
{ “id” :1539, “label” : “region” , “start_offset” :31, “end_offset” :33}, i
{ “id” :1542, “label” : “damage parts” , “start_offset” :46, “end_offset” :48}, |
{ “id” :1543, “label” : “symptom” , “start_offset” :59, “end_offset” :75}] 3
{ “id” 619, “from_id” :1535, “to_id” :1536, “type” : “genus order” }, !
{ “id” :620, “from_id” :1535, “to_id” :1537, “type” : “genus families” }, :
{ “id” :621, “from_id” :1535, “to_id” :1538, “type” : “alternative name” }, 3
{ “id” :624, “from_id” :1535, “to_id” :1541, “type” : “distribution” }, :
{ “id” :625, “from_id” :1535, “to_id” :1542, “type” : “harm” }, i
{ “id” :626, “from_id” :1535, “to_id” :1543, “type” : “resulted in” }] 3

Figure 2. Example of the JSON data structure.

3.2. Entity and Relationship Extraction Model Construction

The overall structure of the UIE-base [24] ERE model for cotton pests and diseases
designed in this paper is shown in Figure 3. The model mainly consists of three parts:
the input layer, the coding layer, and the output layer. Among them, the input layer is
mainly the input text content and the Structural Schema Instructor (SSI) mechanism. The
coding layer mainly uses the ERNIE 3.0 [25] knowledge-enhanced pre-training model to
extract features from the input text. The output layer represents the extracted structures
of different tasks in a unified encoding via Structured Extraction Language (SEL). The
mechanics and relationships of the model modules are detailed below.

| SEL |
R S | S —— :
: | P_start P_end | Decoding layer i
i i i |
i - - Language i
! | Fine-tuning | understanding network |
| .
i —— e . . i
i : [ Transformer Block n ] Transformer Block n ] : |
i ! : Task-specific i
i | ! Representation I
ERNIE i E di : [ Transformer Block k+1 | [__Transformer Block k+1 ] : |

: Encoding E— E— S
module | !
odayer b ____qr , i
| i | Transforrner Block k | i !
— - — . |
: ! - ! Universal i
i ! | Representation i

! i I
I ! | | ! !

. | I
I — — T !
| |
i <spot>two-spotted leaf mite i
I <spot>cotton leaves and bolls [text: “cotton leaves and i
! <asso>damages bolls” J+prompt: “The harm !
| <text>cotton two-spotted leaf P Pt s !
| mite damages cotton leaves of two-spotted leaf mite |
: and bolls Input !
|
| 1t 1r i
! | SSI + text | | Prompt !
| |

Figure 3. The Overall Structure of UIE.
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3.2.1. Input and Output Layers of the Model

The UIE model adaptively generates structures for different IE tasks mainly through
the SSI, whose input layer relationships can be expressed as follows:

y=UIE(s ®x) (1)

where s denotes the defined structural extraction pattern, x represents the input text
sequence, and y expresses the structured result generated. The parameters of Equation (1)
can be specifically expanded:

x =[x, Xy )
S = [Sl,'-',s‘s‘} (3)
y= [ylr"'/y\yd 4)

where s contains three types of tag segments: the name of the entity, the name of the
relationship between entities, and special symbols ([entity], [association], and [text]). These
tokens collectively form the SSI, which is concatenated and placed ahead of the original
text sequence to construct the final expression of the structural schema as represented by
Equation (5):

{51,' - ,S‘S‘} = [[entity],- - - , [entity],- - -, [association],- - - , [association], - - -, [text]] (5)

For example, the SSI “[entity] Cotton two-spotted leaf mite [entity] Cotton red spider
mite [entity] All over the country [association] Alias [association] Distribution [text]” rep-
resents a record of entity and relationship patterns extracted from the sentence “Cotton
two-spotted leaf mite, alias cotton red spider mite, is distributed all over the country”. This
record guides the UIE towards this particular task. It can be seen that the specialized design
of schema in the SSI mechanism is critical. The schema construct design in this paper is
shown in Figure 4.

: Cotton Tetranychus urticae, Acarina, Tetranychidae. Alias red spider. :
i National cotton producing areas have occurred. It damages cotton leaves !
:_and bolls, causing a large number of cotton leaves and bolls to fall off. |

Relationship:

{
‘pest name’ :[
‘genus order’ ,
‘genus family’ ,

| |

|
' Entity: !
i [ ‘pestname’ ] i
i [ ‘genusorder’ ] !
: [ ‘genus family’ ] |
: [ ‘damage parts’ ] i
! l
| |
i I
| |
| |
! I
| |

[ s tom” ] ‘harm’ ,

[ mp ] ‘resulted in’ ,
region R
c8lo “distribution’ ,

Figure 4. Illustration of schema structure.

