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Abstract: The oomycete Plasmopara viticola, which causes downy mildew, is currently one of the
most destructive pathogens affecting grape production. Although native to the eastern United States,
P. viticola was introduced into Europe in the mid-to-late 1800s and is now found in virtually every
grape-growing region of the world. Since its discovery, much effort has been made to understand
the life cycle and infection process of the pathogen to develop more effective management practices.
Widespread application of fungicides, especially those which have only one mode of action, has led
to an increased occurrence of resistance to these treatments. Thus, with increased fungicide resistance
and rising environmental concerns surrounding their use, traditional chemical management practices
have begun to fall out of favor. Newer approaches, from targeted breeding utilizing quantitative trait
loci to biological control agents, are continually being investigated and adapted to limit the damage
caused by downy mildew. This review summarizes the current knowledge of the pathogen and
methods of its control and explores potential avenues for future research focused on hypovirulence
and biological control agents.
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1. Introduction

Humans have had a long, close relationship with the grape genus Vitis, with manage-
ment and domestication of the important subspecies V. vinifera having begun in the South
Caucasus as early as 18,000 BCE [1]. Today, grapes are regularly ranked among the top five
fruit crops globally and production has continued to increase over the past five years [2].
The crop is used for a wide array of commercial commodities including oil, raisins, juice,
table grapes, and, most recognizably, wine. Between 2021 and 2028, the global wine market
alone is predicted to experience a compound annual growth rate of 4.3% and grow to a
value of USD 456.76 billion, up from a market value of USD 340.23 billion in 2021 [3].

Since the mid-1800s, grape production has been negatively affected by numerous
diseases and pests, of which, one of the most destructive and challenging to combat is
downy mildew. This disease is caused by the oomycete, Plasmopara viticola (Berk. & M.A.
Curtis) Berl. & De Toni, a filamentous eukaryote that superficially resembles a fungus.
The pathogen, which is native to the United States (US) [4,5], is now a global threat to
grape production [6]. Plasmopara viticola lives its entire life cycle in and around the grape
vine, infecting green tissues such as leaves, bunches, and inflorescences, contributing to
significant losses of yield [4,7].

Numerous approaches for management of downy mildew have been developed
over the past 150 years. The discovery and development of fungicides began in the
1880s [8] and breeding for resistance began shortly thereafter. Since that time, additional
management methods utilizing fungal, bacterial, and other biocontrol agents have been
developed, with varying degrees of success in pathogen control. One of the most promising

Agriculture 2024, 14, 406. https://doi.org/10.3390/agriculture14030406 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14030406
https://doi.org/10.3390/agriculture14030406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0009-0002-8934-7336
https://orcid.org/0000-0002-0164-804X
https://orcid.org/0000-0002-0739-8838
https://doi.org/10.3390/agriculture14030406
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14030406?type=check_update&version=1


Agriculture 2024, 14, 406 2 of 24

approaches to management has been through the identification and breeding for specific
quantitative trait loci (QTL) correlated with increased resistance [9–11]. Fungicides are
often used in conjunction with resistant cultivars to secure a successful crop. However,
there are increasing occurrences of P. viticola developing mutations that allow it to evade
the identified QTLs and entire classes of fungicides, making the need for new methods
of growth control urgent. In this review, we summarize current knowledge regarding
the pathogen and its management practices and highlight areas in which more research
is needed.

2. Identification and Invasion History

Plasmopara viticola is native to the eastern US, where five formae speciales, including f.
sp. aestivalis, f. sp. riparia, f. sp. vinifera, f. sp. vulpine, and f. sp. parthenocissus, are known
to occur on various Vitaceae species [5,12]. It has been reported that the pathogen was first
identified in 1834 as Botrytis cana by Schweinitz [13–15]; however, the basionym recognized
by Mycobank [16] and the US Department of Agriculture National Fungus Collections Fun-
gal Databases [17] is Botrytis viticola, as identified by Berkley and Curtis in 1848. Although
the species was officially identified by Berlese and De Toni in 1888 as Plasmopara viticola,
it has been known by many synonyms including Peronospora viticola [18–20], Phytophthora
viticola [20], Rhysotheca viticola [14,19,20], and Plasmopara amurensis [20,21].

The international spread of downy mildew was first noted in France in September
1878 [4], at approximately the same time the country began to import American rootstock
to replant vineyards devastated by the Phylloxera infestation responsible for the Great
French Wine Blight [5,7]. Until the early 1870s, France had maintained a ban on imports
from the US; thus, while the P. viticola may have been introduced with vines imported
for scientific purposes prior to the 1870s, it was likely the lifting of the ban and subse-
quent planting of 400,000 US cuttings by the winter of 1872 [22] that contributed to its
rapid spread. Within a few years, the occurrence of downy mildew had been reported
in wine growing regions throughout Europe [4]. At the time, there was some debate
whether the disease was native to Europe, because there were reports of molds producing
similar symptomology in Germany and Switzerland [4]. Viala [4] disagreed, asserting
that evidence supported its introduction from the US. Recent DNA sequencing supports
Viala’s assertion and demonstrated that the introduction involved a single cryptic species,
P. viticola f. sp. aestivalis [5].

Following its introduction to Europe, the disease spread across the globe. The 2021
study by Fontaine et al. [5] suggests that rather than spreading through the direct importa-
tion of diseased plant tissue from the US, it was primarily the movement of infected tissue
out of France and into China, South Africa, Australia, and Argentina that introduced downy
mildew to the developing wine-producing regions. Today, it continues to be identified
in new regions and affecting new species [23] and has been documented or reported in
96 countries and found on every continent except Antarctica [6].

3. Pathogen Life Cycle

As a biotroph and obligate host-specific parasite, P. viticola requires the living, green
tissue of Vitis spp. (grapevine) to complete its life cycle, and as an oomycete lacking
cell walls, it requires moist conditions to survive and reproduce on and around the vine.
Inoculum for the primary infection of the grapevine is produced by oospores, the product
of sexual reproduction [24,25]. In the spring, oospores that have overwintered in plant litter
and soil germinate once conditions become favorable. Temperatures of 10 ◦C or greater
and wet conditions promote the development of oospores into microsporangia [7,24], from
which biflagellate motile asexual zoospores are released (Figure 1). Because oospores can
survive for several years on litter, this process can occur repeatedly throughout the growing
season, as long as conditions are favorable for germination [25].
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Released zoospores reach developing grapevine tissues via rain splash and dew
accumulation, after which they encyst in the tissue and form a germ tube (Figure 1) [7,25].
This tube enters green stems and leaves through stomatal openings, and the pathogen
intercellularly colonizes the host tissue for a period of several days [7,25]. During this time,
P. viticola produces intracellular haustoria (Figure 1), with which it extracts nutrients from
the host plant [25,26]. If optimal conditions of high humidity and temperatures between
15 ◦C and 25 ◦C exist, the intercellular mycelia will begin to produce sporangiophores
(Figure 1) approximately one week after the initial infection occurred [25,27,28]. During
the period from infection to the production of sporangiophores, no symptoms will be
visible. Following sporangiophore formation, the undersides of the leaves will exhibit
visible white “downy” symptoms and zoospores will be released via rain splash or wind
dispersal, which promotes the secondary infection of leaves, stems, flowers, and berries.
As with the release of zoospores from microsporangia beneath the vine, this stage can
also occur repeatedly throughout a growing season. There is also evidence to suggest
that the nighttime temperature can affect the progression of the disease, with warmer
temperatures (25 ◦C) resulting in accelerated growth and sporulation compared to cooler
temperatures (15 ◦C) [29]. In a controlled study of two P. viticola cryptic species, temperature
was observed to have a significant effect on the aggressiveness of the pathogen, and
aggressiveness differed between the species evaluated [28]. Thus, when warm temperatures
and high humidity are sustained, the infection cycle can progress more rapidly and will be
compounded by the presence of both sexual and asexual spores.

