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Abstract: An algorithm model based on computer vision is one of the critical technologies that are
imperative for agriculture and forestry planting. In this paper, a vision algorithm model based on
StyleGAN and improved YOLOv5s is proposed to detect sandalwood trees from unmanned aerial
vehicle remote sensing data, and this model has excellent adaptability to complex environments. To
enhance feature expression ability, a CA (coordinate attention) module with dimensional information
is introduced, which can both capture target channel information and keep correlation information
between long-range pixels. To improve the training speed and test accuracy, SIOU (structural
similarity intersection over union) is proposed to replace the traditional loss function, whose direction
matching degree between the prediction box and the real box is fully considered. To achieve the
generalization ability of the model, StyleGAN is introduced to augment the remote sensing data of
sandalwood trees and to improve the sample balance of different flight heights. The experimental
results show that the average accuracy of sandalwood tree detection increased from 93% to 95.2%
through YOLOv5s model improvement; then, on that basis, the accuracy increased by another 0.4%
via data generation from the StyleGAN algorithm model, finally reaching 95.6%. Compared with
the mainstream lightweight models YOLOv5-mobilenet, YOLOv5-ghost, YOLOXs, and YOLOv4-
tiny, the accuracy of this method is 2.3%, 2.9%, 3.6%, and 6.6% higher, respectively. The size of the
training sandalwood tree model is 14.5 Mb, and the detection time is 17.6 ms. Thus, the algorithm
demonstrates the advantages of having high detection accuracy, a compact model size, and a rapid
processing speed, making it suitable for integration into edge computing devices for on-site real-
time monitoring.

Keywords: StyleGAN; improved YOLOv5s; CA module; SIOU; sandalwood detection

1. Introduction

The sandalwood tree is a semi-parasitic evergreen plant with high economic value [1].
Its growth cycle is usually 10 to 15 years. In order to ensure their high productivity and
economic benefits, sandalwood trees need different care methods during different growth
stages. The death of sandalwood trees may be caused by a lack of companion plants, vicious
weather, noxious weeds, etc., especially in the first 5 years of the seedling period. Without
timely replanting, old sandalwood trees around the missing seedlings will be much larger
than the new seedlings, and the new ones will be hidden from the sun, which may lead to
death again or poor growth [2–5]. Therefore, it is necessary to monitor missing seedlings
in real time and then replant them in a timely manner to avoid the situation mentioned
above. Ultimately, the yield would be ensured for sandalwood growers. Currently, the
monitoring efforts mentioned above are mainly conducted manually, but it is difficult and
inefficient for workers to pass through sandalwood plantations because of the intercrop
with companion plants, such as cassava, weeds, etc. Meanwhile, the high labor cost and
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difficult means of supervision are also challenges, especially for large-scale sandalwood
cultivation. Therefore, conducting research on low-cost, high-precision, and intelligent
detection technology to identify the conditions of growth is imperative.

In recent years, intelligent detection technology in agriculture and forestry has gradu-
ally developed from machine learning [6–9] to deep learning. Machine vision technology
based on deep learning is more widely used in agricultural and forestry monitoring because
neural networks can automatically extract target features. Object detection algorithms
based on deep learning can be summarized into two categories. One comprises two-stage
algorithms based on candidate regions, which mainly includes R-CNN and its derivative
algorithms Fast R-CNN and Faster R-CNN, of which the latter is the dominant one [10–12].
Based on the Faster R-CNN model, Zhu et al. [13] identified different ripeness degrees
in blueberry, with accuracies of 97%, 95%, and 92% for ripe, semi-ripe, and unripe fruits,
respectively, and with an average detection time of 250 ms per image; Sun et al. [14] success-
fully recognized ripeness in tomato with an accuracy of 90.7% and a detection time of 73 ms
using the Faster R-CNN model with the feature extraction network ResNet50. In general,
this kind of algorithm has a high detection accuracy but a slow detection speed. The
second category is the single-stage algorithm mainly based on regression, with typical ones
including the SSD and YOLO series, especially the latter [15,16]. Based on the YOLOv4-tiny
object detection model and remote sensing data, dead trees were detected with an accuracy
of 93.25% and a detection time of 5.5 ms per image in the study by Jin et al. [17]. By com-
bining improved YOLOv5s and DeepSort, peanut seedlings were captured and counted
from UAV-captured videos in the study by Lin et al. [18], achieving an average accuracy
of 98.08% and a detection speed of 24.9 ms. The improved YOLOv5s model fused with
the convolution attention mechanism was used to identify sugarcane seedlings with an
average accuracy of 93.1% and a detection time of 48 ms per image in the study by Wu
et al. [19]. YOLO series models can both ensure accuracy and detection speed; therefore,
they show better real-time performance than two-stage algorithms.