SEL expressions at the model output layer encompass specific semantic units tailored
to a particular task. For instance, in the ERE task, the node name represents a distinct
node type within the text, i.e., an entity category, whereas the relationship name signifies
a specific information unit present in the corpus, i.e., an associative link between entities.
Specific examples are shown in Figure 5. In Figure 5, the entities (spots) are highlighted in
blue, while the relationship names are marked in red.



Agriculture 2024, 14, 457

7 of 16

{{{{{{{ “content” : “Cotton black aphid, Homoptera, Aphididae, alias Aphis ruficollis . It is distributed in Xinjiang, Ningxia and Gansu. On
cotton seedlings, they are clustered on the opposite sides of young heads, cotyledons and true leaves, causing young leaves to bend and
shrink, and the growth points to wither and fall off. Fertilized eggs overwinter in tender stems and rhizomes of Sophora alopecuroides or

Muju. Cotton field spot picking. Soil application. Roumian wheat interplanting ” .

[ T T T T T h
|

Cotton Tetranychus urticae, Acarina, Tetranychidae. Alias red [

(pest name: Cotton Tetranychus urticae
(genus order: Acarina)
(genus families: Tetranychidae)
(alternative name: Red spider)
(distribution: National cotton producing areas)

Figure 5. The structure for SEL extraction.

3.2.2. Prompt Template

The notable advantage of UIE lies in its capability to swiftly adapt to diverse IE
tasks through fine-tuning. In order to enhance the model’s ability to capture entity and
relationship features within the cotton pests and diseases corpus, this study proposes
specific prompt templates as inputs to the model, as illustrated in Equations (6) and (7):

p=|t+ typepmmpt},t € {entity, relation, subject, object } (6)

typeprompt = [explain + grammer] (7)

In the equation above, t represents the type of task to be extracted, such as ERE tasks.
The typeprompt consists of two parts, language explanation (explain) and syntax (grammar),
which indicate the entity and relationship type of the extraction definition, such as “pest
name” for entity type and “Alias” for relationship type. The prompt template can be
customized to extract various types of entities and relationships. In other words, a corpus
can be divided into multiple prompts, each containing different entity and relationship
types. Figure 6 illustrates an example prompt format.

i > [{ “text” : “homoptera” J], “prompt” : “The genus order of cotton black aphid” }

E > [ “text” : “Aphididae” }], “prompt” : “The genus families of cotton black aphid” }

E > [ “text” : “Aphis ruficollis” J], “prompt” : “Alias of cotton black aphid” }

i > [ “text” : “Xinjing” },{ “text” : “Ningxia” },{ “text” : “Gansu” }], “prompt” : “Distribution of cotton black aphid” }

i > [{ “text” : “cotton seeding” },{ “text” : “tender head, cotyledon, true leaf” J], “prompt” : “Harm of cotton black aphid” }

> [ “text” : “Young leaves bend and shrink” },{ “text” : “Growth point withered off” }], “prompt” : “Cause of cotton black aphid” }

> [{ “text” : “The tender stems and rhizomes of Sophora alopecuroides or Muju” }], “prompt” : “Parasitism of cotton black aphid” }

> [{ “text” : “Pieces of cotton field picking treatment” },{ “text” : “soil application” },{ “text” : “Intercropping of ginned
wheat” }], “prompt” : “Control of Cotton Black Aphid” }

Figure 6. Prompt decomposition forms.
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3.2.3. ERNIE Module

The ERNIE Module serves as the central component of the UIE framework [26], responsi-
ble for encoding and decoding tasks. Its network architecture consists of two types of modules:
a generic representation module and a task-specific representation module, as illustrated in
Figure 3. The generic representation module employs a multilayer Transformer-XL [27] struc-
ture as its backbone network. Transformer-XL incorporates an auxiliary recursive memory
module to effectively model longer text sequences, enabling enhanced learning of associative
relations between pre- and post-textual content within such sequences. Moreover, it lever-
ages diverse pre-training tasks from different paradigms to better capture generic lexical and
syntactic—semantic information present in the training data. On the other hand, the task-
specific representation module also adopts a Transformer-XL but focuses on learning high-level
semantic features specific to particular task types. Further, we fine-tuned the model using
the cross-entropy loss function so that it accurately identifies the entities and relationships of
cotton pests and diseases. The calculation process of fine-tuning is shown in Formula (8):