As the growing season for the grapevine ends and conditions become drier, P. viticola
shifts from asexual to sexual reproduction [7,25] (Figure 1). While the asexual phase of
the life cycle is well described, less is known about the sexual phase. Importantly, it is
this phase which contributes to genetic diversity within the species, though it may be
uncommon or practically non-existent in regions with warmer climates [30,31]. Because
the pathogen is heterothallic, differing and compatible mating types must be present for
this stage of reproduction to occur [32,33]. A single diploid oospore develops from the
fusion of haploid nuclei originating from the antheridium and oogonium of the compatible
mating types. Following development, the oospore requires a maturation, or dormancy,
period before it can germinate and begin the infection process all over again [34]. This
maturation period appears to be governed by average and cumulative temperature values
and by cumulative rainfall; in field conditions, oospores complete maturation prior to
dormancy cessation of the grapevine [35]. Progression to the post-maturation period just
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before the end of grapevine dormancy promotes germination of the microsporangia at
the time of bud burst and leaf development [35]. This phase of the life cycle is the most
critical, as it provides the initial inoculum for seasonal infection. Due to their lack of cell
walls, asexual spores cannot survive the dormancy period from fall until bud burst in the
spring. For this reason, identification of methods that can be utilized to either disrupt
sexual reproduction in the fall or limit microsporangia sporulation in the spring are greatly
needed to reduce the available inoculum and control infection occurrence in regions where
sexual reproduction occurs.

4. Symptoms and Agricultural Consequences

Infection of leaf tissue results in diminished chlorophyll fluorescence as early as
4–5 days after infection is initiated, several days before any visible symptoms arise [36,37].
In resistant cultivars, which exhibit hypersensitive reactions, this results in a more rapid
reduction of the photosynthetic rate than in susceptible cultivars, with susceptible cultivars
exhibiting a reduction only after visible symptoms have appeared [37]. Resistant cultivars
also exhibit stomatal closure and decreased transpiration as early as four days after inocu-
lation [37], as well as increased production of anthocyanin-like compounds [38]. Increased
production of H2O2 has been observed within hours of inoculation and continuing for up to
3 days afterward in resistant cultivars [39,40]; this was correlated with earlier development
of necrotic lesions [39]. Such lesions are the first visible indications of P. viticola infection
and typically appear as pale green-to-yellow “oily” spots on the surfaces of the leaves
(Figure 2a). These spots can expand to affect much of the surface of the leaves, particularly
in cultivars that exhibit hypersensitive reactions [38], which can lead to premature defolia-
tion in severely affected vines. Reduced photosynthetic rates and premature defoliation
can negatively affect sugar accumulation in berries and overwintering buds, as well as
delay berry ripening.
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When conditions are favorable, a white downy fungal growth develops on the un-
dersides of leaves (Figure 2b). This is the primary source of inoculum for infection of
inflorescence and young berries. Recent evidence has suggested that the disease may also
spread systemically through the development of fan-shaped hyphae that can overcome
physical barriers in susceptible cultivars and have been observed in young and nearly ripe
berries [40]. In susceptible cultivars, infection of inflorescences at the time of swelling can
lead to complete necrosis and loss of the bunch, while infection at the time of flowering
can lead to partial necrosis and desiccation of bunch branches [41]. Young berries that
become infected often halt development, exhibit brown mottling of the skin, and become
necrotic (Figure 2c) and covered in a fuzzy white growth (Figure 2d) as the berries become
filled with mycelia [40,41]. Some berries may continue to develop into what are known
as “leather berries”. These are brown, shrunken, dehydrated berries that were infected
during early berry development [41] but continued to mature and develop seeds [40]. One
study found that the seeds of leather berries contained no embryo or endosperm and were
partially to completely infected with pathogen mycelia [40]. The resistance of berry tissue
increases as stomata are converted into lenticels approximately two-to-three weeks post
bloom [24]. However, the pedicle is susceptible up to four weeks post-bloom and infection
can spread from rachis and pedicle to berries, even after berries are no longer susceptible
to external inoculum [24]. Infection of leaves, flowers, and berries can be both qualitatively
and quantitatively damaging to the final crop, as the sugar content is reduced and yield
is lost. Although Fröbel and Zyprian [40] demonstrated that the pathogen can develop
specialized hyphae to overcome barriers within the plant, it remains unknown whether the
disease can spread from the bunches to the vine. To the authors’ knowledge, no studies
have yet observed transmission of the disease from rachis to cane.

5. Management Strategies
5.1. Cultural Practices

The effective management of downy mildew begins with best cultural practices, which
include proactive methods such as site selection, varietal selection, vineyard sanitation,
and vine care. Sites should have good airflow and be exposed to the sun for most of the
day to promote rapid drying after rainfall. Additionally, sites should not be located near
inoculum sources such as wild, feral, or abandoned grapevines [42]. Eradication of these
secondary inoculum sources should help to reduce disease pressure [42]. Good sanitation
measures such as removal of leaf debris after leaf fall, chopping up leaves, or tilling debris
under can reduce inoculum in the vineyard. Mulching under grapevines can reduce the
movement of primary zoospores from the soil to susceptible shoots [42], as can the removal
of, or herbicide application to, suckers and ground-level growth that is susceptible to
infection from the overwintering oospores [42]. New technologies are being explored to
reduce chemical applications by increasing the accuracy of the targeting and identification
of suckers for chemical spray removal utilizing two-dimensional laser scanners and camera
machine vision [43]. Summer pruning promotes airflow and the quick drying of leaves,
inflorescences, and clusters, as well as increasing fungicide spray penetration and coverage.
This can be further supported by the use of trellis systems, such as vertical shoot position
trellis systems, that promote high shoot growth and help keep leaves further away from
inoculum in the soil [44]. The planting of grapevine varieties more resistant to downy
mildew can reduce the number of fungicide sprays needed for downy mildew control [45].