Generative adversarial networks (GANs) are another significant technology that can
improve detection accuracy and have been widely used in machine vision [20–22]. Tian
et al. [23], Wang et al. [24], and Zeng et al. [25] used a GAN to generate samples of apples
with pests and diseases, samples of litchi with different defects, and samples of grape leaves
with pests and diseases, respectively; the samples were augmented and their detection
accuracies were improved by 8.85% at most.

Although YOLOv5s has both speed and environmental adaptability, it still cannot
ideally detect sandalwood trees with particularly complex planting conditions [26]. So far,
sandalwood planting has not yet formed a scale, and UAVs are limited by high-voltage
wires and other restrictions in limited planting bases when taking remote sensing images.
Samples collected at different flight altitudes are greatly different, which may cause the
number of samples to be unbalanced at different resolutions. To solve the two problems
above, a detection algorithm based on improved YOLOv5s and StyleGAN is proposed
in this paper. The traditional loss function replaced by SIOU and the CA module with
dimensional features are both introduced in YOLOv5s to improve the training speed and
detection accuracy (details below). StyleGAN is introduced to expand samples and improve
the generalization ability of the YOLOv5s training model.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing
2.1.1. Data Collection

The study area is located in the sandalwood plantation of Baisha Town, Taishan County,
Jiangmen City, Guangdong Province, China (center coordinates: 112.84◦ N, 22.14◦ E, as
illustrated in Figure 1). Data collection was conducted from 9:00 a.m. to 6:00 p.m. on 29
September 2020. The unmanned aerial vehicle (UAV) used for data acquisition was the
DJI Phantom 4 (DJI, Shenzhen, China) equipped with a DJIFC330 sensor. During aerial
photography, the gimbal was set to capture images vertically to the ground, with the flight
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parameters configured to maintain a fixed lateral overlap of 80%. The photography altitudes
were set at 10 m, 20 m, and 30 m, and each image had dimensions of 4000 × 3000 pixels. The
red box delineates the experimental area, with the aerial coverage extending slightly beyond
the trial zone. In total, 1051 remote sensing images were acquired, consisting of 696 images
captured at a 10 m altitude, 155 images at a 20 m altitude, and 200 images at a 30 m altitude.
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Figure 1. Experimental area.

2.1.2. Dataset Construction

Visual interpretation was employed to screen the data, resulting in a total of 557 remote
sensing samples, encompassing 6235 sandalwood trees. A total of 497 samples were
randomly selected for the original training set, and the remaining 60 were used for the
testing set. To improve the imbalance of the samples at different flight altitudes, the
original training set was augmented with StyleGAN with 625 augmented samples and an
augmented sample size of 1024 × 1024 pixels. All samples were labeled using the Labelimg
tool (Version 1.8.6) in the Pascal VOC dataset format with the label “sandalwood” and the
rectangular box coordinates of the sandalwood tree and the label information.

The specific quantitative distribution of the dataset is shown in Table 1, and some of
the samples are shown in Figure 2.

Table 1. Sandalwood dataset.