Lrr = Z —logp(y|x, S;0e,04) (8)

(s,%,y) €Dk

where Lrr represents the loss in the given task dataset Dy,s, and (s, x,y) denotes the
input x of sample s and the corresponding entity and relationship label . log,, (y|x,s;6e,64)
indicates the predicted probability of the model under parameters 6,, 6,; for entity and rela-
tionship label y given input x and the condition s logarithmically. By minimizing this loss
function, it enables the model to enhance its ability to predict entity and relationship labels.

The decoding layer of the model is implemented using double pointers (P(sar}, Penay)-
The implementation principle involves utilizing the full link layer to calculate scores for each
entity relation’s start pointer P(y,,;) and end pointer Py, converting these scores into proba-
bilities using SoftMax, and then predicting start and end positions of the entity and relationship
based on these probabilities. The specific calculation is shown in Formulas (9)-(11):

P{start} = W{sturt} + b{start} )
P{end} = W{end} + b{end} (10)
P(y =) = frac{e"{s;} }{}_{j = 1}"{n}e" {s;} } (11)

where the weight pointer and bias vector of the start pointer are represented as W,y and
bstarty, while the weight pointer and bias vector of the end pointer are denoted as Wy,,,4
and by,,4,. P(y = i) represents the probability of the ith element, i denotes the index of
the category, n represents the dimension of the input vector, i.e., the number of entity and
relationship categories, s; refers to the ith element of the input vector S, and s; refers to the
jth element in the input vector. The prediction of the entity and relationship in the input
sentence can be achieved by utilizing probabilities calculated through this process.

4. Experimental Results and Discussion
4.1. Experimental Environment and Experimental Parameters

The specific configuration of the experimental environment in this paper is shown in
Table 2. The training parameters of the model are set as shown in Table 3.

Table 2. The setup of the experiment environment.

Operating System Linux/Windows

CPU AMD Ryzen 7 4700U

GPU NVIDIA GeForce GTX 1080Ti
Python 3.9

Pytorch 1.8.1

Cuda 12.2
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Table 3. The configuration of UIE model parameters.

Parameter Explanation
Attention_probs_dropout_prob Attention layer dropout ratio
Hidden_dropout_prob Hidden layer dropout ratio
Num_attention_heads Number of attention layers
Num_hidden_layers Hidden layers

Hidden_act Hidden layer activation function
Hidden_size Hidden layer size
Initializer_range Initialization range of weight
Intermediate_size Middle layer dimension
Lerning_rate Step length

Batch Batch size

Vocab_size Vocabulary size

4.2. Indicators for Model Evaluation

To evaluate the ERE effectiveness of the model, three evaluation criteria are used in
this paper: precision, recall, and F;, which are calculated as shown in Formulas (12)—(14).

p—_Tr100% (12)
T, +F,
R= 1 100% (13)
T T, +F °
P xR
F=2 100% 14
1= 2% 5= X 100% (14)

where T), represents the count of correctly identified positive samples in the model’s output
sequence, F, signifies the count of incorrectly predicted positive samples in the output
sequence, F, denotes the count of accurately predicted negative samples in the model’s
output sequence, P indicates the ratio of correctly predicted and positive samples to all
predicted positives, and R represents the proportion of truly positive samples that are
correctly predicted by the model, i.e., it is a measure of correct predictions among all true
positive. The F; score combines accuracy and recall evaluations, which is particularly
useful for imbalanced categories, where higher values indicate better overall performance
of the model.

4.3. Experiments and Analysis of Results

In this paper, six sets of experiments are designed to verify the effect of the model.
The first experiment is the hyperparameter setting of the model. Secondly, the performance
of the UIE multi-model was verified using a self-constructed dataset and a public dataset,
respectively. Then, the better performance was identified as the UIE-base model. To further
validate the generalization ability of the UIE-base model, experiments were designed to
compare the performance of the UIE-base model with other classical models, such as the
BERT-BiLSTM-CRF on the self-constructed dataset and the public dataset. Further, the
small-sample learning ability of the UIE-base model was verified by refining the number of
samples, and the most suitable small sample size for model learning was identified.