5.2. Chemical Control

Even when planting resistant cultivars and using best cultural practices, chemical
controls are still necessary to provide effective control of downy mildew, especially in
seasons or regions where warm, humid, and rainy conditions persist [25]. The percentage
of grapevine yields attributable to fungicide use is estimated to be 95% [46]. In warm humid
climates, such as on the east coast of the US, downy mildew is normally treated with seven
or eight fungicide sprays per season [47]. Early detection of downy mildew symptoms is
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important for the timely application of chemical controls or other management strategies.
Many advances in modeling and detection technologies have occurred in recent years,
giving growers options beyond traditional scouting. Some of these technologies utilize
thermal imagining, hyperspectral imaging, and artificial intelligence [38,48–52]. Such tools
can support a more targeted approach to disease detections and fungicide application.
Fungicide treatment options generally fall into two categories, contact or systemic, each
with their advantages and disadvantages.

5.2.1. Contact Fungicides

The first chemical fungicide to control downy mildew is still effective today: the
Bordeaux mixture, copper sulfate (CuSO4) and lime [Ca(OH)2] in solution. Millardet [8], in
1882, sprayed this mixture on grapevines close to the road to discourage people from eating
his grapes, since it left a visible residue as well as tasted repugnant. He observed that treated
vines did not have downy mildew symptoms, while the rest of the vineyard did [7,8,25]. Not
long after, in 1887, the Burgundy mixture became available. It was similar to the Bordeaux
mixture except that the copper sulfate was in solution with sodium carbonate (Na2CO3)
instead of lime [7]. Fixed copper fungicides (copper oxychloride sulfate, copper hydroxide,
copper sulfate) are used for multiple applications per season for effective control [7,25],
despite the negative effects of excess copper in soils. Copper does not degrade in soil but
accumulates, resulting in potential water and soil contamination that can be harmful to
organisms [53,54]. As a result, the European Union has restricted the application of cupric
fungicides (Regulation 473/2002) [53,55]. The microencapsulation of copper may offer a
means of reducing the amount of copper applied per spray by up to 50% [53]. Another
promising method to reduce copper inputs is by using biomimetic synthetic hydroxyapatite
(HA) to improve the biological activity of copper ions [56]. Reducing or eliminating copper
fungicides is a significant goal in developing new, sustainable methods for the management
of downy mildew.

In the 1940s and 1950s, acuprics, also known as contact fungicides, were developed that
provide comparable control to cupric fungicides. Many of these had multi-site activity that
reduced the risk of resistance development [57]. These included captan (dithiocarbamates),
methiram, maneb, mancozeb, propineb, captafol, folpet, and dichlofluanid [7,55]. The
disadvantages of contact fungicides are that they sit on the waxy surface of the leaf, are
subject to wash-off by rainfall, and only protect vines from future infections. They do not
necessarily affect the haustoria of the P. viticola within the leaf or protect new shoot and leaf
growth that occurs after application [25,58].

5.2.2. Systemic Fungicides

Fungicides that could penetrate the leaf’s surface, allowing them to attack existing
infections as well as provide lasting protection that could extend to new growth, occurred
with the development of systemic fungicides in the 1970s and beyond. These systemic
fungicides could not be washed off once inside the plant and displayed significant curative
effects [7,55]. Some systemic fungicides could migrate within the plant to protect new
shoots and leaves up to one-to-two weeks post-application [7,58,59]. The disadvantage of
systemic fungicides is that they often have only one mode of action, which may result in
a higher risk of resistance development [57,58]. The major systemic fungicides currently
utilized in the US are listed in Table 1 with their respective mode of action (MOA) and
Fungicide Resistance Action Committee (FRAC) code.

5.2.3. Fungicide Resistance Development in Plasmopara viticola

In the 1970s, it became clear that the resistance of plant pathogens including P. viticola to
fungicide treatments was a major threat to crop production. The development of resistance
is an evolutionary process through which sensitive pathogen populations become resistant
via the selection of resistant mutants when faced with fungicide applications [58]. Single-site
MOA fungicides such as quinone outside inhibitors (QoI) and phenylamides (PAs) are at
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high risk for resistance development, whereas fungicides with multi-site MOA fungicides
have a low risk of resistance development [57]. Three of the main FRAC groups with
resistance concerns are reviewed here. However, even FRAC groups that are considered
low risk for resistance can still develop resistance. Regular monitoring for resistant isolates
is an important step in resistance management.

Table 1. Fungicide Resistance Action Committee (FRAC) codes and modes of action for fungicides
approved for use to control Plasmopara viticola in the US.

Class Fungicide FRAC Code Mode of Action Systemic Action
and Properties Reference

Cyanoacetamide-oxime Cymoxanil 27 Unknown Contact and local [7]

Benzamide Fluopicolide 43 Disrupts cytoskeleton
spectrum-like proteins Xylem systemic [7,60]

Benzamide Zoxamide 22 Inhibits tubulin polymerization Systemic [61]
Carboxylic acid amide Benthiavalicarb 40 Inhibits cellulose synthase Local, preventative [62]

Carboxylic acid amide Dimethomorth 40 Inhibits cellulose synthase Systemic, long residual activity,
protective, curative [63]

Carboxylic acid amide Iprovalicarb 40 Inhibits cellulose synthase Systemic, eradicative,
preventative [7]

Carboxylic acid amide Mandipropamid 40 Inhibits cellulose synthase Translaminar, rainfast, curative [64,65]
Phenylamide Acylalanine metalaxyl 04 Inhibits rRNA polymerase Acropetal systemic [7,66]
Phenylamide Oxadixyl 04 Inhibits rRNA polymerase Systemic [67]

Phosphonate Fosetyl-AL (ethyl-phosphite),
phosphorus acid and salts P07 Induces plant defenses Acropetal and basipetal

systemic [7,68]

Quinone inside Inhibitor Cyazofamide 21 Inhibits mitochondrial
respiration Local [69]

Quinone outside Inhibitor Ametoctradin 45 Inhibits mitochondrial
respiration Rainfast, preventative [70–72]

Quinone outside Inhibitor Famoxadone 11 Inhibits mitochondrial
respiration Local [73]

Quinone outside Inhibitor Fenamidone 11 Inhibits mitochondrial
respiration Local, translaminar [7,74]

Quinone outside Inhibitor Strobilurins 11 Inhibits mitochondrial
respiration

Varying (translaminar to
acropetal) [7,75]

The carboxylic acid amides (CAAs) are a common fungicide class used to combat downy
mildew on grape populations. This class inhibits cellulose synthesis in oomycetes [76] and
impedes the growth of germ tubes and hyphae in oomycetes, reducing infection [77].
CAA fungicides have three different chemical structure subclasses (cinnamic acid amides,
valinamide carbamates, and mandelic acid amides). Dimethomorth, a cinnamic acid
amide, was the first one to be introduced in 1988 [78]. Plasmopara viticola dimethomorph-
resistant isolates were first claimed to exist in French vineyards in 1994, and resistance
was confirmed in 2007 [79–81]. A single mutation in the PvCesA3 nuclear gene, glycine on
codon 1105 mutated into a serine (G1105S), was identified as contributing to the resistance
of P. viticola to CAA fungicides. It is a recessive mutation, thus both copies of the gene
must have the mutation to be resistant [77]. CAAs have been used in the US since the
introduction of mandipropamid in 2008 and dimethomorph in 2009. The first report of
CAA resistance in North America occurred in 2016 in Virginia [82]. The resistance risk
is considered moderate and can be managed by applying resistance mitigation strategies
including preventive use, applying CAA fungicides in a mixture with effective partners
(multi-site or other non-cross resistant fungicides), limiting the number of applications per
season to three or four, and alternation with fungicides with other modes of action [83].