Type 10 m 20 m 30 m Total

Original training samples 295 120 82 497
Generated samples 30 290 305 625

Final training samples 425 410 387 1122
Testing samples 20 20 20 60

2.2. Research Methodology
StyleGAN Data Augmentation

GANs comprise two neural networks: the generator (G) and the discriminator (D). The
generator is responsible for transforming input random variables z to produce generated
samples G(z) that closely resemble the distribution of real samples. The discriminator
assesses input samples x and produces a score D(x) between 0 and 1. This score signifies
the probability that the input sample was originated from real data. A score closer to
1 indicates a higher likelihood that the sample came from real data, while a score closer to
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0 indicates a higher likelihood that the sample was generated by the G. The optimization
process of a GAN can be mathematically expressed as follows:
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min
G

max
D

V(D, G) = Ex∼Pdata (x)[logD(x)] + EZ∼Pnoise (z)[log(1 − D(G(z)))] (1)

where E(∗) represents the expectation value of the loss function, Pdata (x) denotes the distri-
bution of samples sourced from real data, Pnoise (z) is random noise, D(∗) signifies the result
of samples after mapping through D, and G(∗) represents the result after mapping through
the generator network G. During training, G and D operate alternately, learning through
mutual competition, and their respective parameters are updated via backpropagation.

Since the inception of GANs, researchers have proposed numerous derivative variants.
Among them, StyleGAN employs a progressively trained approach from low to high
resolutions, which is not only conducive to generating high-resolution images but also
enhances image details. The structure of the StyleGAN network is illustrated in Figure 3.

StyleGAN primarily focuses on improving the generator component. In contrast to
traditional generators that directly input random vectors into the synthesis network, Style-
GAN takes an innovative approach. It first encodes random vectors into latent variables
through a mapping network. These latent variables are then operated upon by Adaptive
Instance Normalization (AdaIN) within the synthesis network. This mechanism enables
style control over the generated images and enhances image quality. Simultaneously, within
the synthesis network, StyleGAN introduces the noise of corresponding scales after each
convolution, leading to diverse image generation [27]. In this study, StyleGAN is used to
augment data to correct the sample imbalance from different UAV flight altitudes, with
lower altitudes having more images. This imbalance can lead to overfitting and reduced
model generalizability, impacting detection accuracy. Specifically, this augmentation aims
to balance the sample quantities for 20 m and 30 m sandalwood samples.
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2.3. Improved Lightweight Sandalwood Detection Algorithm
2.3.1. YOLOv5s Object Detection Model

In recent years, the YOLO (you only look once) series of single-stage object detection
algorithms have evolved through iterations and optimizations, with YOLOv5 standing out
as one of the high-performance real-time object detection models. The YOLOv5 algorithm
offers five network models: YOLOv5nano, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
Considering the balance between operational efficiency and detection accuracy, this study
adopts YOLOv5s as the sandalwood detection model.

The architecture of YOLOv5s comprises three main components: a backbone, neck,
and output head. The backbone is responsible for feature extraction, utilizing C3 modules
with residual structures to prevent gradient vanishing and enhance the acquisition of
fine-grained features. The neck section employs both up- and downsampling techniques
to strengthen feature fusion within the network, preserving richer feature information
from the lower layers. The output head employs the network’s extracted features to make
predictions. The detailed network structure of YOLOv5s is illustrated in Figure 4.
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2.3.2. Introduction of CA Module

The coordinate attention (CA) module is an innovative lightweight attention mecha-
nism that embeds spatial coordinate information into channel attention. This allows the
network to gather broader area information with minimal additional computational cost,
thus improving the precision of detection in lightweight models [28].

The CA module consists of two operations: embedding coordinate information and
generating coordinate attention. In the first step, the input feature map with dimensions of
C × H ×W (where C is the channel count or the number of feature layers, and H and W are
the feature map’s height and width) is subjected to horizontal and vertical pooling, resulting
in feature maps Zh and Zw with dimensions of C × H × 1 and C × 1 ×W, respectively. The
average pixel value of each feature layer in the feature map is computed as follows:

Zh
c (h) =

1
W ∑

0≤i<W
xc(h, i), Zw

c (w) =
1
H ∑

0≤i<H
xc(j, w) (2)

where xc(h , i) and xc(j, w) represent the pixel values at coordinates (h, i) and (j, w),
respectively, for the c-th channel’s feature layer. Zh

c (h) and Zw
c (w) represent the average

pixel value at the (h, 1) and (1, w) positions, respectively, for the pooled feature layers of
the c-th channel.