4.3.1. Experiments on Hyperparameter Settings of the Model

Hyperparameter settings play a crucial role in the model, and their appropriateness
directly impacts the convergence speed and generalization ability of the model. The
UIE model encompasses several hyperparameters, with learning rate, batch size, and
number of training rounds (epochs) being the key ones. Among these, the learning rate
primarily controls the step size during parameter updates; a larger learning rate may hinder
convergence, while a smaller one can result in slower training progress. Additionally, batch
size determines both training speed and stability of the model. To determine optimal
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hyperparameters for the UIE model, this study conducts multiple experiments on our
dataset using different values for learning rate and batch size when 50 training samples
are used over 30 epochs. The experimental results are presented in Table 4. In the end,
five sets of learning rates and batch sizes were selected, respectively, based on fine-tuning
experience and the results of multiple rounds of testing (in Table 4). From Table 4, the best
overall performance of the UIE model was achieved when a learning rate of 5 x 10> and a
batch size of 10 were chosen.

Table 4. The influence of hyperparameter configurations on the model.

Learning-Rate P R Fy Batch-Size P R Fq

1x107° 0.8704 0.8155 0.8421 2 0.8077 0.8155 0.8115
2x 1073 0.8203 0.8203 0.8203 4 0.8028 0.8301 0.8162
3x10°° 0.8284 0.8203 0.8243 6 0.8209 0.8106 0.8068
4 %1075 0.8190 0.8349 0.8269 8 0.8000 0.8155 0.8077
5x 1075 0.8650 0.8398 0.8522 10 0.8276 0.8155 0.8215

4.3.2. UIE Multi-Model Experiments

Due to the intricate and diverse nature of information extraction tasks, as well as the
varying requirements for different models in processing these tasks, UIE systems typically
incorporate multiple models. To select a suitable UIE model for ERE tasks, this study
conducts experimental tests on various UIE models using both a self-constructed dataset
and a publicly available industrial dataset. The experimental results are presented in
Tables 5 and 6. From these tables, it can be observed that the UIE-base model achieves the
highest F; value in the multi-model test across both datasets, indicating superior overall
performance compared to other UIE models. From the comparison of Tables 5 and 6, it
can be seen that the UIE model is overall better tested on the self-constructed dataset
than on the public dataset (industry). The reason may be related to the quality and
quantity of the dataset. Compared with public datasets, self-built datasets exhibit superior
label consistency. Inconsistent labeling can perplex the model and result in performance
degradation. Secondly, the samples within the self-built dataset are more relevant to the
specific task that the model aims to perform, with a lower noise level compared to public
datasets, enabling the better capture of data characteristics by the model. Furthermore,
while large public datasets provide more information, they also introduce additional noise
and extraneous details easily. Conversely, self-built datasets are relatively smaller yet
meticulously organized and marked with high-quality labels, offering clearer guiding
principles for improved model performance.

Finally, to accurately reflect the performance of UIE multiple models on different
datasets, the F; values are represented using Figure 7. As can be seen in Figure 7, the
F; values of the UIE-base model on the two datasets reach 79.17% and 62.26%, respectively,
which is the best among all models. Therefore, the subsequent experiments in this paper
adopt the UIE-base model as the entity—relationship extraction model.

Table 5. Testing results of a self-constructed dataset.

Model P R F;

UIE-base 0.7824 0.8012 0.7917
UIE-medium 0.7427 0.7966 0.7687
UIE-micro 0.8228 0.6724 0.7400
UIE-mini 0.7219 0.7966 0.7574
UIE-nano 0.7724 0.7724 0.7724

UIE-m-base 0.7517 0.7517 0.7517
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Table 6. Testing results of publicly available datasets.

Model P R F

UIE-base 0.5427 0.7298 0.6226
UIE-medium 0.5164 0.6537 0.5770
UIE-micro 0.4203 0.4400 0.4299
UIE-mini 0.5294 0.4800 0.5035
UIE-nano 0.4298 0.4667 0.4458
UIE-m-base 0.3591 0.4333 0.3927

I Cotton pest and disease data [ Industrial domain data

F1

UlE-base UlE-med ium UlE-micro UIE-mini UlE-nano UIE-m-base
Mode |

Figure 7. Comparative analysis of model performance comprehensively.