Another popular class of fungicides to control downy mildew is the quinone outside
inhibitors (QoIs, FRAC code 11), which include strobilurins, famoxadone, and fenamidone.
QoIs include nine chemical groups all shown to be cross-resistant and at high risk for
resistance development [84]. The strobilurins are based on derivatives from the Basid-
iomycete mushroom, Strobilurus tenacellus. QoIs act at the quinol outer binding site of the
cytochrome bc1 complex and inhibit mitochondrial respiration by blocking the transfer of
electrons across the membrane, resulting in reduced energy production [85,86]. However,
mutations of the cytochrome b gene, including glycine to alanine at position 143 (G143A)
and phenylalanine to leucine at position 129 (F129L), result in P. viticola resistance, with
G143 being the most commonly occurring [87]. The first commercial QoIs, azoxystrobin and
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kresoxim-methyl, appeared on the market in 1996, and there are now twenty QoI fungicides
in use. QoI fungicides are best used protectively and not curatively, as once the pathogen
is inside the leaf, QoIs do not have as much of an effect (Table 1) [88]. QoI-resistant P. viti-
cola isolates were documented in several European countries in the early 2000s [89], and
resistant P. viticola and Erysiphe necator isolates were documented in Virginia and adjacent
regions in 2005 [90]. Low levels of P. viticola resistance were documented in the Lake Erie
vineyards in 2009 and 2010 [91]. Despite New York growers limiting QoI fungicides to
two applications a season and mixing with an unrelated fungicide, P. viticola resistance
was widespread in New York by 2014 and QoI fungicides could no longer be relied upon
for downy mildew control. Part of the reason for this widespread practical resistance of
P. viticola to QoIs is that New York growers primarily chose to mix QoIs with boscalid,
which is effective against E. Nector not P. viticola [92]. Early detection of resistant strains,
combined with more aggressive resistance management practices, may delay resistance
development. Unfortunately, in some regions, QoIs can no longer be used to effectively
control downy mildew.

Phenylamides (PAs) are fungicides that specifically target oomycetes including downy
mildew. PAs (FRAC code 4) have long-lasting preventative action, are systemic in plants,
provide curative effects, and are very safe for crops, making them especially useful in con-
trolling downy mildew [93]. PAs inhibit ribosomal RNA (rRNA) biosynthesis (polymerase
complex I) in downy mildew [94] and interfere with multiple growth stages in oomycetes,
including hyphal, sporangial, and haustorial growth [95]. In 1977, metalaxyl/mefenoxam
was the first PA brought to market. The two other PAs in use are benalaxyl/kiralaxyl and
oxadixyl. Resistance to PAs in P. viticola occurred within just a few years of introduction
in France [93] and resulted from the solo use of metalaxyl. FRAC was established shortly
after PA resistance was discovered, and they quickly set guidelines for PA resistance man-
agement, requiring PAs to be used in mixtures, as preventative rather than curative agents,
and limiting the number of sprays per season [58]. Although efforts have been made to
determine the gene(s) responsible for resistance, the exact site of the mutation(s) is not fully
known [96,97].

5.3. Biological Controls and Natural Substances

Alternatives to the chemical controls for downy mildew typically work by directly
affecting P. viticola or, more commonly, by inducing the grapevine’s own resistance mech-
anisms to thwart infection, or a combination of both. There are two main types of plant
resistance: systemic acquired resistance (SAR), facilitated by salicylic acid and pathogenesis-
related (PR) proteins, and induced systemic resistance (ISR), facilitated by jasmonic acid.
The alternatives can be inorganic compounds, organic chemical inducers, natural extracts,
or biocontrol agents (BCAs) [98]. BCAs and natural substances, while very promising, often
do not consistently perform as well as chemical controls but are very valuable when used
instead of chemical controls during periods of low disease pressure or in combination or
alternation with chemical controls. This reduces the risk of chemical fungicide resistance
development as well as reducing the chemical fungicide inputs into vineyards [7,99].

5.3.1. Inorganic Compounds

Among inorganic compounds, only three provide control against downy mildew: cop-
per, potassium bicarbonate, and silicon nanoparticles. Copper, in the form of copper sulfate
or copper hydroxide, has been found to promote plant defenses including peroxidases
(POXs), phenols, anthocyanins, and resveratrol. Additional plant defense responses to
copper sulfate (phytoalexins cis- and trans-resveratrol, cis- and trans-piceid, and cis- and
trans-ε-viniferine) are increased further when copper sulfate is combined with a treatment
of chitosan oligomers [100].

Potassium bicarbonate was found to be effective against downy mildew but also
displayed phytotoxic effects [101]. Combining potassium bicarbonate and lime sulfur
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lowered disease incidence and severity to levels comparable to or better than copper
hydroxide treatment [102].

Silica nanoparticles (SiNPs) are of growing interest to promote the efficacy of fungicide
delivery. Even without the addition of pesticides, however, SiNPs have been shown to
reduce downy mildew pressure in grapes [103]. In a recent study, field-grown Thompson
Seedless grapevines infected with downy mildew treated at 150 ppm with SiNPs achieved
a reduction of up to 81.5% in disease severity [103]. Several increases in plant defenses were
noted, including the overexpression of the transcription factor jasmonate and ethylene-
responsive factor 3 and the defense-related genes β-1,3-glucanase, peroxidase, pathogenesis-
related-protein 1, chitinase, and stomatal closure [103]. Silicon sprays also increased
the yield (23.7%) and shoot length (26.3%) per grapevine, consistent with silicon’s foliar
fertilizer properties [103].

5.3.2. Hypovirulence

An area in need of research for discovering new BCAs is hypovirulence, or the re-
duction in the disease-causing capability of phytopathogenic fungi due to infection by
mycoviruses. Hypovirulence has been used with some success throughout Europe to
reduce the damage to sweet chestnut (Castanea sativa) caused by Cryphonectria parasitica,
though less success has been observed in the US, where greater genetic diversity of the
disease exists [104,105]. Several studies have identified mycoviruses infecting and, in some
cases, causing the hypovirulence of downy mildews in multiple crops. In sunflowers, the
Plasmopara halstedii virus leads to hypovirulence effects by weakening the aggressiveness
of the downy mildew pathogen [106]. Mycoviruses have also been found to infect Bremia
lactucae, the causal agent of lettuce downy mildew [107], while 283 new RNA viruses were
identified in downy-mildew-infected grape leaves from regions in Spain and Italy, some
of which may be candidates for BCAs as mycoviruses [108]. Utilization of hypovirulence
poses its own challenges, however, as transmission requires the anastomosis of the hyphae,
which may be restricted due to vegetative incompatibility. This condition prevents trans-
mission between strains that are too genetically distant or of incompatible mating types.
Thus, the use of hypovirulence will likely be more challenging in regions with greater
genetic diversity of the pathogen.