In the second step, the feature maps Zh and Zw are concatenated and fused to capture
coordinate information. A nonlinear activation function enhances feature expression
capability, yielding an intermediate feature map f with dimensions of C × (W + H)× 1. f
is then split along the horizontal and vertical directions into two independent tensors, f h

and f w, each with dimensions of C × H × 1 and C × 1 ×W, respectively. Finally, f h and f w

undergo individual transformations using two 1 × 1 convolutions, denoted as Fh and Fw,
followed by Sigmoid activation to yield attention weights in the horizontal and vertical
directions. The equations are as follows:

f = δ
(

F1

([
Zh, Zw

]))
(3)

gh= σ
(

Fh

(
f h
))

, gw= σ(Fw( f w)) (4)

where F1([∗, ∗]) represents the fusion operation, δ(∗) is a nonlinear activation function, and
σ(∗) is the Sigmoid activation function.
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As illustrated in Figure 4, this study introduces the CA module after the C3 mod-
ule in the YOLOv5s backbone network. This inclusion enables the network to focus on
channel relationships while preserving spatial coordinate information. Consequently, the
network’s feature perception is enhanced, improving the detection performance of small
target sandalwood trees and reducing false negatives.

2.3.3. Improved Boundary Box Regression Loss Function

The loss function for object detection tasks consists of two components: classification
loss and boundary box regression loss. The updated YOLOv5 series employs the complete
intersection over union (CIOU) loss [29] as the boundary box regression loss. The expression
for the CIOUloss is as follows:

CIOULoss = 1 − IOU +
∣∣∣ σ

c2

∣∣∣+ βv (5)

where σ represents the Euclidean distance between the center points of the predicted and
ground truth boxes, and c is the diagonal length of the smallest box that can encompass
both the predicted and ground truth boxes. The definitions of IOU, β, and v are as follows:

IOU =
B ∩ Bgt

B ∪ Bgt , β =
v

(1 − IOU)+v
, v =

4
π2

(
tan−1 wgt

hgt − tan−1 w
h

)2

(6)

where B represents the predicted box, Bgt denotes the ground truth box, and wgt and hgt

represent the width and height of the ground truth box, respectively, while w and h denote
the width and height of the predicted box.

Although the CIOU loss considers factors such as the distance between the predicted
and ground truth boxes, overlapping area, and aspect ratios, it does not account for the
mismatched orientation between the predicted and ground truth boxes. This deficiency
results in a lack of directional constraints on the predicted boxes during regression, leading
to training instability and adversely affecting training speed and effectiveness. This study
employs the structural similarity intersection over union (SIOU) loss [30] as the boundary
box regression loss. This loss introduces the angle between the vector of the predicted
box’s regression in the ideal state and the ground truth box as one of the penalty terms.
This allows the predicted box to regress along the optimal path, ultimately enhancing
the training speed and inference accuracy. The SIOUloss comprises four cost functions:
distance, angle, shape, and IOU. The expression is as follows:

SIOU Loss =1 − IOU+
∆ + Ω

2
(7)

Among them, the cost function expressions for distance (∆), angle (Λ), and shape (Ω)
are shown below:

∆ = ∑
t=x, y

(
1 − e−γρt

)
, ρx =

bgt
cx − bcx

cw
, ρy =

bgt
cy − bcy

ch
, γ =2 − Λ (8)

Λ = 1 − 2 × sin2
(

arcsin(x)−π

4

)
, x =

ch
σ

= sinα (9)