4.3.3. Comparative Experiments of Different Models

To further verify the effectiveness of the UIE-base model in the ERE task, in this
subsection, classical models such as the BERT-CRF are chosen to conduct experiments on
the self-constructed dataset and the Chinese medical public dataset, respectively, which can
also verify the generalization ability of the model in this paper. The experimental results are
shown in Table 7. It should be noted that the data format used by the UIE model and other
models, such as the BERT-CREF, is different; the UIE model usually adopts the JSON data
format, while other models usually adopt the BIO data format. Therefore, it is necessary to
convert the format of JSON and BIO when comparing the experiments. As can be seen in
Table 7, the UIE-base model has the best ERE for both the self-built and public datasets. On
the self-constructed dataset, the F1 value of the UIE model is far higher than that of most of
the models and 1.4% higher than the next best model, BERT-BiLSTM-CRF. Since the cotton
dataset has fewer samples than the public dataset as a whole, and the BERT-BiLSTM-CRF
is more suitable for large sample sets, this also leads to their performance on the cotton
dataset being inferior to that of the UIE-base model. This suggests that the UIE-base model
is better suited to light sample size sets and initially sets the tone for the UIE-base in
subsequent small-sample learning tests. Finally, to show the results more intuitively, the
comparison results are visualized, as shown in Figure 8a,b. It can be seen in Figure 8
that the comprehensive performance of the UIE-base model is significantly better than
the others.
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Table 7. Comparative experiments employing diverse models.
Data
Cotton Pests and Diseases Chinese Medical
Models P R F, P R Fq
BiLSTM-CRF 0.5918 0.6463 0.6141 0.7626 0.7022 0.7294
TENER 0.7250 0.7307 0.7365 0.7427 0.7778 0.7106
BERT-CRF 0.5111 0.5750 0.5412 0.8216 0.8458 0.8335
BERT-BiLSTM-CRF 0.7341 0.8270 0.7778 0.8244 0.8481 0.8361
UIE-base 0.7824 0.8012 0.7917 0.8572 0.8468 0.8617
-— P - P
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0.75 1 F1 0.825 - F1
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(a) Cotton pests and diseases dataset

(b) Chinese medical dataset

Figure 8. The comparison of performance metrics across various models.

4.3.4. Few-Shot Learning Test Experiments for Models

To verify the small-sample learning ability of the UIE model, this paper designs two
sets of experiments based on the cotton pests and diseases dataset. One is to select 5, 15,
and 30 samples in the UIE multi-model to verify its performance at several small-sample
numbers in order to find the optimal model when samples are small, with the experimental
results shown in Table 8. Secondly, the number of training samples most suitable for
the UIE-base model is further determined through testing, and the results are shown
in Table 9. Analyzing Table 8, overall, the comprehensive performance of UIE models
is improved when the number of samples increased by 10 or 15 entries; thus, it can be
initially proved that the UIE model has some small-sample learning ability. In addition,
with 5 samples, the UIE-base has the worst performance, while the UIE-m-base has the
best overall performance. However, continuing to increase the number of samples, the
performance of the UIE-base model improves significantly, while the performance of the
other UIE models has some ups and downs. For example, the F1 value of the UIE-m-base
improves, but its accuracy decreases significantly. This suggests that the UIE-base model
is more stable in small-sample learning than the other UIE models. Two points can be
summarised from Table 9: (1) In general, increasing the number of training samples usually
improves the training effect of the model. (2) The model works best with 40 training
samples, indicating that choosing the right number of training samples is important.
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Table 8. The UIE multi-model tests encompass varying sample sizes.
Sample Size
5 15 30
Models P R Fy P R Fy P R Fy
UIE-base 0.3846 0.5263 0.4444 0.5844 0.7142 0.6429 0.7422 0.8241 0.7811
UIE-medium 0.6000 0.4736 0.5294 0.5333 0.6349 0.5797 0.8283 0.6687 0.7400
UIE-micro 0.3448 0.5263 0.4167 0.5405 0.6349 0.5839 0.7629 0.6386 0.6951
UIE-mini 0.7000 0.3684 0.4827 0.5190 0.6508 0.5775 0.7308 0.6868 0.7081
UIE-nano 0.3448 0.5263 0.4167 0.4891 0.7142 0.5807 0.8148 0.6627 0.7309
UIE-m-base 0.8182 0.4737 0.6000 0.5200 0.6190 0.5652 0.7313 0.5903 0.6533

Table 9. Evaluation of the UIE-base model for small-sample learning.