5.3.3. Fungal

Endophytic fungi, fungi that live within plants, are possible sources of inhibitory
substances against downy mildew. They produce secondary metabolites that can protect
host plants against various microorganisms via antibiosis, as well as induce lignification of
cell walls [109]. At least fifteen endophytic fungi have been shown to inhibit P. viticola [25].
Those that have been shown to be most effective against downy mildew are discussed here.

Trichoderma harzianum T39 (Trichodex® commercial product) has been shown to re-
duce disease severity in numerous greenhouse trials by priming plant defenses, increasing
the expression of defense-related genes, and inducing of protective enzymes, resulting in
systemic resistance [110–114]. In greenhouse trials, combining T. harzianum application
(48-72 h before P. viticola inoculation) with benzothiadiazole (BTH) applied 24 h before inoc-
ulation provided 83% disease reduction and demonstrated systemic activation of grapevine
defenses [110]. Field trials of T. harzianum HL1 and HL5 have also shown reduced disease
severity, increased POX activity (HL1), increased POX levels (HL5), and improved quality
parameters for berries [115]. T. harzianum, grown on a potato dextrose medium using the
chemical inducer potassium tartrate, was tested in field trials for two years and significantly
reduced the disease severity (78.9%, 81.8%) and average stomatal area, while increasing the
phenolic content, POX, polyphenol oxidase enzyme activity, growth parameters, and yield
parameters [116]. In field trials comparing five BCAs (Streptomyces viridosporus, S. violatus,
Trichoderma harzianum, T. viride, and Saccharomyces cerevisiae) and commercial systemic
fungicides (Bellis, pyraclostrobin, and boscalid) against downy mildew, S. viridosporus and
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T. harzianum achieved the maximum reduction of disease severity (67.3%), which was better
than the commercial fungicide treatment [115].

The pre-treatment of grape leaves with symbiote Saccharomyces cerevisiae (brewer’s
yeast) increased hydrogen peroxide and the expression of the protein (β-1,3-gluconase)
in the resistant cultivar Vostorg, while expression of stilbene synthase increased in the
susceptible cultivar Muscat Blanc [117]. Both cultivars had significant reductions in downy
mildew sporulation in leaf assays [117]. Extracts of this yeast are used in several com-
mercial formulations, including Romeo® and K&A Oomisine®, as a resistance inducer
against downy and powdery mildew. Romeo was tested in Italy and other European
countries, mainly on vines against Botrytis cinerea, P. viticola, and E. necator; the results were
comparable to other biorational compounds but not as good as conventional controls [118].
The leaves of potted greenhouse vines (cv. Italia), sprayed at 1-week intervals with cere-
visane (a cell wall derivative of S. cerevisiae), were used for transcriptomic analysis [119].
Cerevisane caused an increase in the expression of several defense response genes and was
effective against downy mildew sporulation [119].

Acremonium sclerotigenum and Acremonium persicinum (formerly thought to be Acremo-
nium byssoides) are endophytic fungi that have demonstrated hyperparasitism on P. viti-
cola. A. persicinum hyphae and conidia bridle sporangiophores and collapse sporan-
gia [120]. Culture filtrates that include secondary metabolites also inhibit sporangial
germination [120,121]. A. persicinum has been found to attack oospores and effectively
cause degeneration, such that they never germinate [122], making this a potential candidate
for the post-harvest or pre-bud burst control of downy mildew.

Ubiquitous endophytes, including members of the genera Penicillium, Alternaria, and
Fusarium, have also shown potential for use as BCAs. A water-based mycelium extract of
Penicillium chrysogenum provided varying levels of control for downy mildew in greenhouse
and field trials due to non-fungicidal effects including the activation of plant defenses and
induction of many resistance-related metabolites [123,124]. Leaf discs treated with the
endophyte Alternaria alternata, caused damaging structural changes to P. viticola without
close contact, including necrotic haustoria, abnormal vacuolization, and accumulation of
an electron-dense material within the vacuoles [125]. Three diketopiperazines (DKPs),
low molecular weight metabolites, extracted from A. alternata significantly reduced P. viti-
cola sporulation in grapevine leaf disks and greenhouse plants; however, field testing is
needed [125,126]. Five mycoparasitic fungi, Fusarium delphinoides, F. brachygibbosum, two
strains of F. pseudonygamai, and an unidentified Fusarium species, were observed coiling
around sporangiophores of P. viticola and inducing lysis and inhibiting sporangia produc-
tion by more than 50% in the leaf disc assays [127,128]. Fusaric acid, a dominant metabolite
of the five Fusarium strains, inhibited P. viticola sporangia production by more than 80%
in leaf disc bioassays [129]. A cold-tolerant UV mutagenetic strain of F. proliferatum G6,
designated 1505, produced radial growth two to three times that of the parent strain at
desirable temperatures (13 ◦C) for P. viticola, despite Fusarium spp. normally preferring
higher temperatures [130]. This aggressive growth resulted in greater inhibition of P. viticola
in leaf disk assays than the parent strain. The culture filtrate of strain 1505 displayed much
higher levels of extracellular β-glucosidase and endo-1,4-β-glucanase activity than strain
G6 [130]. It is important to note, however, that members of these genera are plant pathogens
in their own right and have been found to induce asthma and allergies in humans. Thus,
consideration of their effect on unintended targets must be considered when developing
fungistatic or fungicidal treatments from their derivatives.

Arbuscular mycorrhizal fungi (AMF) root colonization has been shown to enhance
defense responses in the aerial parts of grapevine against P. viticola. AMF colonization
led to the upregulation of genes involved in the stilbenoid biosynthesis pathway 48 h
after P. viticola inoculation [131]. Higher amounts of stilbenoids (i.e., resveratrol, ε- and δ-
viniferins, and pterostilbene) were present in AMF-colonized plants 10 days after P. viticola
inoculation [131]. In separate studies, AMF-colonized grapevines had decreased expression
of P. viticola effectors, specifically PvRxLR28, indicating that AMF-colonized grapevines
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could hinder P. viticola’s ability to suppress plant defenses via effectors [132]. More re-
search is needed to determine whether AMF has utility as a BCA or in an integrated pest
management program.