Ω = ∑
t=w, h

(
1 − e−ωt

)θ , ωw =

∣∣w − wgt
∣∣

max(w, wgt)
, ωh =

∣∣∣h − hgt
∣∣∣

max(h, hgt)
(10)

where b and bgt denote the center points of the predicted and ground truth boxes, respec-
tively, and bgt

cx and bgt
cy denote the horizontal and vertical coordinates of the ground truth

box’s center. bcx and bcy are the corresponding coordinates for the predicted box. θ is an
adjustable parameter used to control how much SIOUloss focuses on shape cost and was
set to 4 in this study.
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3. Results and Discussion
3.1. Experimental Platform

The operating system used for training in this study is Windows Service. The CPU
model is Intel(R) Core(TM) i9-12900K, and the GPU model is NVIDIA GeForce RTX 3090
24 G. The training framework is PyTorch 1.9.0, and the CUDA 10.1 graphics acceleration
library is employed. For testing, the Jetson Nano edge computing device is used with an
operating system of Ubuntu 18.04. The CPU model is a 4-core A57 architecture CPU, and
the GPU model is NVIDIA’s 128-core integrated GPU. The testing framework is PyTorch
1.10, with the CUDA 10.2 graphics acceleration library.

3.2. Training Settings

When training the StyleGAN model, a transfer learning approach is adopted, utilizing
official face generation weights as initial weights to expedite training. The specific training
parameters are as follows: the batch size is set to four images, the number of threads is
set to three, the Adam optimizer is used with an initial learning rate of 0.002, the training
epochs are set to 2500, and the input image size is 1024 × 1024 pixels. For the improved
YOLOv5s model, the training parameters are as follows: the batch size is set to 32 images,
the number of threads is set to four, the SGD optimizer is used with an initial learning rate
of 0.001, the quad functionality is enabled, the training epochs are set to 300, and the input
image size is 640 × 640 pixels.

3.3. Generation of Realistic Samples

After training the StyleGAN model, different sandalwood remote sensing images can
be generated by inputting various random seed numbers. Figure 5 presents examples
of generated samples. It can be observed that the model does not consistently generate
high-quality samples. In Figure 5a, the sandalwood trees are sparse and lack authenticity,
and noticeable artifacts are present in the background, deviating significantly from reality.
In Figure 5b, the sandalwood trees within the red box exhibit evident artifacts as well,
manifesting in shape, color, and texture discrepancies compared with reality, along with
blurred textures and a lack of details. In contrast, the sandalwood tree in Figure 5c appears
more realistic in terms of texture, shape, color, and size, adhering to the standards required
for training samples of sandalwood trees.
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3.4. Evaluation Metrics

In alignment with operational requirements, the model’s performance is evaluated
using key metrics: precision (P), average precision (AP), recall (R), model size, and frames
per second (FPS).

AP assesses the overall performance, considering precision–recall trade-offs. Precision
(P) gauges the accuracy of positive predictions, while recall (R) evaluates the model’s
proficiency in identifying relevant instances.
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Practical aspects are considered via model size, reflecting storage needs, and FPS, indi-
cating the real-time processing speed. This thorough evaluation aims to provide a balanced
assessment, encompassing predictive accuracy and practical deployment considerations.

The specific calculation formulas for P, R, and AP are as follows:

P =
TP

TP + FP
(11)

R =
TP

TP + TN
(12)

AP =
∫ 1

0
P(R)dR×100% (13)

where TP (true positive) represents correctly detected cases with an intersection over union
(IOU) greater than 0.5. FP (false positive) accounts for incorrectly identified cases, and FN
(false negative) represents cases where sandalwood trees go undetected.

3.5. Experimental Analysis

The precision–recall (P-R) curve of our proposed method on the test set is illustrated in
Figure 6. The experimental results indicate that our proposed method achieves a detection
accuracy of 89.3%, a recall rate of 98%, and an average precision of 95.6% when detecting
sandalwood tree targets in remote sensing images. The model size is 14.9 MB, and it
processes frames at a rate of 59.8 frames per second.