Sample Size P R Fq

5-shot 0.3846 0.5263 0.4444
10-shot 0.4546 0.5952 0.5154
15-shot 0.5844 0.7142 0.6429
25-shot 0.7615 0.7122 0.7360
30-shot 0.7422 0.8241 0.7811
35-shot 0.7325 0.7590 0.7456
40-shot 0.8650 0.8398 0.8522
50-shot 0.7824 0.8012 0.7917

Meanwhile, to better evaluate the comprehensive performance of the model, this
paper visualizes the change in the loss rate of the UIE-base model at different numbers of
samples, and the results are shown in Figure 9. As can be seen from Figure 9, the loss rate
of the model is the lowest at 40 samples, which indicates that the model training effect is
the best at this number of samples.
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>
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0.0050 +
o o o o - — M L
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Lh =) L L o h S =)
i o o~ m m <t un

sample size

Figure 9. The loss variation of the identical model with varying sample sizes.

4.4. Discussion

Based on the above experiments and analyses, this paper demonstrates a method to
implement small-sample learning based on the UIE model and applies it well to the ERE
task of cotton pests and diseases, which effectively solves the problem that the existing
model is difficult to capture semantic information under limited labeled data. However,
the development of small-sample learning in this field still has some limitations.

Firstly, small-sample learning suffers from the risk of overfitting due to the insufficient
amount of data, which, in turn, limits the model’s performance in learning and extracting
feature representations. The currently existing solutions to address the risk of overfitting
are as follows:
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(1) Data enhancement: increasing data diversity through artificial methods such as
rotation and flipping to help models learn more generalized features;

(2) Regularization technique: using Dropout to enable the model to randomly discard
a portion of neurons during the training process, reducing the model’s dependence on
specific training samples and enhancing the model’s generalization ability;

(3) Model selection and simplification: to address the risk of overfitting in small-
sample learning, selecting or designing simple model structures will be more effective than
complex models;

(4) Theoretical research and experimental validation: we need to deeply understand
the causes of overfitting and then conduct multiple rounds of experiments on different
small-sample learning tasks to verify the effectiveness of different strategies.

In addition, there are other limitations in the small-sample learning approach proposed
in this paper. These include constraints on the model’s generalization ability due to the
limited number of samples, challenges related to domain adaptability, difficulties in model
selection and tuning, computational resource requirements, and the impact of labeled data
quality on the feature learning of the model. All these limitations are the future challenges
of small-sample learning development. Therefore, future work will mainly be carried out
in terms of training strategies and optimization techniques for models and how to obtain
high-quality labeled data.

5. Conclusions

In order to effectively alleviate the data scarcity problem caused by the need for a
large amount of labeled data for NLP tasks, a small-sample learning method based on the
UIE model is proposed to achieve the entity and relationship extraction of cotton pests and
diseases. It aims to solve the problem of existing models in knowledge extraction (requiring
a large amount of manually labeled training data), and the main work is summarized
as follows:

(1) Dataset construction: Crawler technology is used to obtain unstructured data
related to cotton pests and diseases to constitute the corpus in this paper, and after pre-
processing the data in this corpus, such as removing residuals, the entity and relationship
types of cotton pests and diseases are defined through an in-depth analysis of the character-
istics of the data and combining it with the guidance of agricultural experts. Subsequently,
a limited amount of data annotation is conducted on the corpus using the Doccano anno-
tation tool. Ultimately, a dataset comprising 13 entity types and 12 relationship types is
formed for fine-tuning learning purposes in the UIE model;

(2) A method for extracting entities and relationships from cotton pests and dis-
eases, based on the UIE, is proposed. Considering the characteristics of the cotton pests
and diseases corpus, specialized prompt templates and schema constructs are designed
for fine-tuning the mode, which greatly improves the ability to learn from small sam-
ples, resulting in the UIE-base model reaching an accuracy of 86.5% when there are only
40 training samples;

(3) The paper presents six sets of training strategies to experimentally evaluate the
model. The UIE multi-model performance test demonstrates that the UIE-base model better
satisfies the accuracy and speed requirements for ERE tasks. By comparing the performance
of the UIE-base model with models like BERT-CRF on our constructed dataset, we observe
a 1.4% improvement in the F1 value over the BERT-BiLSTM-CRF model. This confirms
that the UIE-base model exhibits superior overall performance with lightweight samples.
Furthermore, small-sample learning experiments reveal that increasing the number of
training samples generally enhances model training effectiveness; however, selecting an ap-
propriate number of training samples leads to optimal learning outcomes for the UIE-base
model. Specifically, when trained with 40 samples, this model efficiently captures semantic
features and effectively identifies entity categories and their associative relationships within
a corpus.
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In summary, the method proposed in this paper can serve as a valuable point of
reference for ERE in diverse domains.
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