5.3.4. Bacterial

Beneficial bacteria that inhabit the rhizo- and/or endosphere of grapevines may be
able to be used as BCAs. The secondary metabolites of these bacteria may inhibit P. viticola
by antibiosis, competing for nutrients, disrupting pathogen signaling, and promoting host
plant defenses [99]. Recently, investigations into the phyllosphere bacteria that colonize
grapevine leaves at varying concentrations throughout the grapevine’s lifetime have led to
promising results. In general, there was a correlation between the concentrations of phyllo-
sphere bacteria and the grapevine’s ability to thwart P. viticola infection [133]. Additional
research is needed in this area to determine if phyllosphere bacteria could be used as BCAs.

Lysobacter capsici AZ78 can resist copper, allowing it to be combined with a low dose
of a copper-based fungicide [134]. The prophylactic application of L. capsici AZ78 alone
to grapevine leaves reduced downy mildew disease to the same degree as a copper-based
fungicide [134]. A combination of L. capsici AZ78 and low-dose copper reduced downy
mildew significantly better than full-dose copper treatments in greenhouse trials [134].
L. capsici AZ78 survives in the phyllosphere of grapevine plants and can withstand envi-
ronmental stresses including starvation, freezing, mild heat shock, and UV light irradia-
tion [134]. The use of formulation additives protected L. capsici AZ78 against environmental
factors, particularly cool temperatures, and improved its longevity on the leaves greater
than 10 times compared to additive-free formulations [135]. The degradation of P. viticola
cell walls is likely due to the lytic enzymes and diketopiperazine metabolites produced by
L. capsici AZ78 [25,136–138]. In large-scale field trials, L. capsici AZ78 was as effective as a
reference fungicide (Kocide®2000) in controlling downy mildew on leaves and bunches
and displayed low toxicity to non-target organisms [139]. Yeast population dynamics in
fermenting musts and wine quality were also not affected by L. capsici AZ78 [139]. These
promising greenhouse and field trails combined with L. capsici AZ78’s ability to resist
copper make it a very attractive BCA to be developed commercially.

The Bacillus genus has several promising BCA species. Bacillus subtilis KS1 was found
to produce an antifungal lipopeptide, iturin A [25,140]. Cyclo (-L-Leu-L-Phe) (cLF), a
diketopiperazine produced by Bacillus subtilis KS1, reduced both the disease severity and
lesion density of downy mildew in grapevine growth chamber experiments by approx-
imately 90% [141]. The DKP-induced plant defense responses included the expression
of genes encoding chitinase and β-1,3-glucanase and the activation of the salicylic acid
and jasmonate signaling pathways [141]. Bacillus subtilis and B. pumilus were tested in
field trials for two successive years, and they exhibited strong preventive effects against
P. viticola [142]. Confocal microscopy showed that both strains could recolonize grapevine
leaves with some persistence [142]. Bacillus subtilis GLB191 supernatant was highly active
against P. viticola in leaf disc assays due to both a direct effect against the pathogen and the
induction of plant defenses (defense gene expression and callose production) caused by
the fengycin and surfactin present in the supernatant [143]. The biofungicides Sonata (a.m.
Bacillus pumilus QST 2808) and Serenade Aso (a.m. Bacillus subtilis QST 713) were tested
in field experiments against downy mildew and displayed equal efficacy to each other,
achieving 94% to 97% reduction in disease severity on leaves and a 100% reduction on
bunches [144]. B. pumilus GLB197’s whole genome was sequenced to better understand the
molecular mechanism underlying the biocontrol of phytopathogens such as P. viticola [145].

Bacillus megaterium BMJBN02 obtained from soil can induce resistance via its salicylic
acid content and the expression of pathogenesis-related genes [146]. In addition, field trials
conducted over four growing seasons found BMJBN02 to be as effective at controlling
P. viticola as the commercial fungicide nicotinyl morpholine at 0.1% [146].

Ochrobactrum sp. isolate SY286 reduced the disease severity in a detached leaf disc
assay by 93% and showed control comparable to the fungicide Equation pro (famoxadone
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and cymoxanil) and a metalaxyl–mancozeb combination in a 2-year field trial [147]. Scan-
ning electron microscopy observations revealed damage to P. viticola mycelia and sporangia
cell walls when subjected to a fermentation liquor of isolate SY286 [147].

5.3.5. Plant Extracts

Over fifty plant extracts have been identified that provide some control of downy
mildew either on leaf discs, under greenhouse-controlled conditions, or field conditions.
However, the high levels of control observed in these conditions are usually not replicable
in field conditions due to low durability and rainfastness [25]. Koledenkova et al. [25]
provides a comprehensive list of the plant extracts that have been researched, and Zanzotto
and Morroni [98] provide detailed descriptions of many plant extracts and their efficacies.
Here, we will discuss some of the more promising extracts, recent findings, and other
plant derivatives.

Laminarin extracted from the brown seaweed Laminaria digitata elicits numerous plant
defense mechanisms, including activating 10 defense-related genes, the production of
resveratrol and epsilon-viniferin (phytoalexins), calcium influx, and oxidative burst [148].
Field trials conducted by Romanazzi et al. [149] revealed poor control against P. viticola
when used alone but stronger results when combined with low doses of copper salts or
Saccharomyces spp. extracts. Sulphated laminarin, PS3, is a highly effective resistance
inducer that provides more effective resistance against downy mildew than laminarin
alone [150]. When applied with the surfactant Dehscofix CO125 (DE), cuticular diffusion
increased, leading to greater efficacy [151].

DL-3-aminobutyric acid (BABA), an SAR compound that has no known antifungal
activity, provides significant systemic and local protection against downy mildew both
preventatively and curatively by inducing the grapevine’s own defense system [152–154].
Grapevine leaf discs treated with BABA after infection with P. viticola showed an 85–94% re-
duction in sporulation [152]. Similar results in leaf disc assays and seedlings were obtained
by Hamiduzzaman et al. [154]. In field trials using two foliar sprays of BABA or a mixture
of different fungicides at reduced rates and BABA, downy mildew was controlled by more
than 90%, comparable to metalaxyl-Cu or dimethomorph with mancozeb treatments [155].
Research on formulating BABA for commercial use while maintaining efficacy in field trials
seems to be needed.

Chitosan, a natural polymer obtained from deacetylated chitin, reduced downy
mildew infection on grapevine leaves and induced plant defenses, including the pro-
duction of phytoalexins, resveratrol and its derivatives, epsilon-viniferin and piceid, and
stimulation of chitinase and glucanase activity [100]. Field testing of chitosan showed an
average reduction in downy mildew disease severity by 30% [156]. Combining chitosan
with Trichoderma sp., T. koningiopsis, and a reduced rate of copper significantly reduced
downy mildew severity on greenhouse plants, providing a possible means of reducing
copper inputs [157]. Further testing will be needed to demonstrate true efficacy under
field conditions.