Agriculture 2024, 14, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 6. P-R curves. 

3.6. Validating the Effectiveness of Strategies 
To validate the effectiveness of strategies, such as StyleGAN data augmentation, CA 

module, and SIOU loss, in enhancing the model�s detection performance, this study con-
ducted ablation experiments on the original sandalwood training set and the YOLOv5s 
model. The aforementioned strategies were sequentially applied or omitted. The usage of 
each strategy is indicated by “√” for applied and “-” for not applied. The same parameter 
configuration was used during the training process. The results are presented in Table 2. 

Table 2. Ablation experiments. 

 StyleGAN CA SIOU P/(%) R/(%) AP/(%) Memory Size/(Mb) FPS 
1 - - - 94.0 95.0 93.0 14.1 62.8 
2 √ - - 86.2 98.0 94.5 14.1 62.1 
3 - √ - 88.9 98.0 95.0 14.4 58.9 
4 - - √ 89.0 97.0 94.5 14.1 61.3 
5 √ √ √ 90.1 99.0 95.6 14.5 56.8 

In the table, comparing Sequences 2 and 4 with the baseline (Sequence 1), it is evident 
that both StyleGAN data augmentation and the 𝑆𝐼𝑂𝑈 𝑙𝑜𝑠𝑠 function led to an increase of 
1.5 percentage points in average precision without affecting the model size and FPS. When 
comparing Sequence 3 to Sequence 1, it can be seen that the introduction of the CA module 
resulted in a 3-percentage-point increase in recall and a 2-percentage-point increase in 
average precision. However, the model size increased by 0.3 Mb, and FPS dropped by 3.9, 
suggesting that the CA module introduces complexity to the network and affects detec-
tion efficiency to some extent. Lastly, Sequence 5 demonstrated a significant 2.6-percent-
age-point increase in average precision compared to Sequence 1 while maintaining a sim-
ilar FPS and model size, showcasing the effectiveness of the proposed research approach. 

These results collectively highlight the impact and effectiveness of each individual 
strategy employed in the study on the overall detection performance of the model. 

Figure 6. P-R curves.

3.6. Validating the Effectiveness of Strategies

To validate the effectiveness of strategies, such as StyleGAN data augmentation,
CA module, and SIOU loss, in enhancing the model’s detection performance, this study
conducted ablation experiments on the original sandalwood training set and the YOLOv5s
model. The aforementioned strategies were sequentially applied or omitted. The usage of
each strategy is indicated by “

√
” for applied and “-” for not applied. The same parameter

configuration was used during the training process. The results are presented in Table 2.
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Table 2. Ablation experiments.

StyleGAN CA SIOU P/(%) R/(%) AP/(%) Memory
Size/(Mb) FPS

1 - - - 94.0 95.0 93.0 14.1 62.8
2

√
- - 86.2 98.0 94.5 14.1 62.1

3 -
√

- 88.9 98.0 95.0 14.4 58.9
4 - -

√
89.0 97.0 94.5 14.1 61.3

5
√ √ √

90.1 99.0 95.6 14.5 56.8

In the table, comparing Sequences 2 and 4 with the baseline (Sequence 1), it is evident
that both StyleGAN data augmentation and the SIOUloss function led to an increase of
1.5 percentage points in average precision without affecting the model size and FPS. When
comparing Sequence 3 to Sequence 1, it can be seen that the introduction of the CA module
resulted in a 3-percentage-point increase in recall and a 2-percentage-point increase in
average precision. However, the model size increased by 0.3 Mb, and FPS dropped by 3.9,
suggesting that the CA module introduces complexity to the network and affects detection
efficiency to some extent. Lastly, Sequence 5 demonstrated a significant 2.6-percentage-
point increase in average precision compared to Sequence 1 while maintaining a similar
FPS and model size, showcasing the effectiveness of the proposed research approach.

These results collectively highlight the impact and effectiveness of each individual
strategy employed in the study on the overall detection performance of the model.

3.7. Experimental Comparison

To demonstrate the effectiveness of the enhanced YOLOv5s model with StyleGAN
data augmentation, we conducted a comparative analysis using the original sandalwood
dataset. The analysis included widely used lightweight object detection models, such
as YOLOv4-tiny, YOLOXs, YOLOv5-mobilenet2, and YOLOv5-ghost, all trained under
the same configuration and parameters. The results, presented in Table 3, show that our
approach not only retains the lightweight and fast attributes of the original YOLOv5s model
but also significantly enhances accuracy in detecting sandalwood trees. This improvement
gives our method a distinct advantage over the other models, demonstrating its practical
significance and potential in real-world sandalwood plantation monitoring.

Table 3. Results of mainstream algorithms.

Network Model P/(%) R/(%) AP/(%) FPS

YOLOv4-tiny 85.2 92.2 88.7 48.9
YOLOXs 85.9 89.7 92.0 73.5
YOLOv5s 94.0 95.0 93.0 62.8

YOLOv5-mobilenet2 85.9 97.0 93.3 64.5
YOLOv5-ghost 86.2 94.8 92.7 63.1

GAN-YOLOv5s-CA-SIOU 90.1 99.0 95.6 56.8

3.8. Discussion on Impact of Flight Altitude on Model Accuracy

To investigate the detection results at various altitudes, the original YOLOv5s model
and the model proposed in this study were used to detect objects in test datasets at 10 m,
20 m, and 30 m under the same configuration and parameter settings. The results of these
detections are shown in Table 4.

Table 4. Detection accuracies at different altitudes.

Network Model 10 m (AP/%) 20 m (AP/%) 30 m (AP/%)

YOLOv5s 95.1 93.6 90.2
GAN-YOLOv5s-CA-SIOU 97.3 94.1 95.3
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The results indicate that the detection accuracy of the baseline YOLOv5s model de-
creased with an increased flight altitude due to the lower image resolution obtained at
higher altitudes. This reduction in resolution led to a loss of detail in the images of
sandalwood trees, adversely affecting the accuracy of the detection model. The method
proposed in this study achieved superior results at all evaluated altitudes, with a notable
improvement observed at 30 m.

3.9. Methodology Discussion

An improved YOLOv5s model and improved training strategy are proposed to detect
sandalwood trees, which grow in a complex multi-crop cross-cropping environment. The
key features of sandalwood trees are extracted well, and a high-precision model is obtained.
At the same time, the size of the improved YOLOv5s model does not change significantly,
so the detection speed of the basic YOLOv5s model is maintained. In addition, a generative
adversarial network—StyleGAN—is also introduced to resolve imbalanced data caused by
incomplete data on sandalwood trees at certain altitudes due to potential UAV restrictions
near high-voltage lines. StyleGAN can also be used to solve the problem of sample
imbalance caused by other reasons.

The planting environments of most crops are simpler and typically more organized
compared to those of sandalwood trees. Therefore, the algorithm proposed in this paper
may obtain a detection model with higher accuracy, and it can be applied to most scale
planting. However, since this research is based on sandalwood trees that are separated
from each other, the detection algorithm may not effectively handle situations where
trees intersect or obstruct each other. Further research on a separation strategy for cross-
occluding trees needs to be carried out.

4. Conclusions

In this study, the StyleGAN data augmentation technique is combined with an en-
hanced YOLOv5s detection model to augment remote data at different flight altitudes,
which increases accuracy by 1.5%. By improving the backbone network and loss functions,
the missed detection rate of sandalwood targets is reduced, and the average accuracy is
increased by 2.2%. When StyleGAN and the improvement are both introduced in the
YOLOv5s detection model, the detection accuracy is improved to 2.6%. Furthermore, the
final algorithm model retains the lightweight characteristics of YOLOv5s, thereby facili-
tating its deployment on edge devices. These devices are not only cost-effective, but also
well suited for applications in agricultural and forestry settings where hardware resources
are limited.
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