Several extracts have shown near total suppression of downy mildew alone or in
conjunction with additional phytocompounds. A 96% ethanolic extract from the leaves of
Inga sapindoides offers greenhouse grapevine plantlets defense against downy mildew that
is comparable to copper treatments [158]. At 0.5 mg/mL, this extract provided 96% or 97%
reduction in downy mildew compared to a 100% reduction with the copper treatment [158].
A phytocomplex, derived from Salvia officinalis and containing rosmarinic acid (10.12%
w/w), applied to grapevine leaf discs at 5 g/L that were then inoculated with P. viticola,
inhibited sporulation by 95% compared to the control and was significantly better than the
77% inhibition by rosmarinic acid alone [159]. Five promising compounds were isolated
from three Larix species: larixol, larixyl acetate, lariciresinol, lariciresinol acetate, and one
from Pinus sylvestris, 7a,15-dihydroxydehydroabietic acid. These compounds showed 90%
to 100% efficacy under semi-controlled greenhouse conditions against downy mildew [160].
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Essential oils are attractive alternatives to chemical controls because they contain
terpenes and terpeniods that have fungicidal activity and have been shown to disrupt cell
membranes, cause cell death, and reduce the sporulation and germination of fungi [161,162].
Field testing is often lacking due to low durability and rainfastness [162]. The essential oil
of Origanum vulgare (oregano) proved to be 95% effective at reducing downy mildew sporu-
lation when applied by plant fumigation continuously for 24 h post-infection compared to
untreated vines [162]. The transcriptomic data derived from leaf RNA extraction revealed
that the oregano essential oil vapor treatment stimulated the plant’s immune defenses
including salicylic, jasmonic acid, and phytoalexin synthesis among others [162]. Another
study on oregano essential oil vapor (OEOV) treatment both pre- and post-infection ob-
served significantly reduced downy mildew sporulation [163]. It was argued that the OEOV
treatment primed the innate immune system of the vine [163]. Secondary metabolism and
pathogen recognition and response were identified as significantly affected by OEOV;
however, these mechanisms appeared to be separate from stilbene expression and included
pathways not yet elucidated [163].

Additional work with essential oils was conducted by Fialho et al. [164] to evaluate
the effect of seven essential oils (cinnamon, eucalyptus globulus, marjoram, melaleuca, pep-
permint, oregano, and white thyme) on spore germination in vitro and in field conditions.
All essential oils displayed fungistatic activity and reduced sporulation in varying degrees
ranging from 15 to 65% in field conditions [164]. However, essential oils showed chemical
instability at longer incubation times. The cinnamon and eucalyptus globulus essential oils
were the most antifungal towards the downy mildew of those tested [164].

The volatile organic compound (VOC) linalool, found in downy-mildew-resistant
leaves, shows promise as a signaling molecule for plant resistance induction. Downy-
mildew-susceptible leaf discs treated with linalool exhibited reduced downy mildew sever-
ity and encouraged the deposition of callose at the site of infection [165]. Linalool-treated
leaf discs also displayed upregulation of genes involved in the salicylic acid and jasmonic
acid defense mechanisms [165]. Importantly, these plant extracts, essential oils, and VOCs
are derived from renewable resources potentially available in large quantities, making
them attractive and promising alternatives to conventional fungicides.

6. Breeding Resistant Cultivars

Breeding for resistance or tolerance is a method of selective breeding used to reduce
the effects of biotic and abiotic stresses in crops. Ultimately, it seeks to develop offspring
that inherit the increased tolerance of one parent and the desirable crop qualities of another.
Breeding for resistance is often a costly and time-consuming process, however, as it gen-
erally requires several generations of crossing and backcrossing to produce the desired
outcome. The use of QTL mapping allows breeders to link a phenotype with a genotype to
identify the potential genes associated with a desired trait, as well as identify offspring that
have inherited the trait, making QTL mapping a more targeted approach to breeding for
resistance than traditional methods.

In grapes, QTL mapping has identified 33 putative “Resistance to Plasmopara viticola”
(Rpv) loci in wild and cultivated species (Table 2). These loci have been observed to
confer differing levels of resistance, ranging from weak to nearly complete resistance, and
have been mapped to 15 of the 19 chromosomes, excluding chromosomes 1, 13, 17, and
19 (Table 2). Ten of the 33 Rpv-related QTLs have been identified on two chromosomes,
chromosome 14 (Rpv8, Rpv12, Rpv19, Rpv29, Rpv32) and chromosome 18 (Rpv2, Rpv3,
Rpv15, Rpv24, Rpv27). Three Rpvs each are found on chromosomes 7, 9, 12, and 15 and
two are found on chromosome 5. This clearly illustrates that although resistance QTLs are
most frequently found on chromosomes 14 and 18, loci correlated with resistance are found
throughout the genome.
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Table 2. Phenotypic variation explained by resistance to Plasmopara viticola (Rpv) loci identified from multiple Vitaceae species under varying infection settings.

Locus LG Species or Cultivar Origin Inoculation/Infection Setting Explained Phenotypic Variation Trait Reference

Rpv1 12 Muscadinia rotundifolia North America - 73% - [9]
Rpv2 18 Muscadinia rotundifolia North America - Total * - [166]

Rpv3 18 Regent - Field; greenhouse 37.3% Leaf necrosis; berry cluster resistance;
lesion size [167]

Rpv3 18 Bianca - Field; greenhouse 33.9–80.5% Leaf necrosis; mycelial growth;
sporulation [168]

Rpv3 18 V. rupestris, V. labrusca x V. riparia North America Laboratory na na [169]

Rpv4 4 Regent - Field; greenhouse 22.6% Leaf necrosis; berry/cluster resistance;
lesion size [167]

Rpv5 9 V. riparia North America Greenhouse 28.9–34.4% Mycelial growth; sporulation [170]
Rpv6 12 V. riparia North America Greenhouse 28.9–34.4% Mycelial growth; sporulation [170]
Rpv7 7 Bianca - Field; greenhouse limited (not quantified) Leaf necrosis; mycelial growth [168]
Rpv8 14 V. amurensis Asia Greenhouse 36.0–66.5% Leaf necrosis; sporulation [171]
Rpv9 7 V. riparia North America Field; greenhouse 5.8–11.3% Leaf necrosis; mycelial growth [172]
Rpv10 9 V. amurensis Asia Laboratory 50.0% Sporangiophore formation [173]

Rpv11 5 Regent - Field; greenhouse 46.5–69.5% Leaf necrosis; berry/cluster resistance;
lesion size [174]

Rpv11 5 Solaris - Laboratory 3.4% Sporangiophore formation [173]
Rpv12 14 V. amurensis Asia Field; greenhouse 74.5–78.7% Leaf necrosis; sporulation [10]
Rpv13 12 V. riparia North America Field; greenhouse 21.2% Leaf necrosis [172]
Rpv14 5 V. cinerea North America Field; laboratory 9.6–17.4% Leaf necrosis; sporulation [175]
Rpv15 18 V. piasezkii Asia - - - [176]
Rpv16 - - - - - - [176]
Rpv17 8 V. vinifera x V. spp. (Horizon) Asia x North America Laboratory 12.94% Leaf necrosis; sporulation [177]
Rpv18 11 V. vinifera x V. spp. (Horizon) Asia x North America Laboratory 8.51–17.33% Leaf necrosis; sporulation [177]
Rpv19 14 V. rupestris North America Laboratory 11.83–15.51% Leaf necrosis; sporulation [177]
Rpv20 6 V. vinifera x V. spp. Asia x North America Laboratory 8.37% Leaf necrosis; sporulation [177]
Rpv21 7 V. vinifera x V. spp. Asia x North America Laboratory 10.90% Leaf necrosis; sporulation [177]
Rpv22 2 V. amurensis Asia Laboratory 26.4% Leaf necrosis; sporulation [178]
Rpv23 15 V. amurensis Asia Laboratory 26.2% Leaf necrosis; sporulation [178]
Rpv24 18 V. amurensis Asia Laboratory 30.0% Leaf necrosis; sporulation [178]
Rpv25 15 V. amurensis Asia Laboratory Not quantified Leaf necrosis; sporulation [11]
Rpv26 15 V. amurensis Asia Laboratory 59.1–63.6% Leaf necrosis; sporulation [11]
Rpv27 18 V. aestivalis North America Field; laboratory 33.8% Leaf necrosis; sporulation [179]
Rpv28 10 V. rupestris North America Greenhouse; laboratory 24.3–66.5% Sporangiophore formation [180]
Rpv29 14 V. vinifera Asia Laboratory Significant (not quantified) Sporulation [181]
Rpv30 3 V. vinifera Asia Laboratory Significant (not quantified) Sporulation [181]
Rpv31 16 V. vinifera Asia Laboratory Significant (not quantified) Sporulation [181]
Rpv32 14 V. coignetiae Asia Laboratory 36.4% Not specified [182]

Rpv33 9 V. mustangensis x V. acerifolia
(PI 588149)

North America x North
America Field 47.7% Leaf necrosis; sporulation [183]

Information undescribed or unavailable (-), description derived from Blasi et al., 2011 (*)
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The identified QTLs vary in terms of mapping stability, tissues exhibiting the
strongest resistance, and the effect on the pathogen lifecycle. This variance is due in part
to differences between the studies themselves regarding the cultivars and the tissues
that were assessed, experimental conditions, and phenotyping of symptoms. Studies
utilized field, greenhouse, and laboratory conditions (Table 2) to assess disease devel-
opment on intact leaves [9,10,167,168,172,174,175,179,180,183], detached leaves [11], leaf
discs [10,11,168,170,171,173–175,177–181], and berry clusters [167,174]. It is important to
note that studies that involve detached grape tissue cannot evaluate the effect of poly-
cyclic infections to identify the primary QTLs of sustained resistance, and more studies
that investigate the genetics of cultivars exposed to repeated infection are needed. With
the phenotypic variation explained by each Rpv ranging from 3.4 to 100% (Table 2), it is
evident that resistance is complex and the degree to which a cultivar can suppress P. viticola
infection likely depends upon the number and identity of the Rpvs present within the
vine genome.

Several studies have evaluated the ability of individual loci to restrict pathogen growth
and sporulation compared to stacked (multiple) loci within progeny, as stacking increases
the number of times the pathogen must mutate to overcome resistance. These studies have
found that progeny containing two or more loci exhibited an additive effect and increased
levels of resistance [10,173,184,185], though there was variability within cultivars carrying
the same alleles and stacking Rpvs may not necessarily result in sustained resistance [186].
In fact, there is already evidence of the breakdown of resistance conferred by several Rpvs
(Rpv3, Rpv10, and Rpv 12) utilized throughout European vineyards [185,187]. Thus, careful
consideration should be given when targeting loci for single or stacked breeding to reduce
the occurrence of resistance breakdown.

7. Concluding Remarks

Plasmopara viticola is one of the most destructive pathogens affecting grape production
today, and its management is of great importance. As the pathogen continues to develop
mutations allowing it to evade modern chemical and breeding resistance mechanisms,
the need to slow the rate of mutation occurrence and identify alternative approaches to
management will increase. Continued research to elucidate the gene mutations that cause
resistance is important for developing molecular tests to detect resistant isolates, as well as
to understand how resistance develops. Regular testing for fungicide-resistant isolates is
necessary to ensure resistance problems do not develop unnoticed but rather are addressed
quickly by adjusting management strategies so that fungicide efficacy is maintained as long
as possible. To that end, additional research is needed to understand the MOA, in cases
where it is either unknown or not fully understood, to inform fungicide best-use practices
and resistance management strategies.

Areas where additional research is needed are numerous. Much progress has been
made but more is needed in understanding and characterizing the molecular mechanisms
of the priming and elicitation of grapevine immunity. Research into breeding resistant
cultivars utilizing QTLs should continue to support the introduction of new resistant culti-
vars to market in a relatively timely manner. As strongly resistant cultivars are developed,
programs to encourage growers to plant these new cultivars will need to be employed.
Additionally, exploration of the post-harvest or pre-bud burst application of microsporan-
gia germination disruptors, such as A. persicinum or its metabolites, may lead to reduced
inoculum for the next growing season. Continued research into effectors and how to
suppress their function, by AMF or other means, may also lead to new treatment options.
The development of methods to make plant extracts and essential oils more durable and
rainfast is necessary to further their development as alternatives to chemical fungicides.
While many challenges exist to exploiting hypovirulence to reduce the harmful effects of
P. viticola, the discovery of hundreds of RNA viruses present in infected grape leaves opens
the possibility of some of them being effective as mycoviruses.
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Continually updating integrated disease management strategies based on the most
current research knowledge and management options is essential. Strategies that can reduce
the application of copper or other chemical fungicides are urgently needed; employing
copper-reducing methods such as the microencapsulation of copper or using biomimetic
synthetic hydroxyapatite could greatly reduce the amount of copper put into vineyards.
Increased knowledge and continued trials of natural substances such as silica nanoparticles,
BABA, DKPs, laminarin, and others, have the potential to reduce the rates of chemical
fungicide application when applied in combination or alternation with other fungicides.

Many promising BCAs and natural substances have been identified and tested under
various conditions. However, there are numerous hurdles to bringing them to market,
including cost, having durable formulations, efficacy under various field conditions, and
the stability of the product during storage, among others. While BCAs have not proven
consistently effective under high-disease-pressure conditions, determining how to include
BCAs and natural substances into integrated disease management plans either in mixtures
or in alternation with other fungicides would help reduce the harmful effects of chemical
fungicides and copper applications. Continued research into combining reduced rates of
copper or other fungicides with L. capsica AZ78, laminarin, other BCAs, or their metabolites
is necessary, and identifying combinations that support increased efficacy under field
conditions could slow the development of fungicide resistance. However, care should
be taken to determine if BCAs could pose any harmful effects to non-target species or
ecosystems. Determining where BCAs fit into an integrated disease management program
is greatly needed.

No management approach will eliminate the threat of downy mildew to grape cultiva-
tion. However, a better understanding of the pathogen, its genetics, and integrated disease
management programs that optimize all available treatment options will help reduce its
negative impacts to growers.
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