
Citation: Zhao, Y.; Xu, D.; Li, S.; Tang,

K.; Yu, H.; Yan, R.; Li, Z.; Wang, X.;

Xin, X. Comparative Analysis of

Feature Importance Algorithms for

Grassland Aboveground Biomass and

Nutrient Prediction Using

Hyperspectral Data. Agriculture 2024,

14, 389. https://doi.org/10.3390/

agriculture14030389

Academic Editor: Fabio Sciubba

Received: 8 January 2024

Revised: 7 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Comparative Analysis of Feature Importance Algorithms
for Grassland Aboveground Biomass and Nutrient Prediction
Using Hyperspectral Data
Yue Zhao 1, Dawei Xu 1, Shuzhen Li 1, Kai Tang 2, Hongliang Yu 1, Ruirui Yan 1 , Zhenwang Li 3,* ,
Xu Wang 1,* and Xiaoping Xin 1

1 State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China,
Key Laboratory of Grassland Resource Monitoring Evaluation and Innovative Utilization,
Ministry of Agriculture and Rural Affairs, Hulunber Grassland Ecosystem National Observation
and Research Station, Institute of Agricultural Resources and Regional Planning,
Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science and Engineering,
Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation
and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China

* Correspondence: zwli@yzu.edu.cn (Z.L.); wangxu01@caas.cn (X.W.)

Abstract: Estimating forage yield and nutrient composition using hyperspectral remote sensing is a
major challenge. However, there is still a lack of comprehensive research on the optimal wavelength
for the analysis of various nutrients in pasture. In this research, conducted in Hailar District, Hulunber
City, Inner Mongolia Autonomous Region, China, 126 sets of hyperspectral data were collected,
covering a spectral range of 350 to 1800 nanometers. The primary objective was to identify key
spectral bands for estimating forage dry matter yield (DMY), nitrogen content (NC), neutral detergent
fiber (NDF), and acid detergent fiber (ADF) using principal component analysis (PCA), random
forests (RF), and SHapley Additive exPlanations (SHAP) analysis methods, and then the RF and
Extra-Trees algorithm (ERT) model was used to predict aboveground biomass (AGB) and nutrient
parameters using the optimized spectral bands and vegetation indices. Our approach effectively
minimizes redundancy in hyperspectral data by selectively employing crucial spectral bands, thus
improving the accuracy of forage nutrient estimation. PCA identified the most variable bands at
400 nm, 520–550 nm, 670–720 nm, and 930–950 nm, reflecting their general spectral significance rather
than a link to specific forage nutrients. Further analysis using RF feature importance pinpointed
influential bands, predominantly within 930–940 nm and 700–730 nm. SHAP analysis confirmed
critical bands for DMY (965 nm, 712 nm, and 1652 nm), NC (1390 nm and 713 nm), ADF (1390 nm
and 715–725 nm), and NDF (400 nm, 983 nm, 1350 nm, and 1800 nm). The fitting accuracy for ADF
estimated using RF was lower (R2 = 0.58), while the fitting accuracy for other indicators was higher
(R2 ≥ 0.59). The performance and prediction accuracy of ERT (R2 = 0.63) were noticeably superior
to those of RF. In conclusion, our method effectively identifies influential bands, optimizing forage
yield and quality estimation.

Keywords: remote sensing data analysis; forage quality assessment; spectral feature selection;
agricultural resource management; environmental sensing technologies

1. Introduction

Grasslands, an integral ecosystem type, serve pivotal functions in climate regula-
tion, biodiversity preservation, and water resource maintenance [1–3]. Globally, grassland
ecosystems encompass approximately 52.5 million square kilometers, which constitutes
around 26% of the Earth’s total surface area [4]. In China specifically, grasslands extend
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over an estimated 4 million square kilometers, accounting for nearly 41.7% of the nation’s
landmass [5]. In recent years, multiple factors have adversely impacted grassland ecosys-
tems, particularly in China, where overgrazing, land-use shifts, and climate change have
contributed to the deterioration of grassland resources and the attenuation of ecological
functions [6–8]. In this context, identifying an efficacious approach to obtain precise in-
formation on grassland yield and quality is of paramount importance for monitoring the
entire grassland ecosystem.

Dry matter yield (DMY), nitrogen content (NC), neutral detergent fiber (NDF), and
acid detergent fiber (ADF) are important indicators to represent the forage’s nutritional
value, digestibility, and energy density. Numerous scholars employ various chemical anal-
ysis techniques to ascertain the constituents associated with forage yield and quality [9].
DMY is of vital importance for evaluating forage production potential and determining
livestock farming scales [10]. NC constitutes one of the pivotal indicators in the appraisal of
forage nutritional quality, as it delineates the available nitrogen element content within the
forage [11]. ADF and NDF are integral parameters for examining forage fiber composition
and digestibility [12]. ADF predominantly measures indigestible constituents in forage,
such as cellulose, lignin, and silicates, whereas NDF quantifies total fiber content, encom-
passing cellulose, hemicellulose, and lignin. Ordinarily, ADF and NDF contents exhibit
an inverse correlation with forage digestibility and energy density. Consequently, lower
ADF and NDF values are indicative of superior forage nutritional value and digestibility,
ultimately contributing to enhanced livestock production efficiency.

Multispectral remote sensing technology demonstrates potential in predicting forage
yield and quality indicators. However, due to its specific and limited band configurations,
its accuracy is often suboptimal [13]. In contrast, hyperspectral data, with its continuous
spectral bands, offer superior capabilities in representing material components, show-
ing significant advantages in estimating forage yield and quality-associated chemical
constituents [14]. Yet, the strong intercorrelation among hyperspectral bands introduces
redundant information, leading to challenges such as increased computational complexity
and multicollinearity. Consequently, there is an urgent need to analyze the most sig-
nificant bands for estimating different indicators, aiming to alleviate the redundancy in
hyperspectral data and achieve accurate estimations using select bands.

Many studies have estimated the biomass and quality parameters of grasslands using
hyperspectral data. For instance, Oliveira and Wijesingha, 2020, compared the performance
of various machine learning models based on hyperspectral data for estimating grassland
biomass [14,15]. Gitelson, 2003, employed a method that actively selected new training
samples based on spectral diversity and prediction uncertainty to estimate DMY, nitrogen
content, and nitrogen absorption [16]. Li et al., 2017, evaluated the random forests (RF)
method for predicting grassland LAI using ground measurements and remote sensing data.
Parameter optimization and variable reduction were conducted before model prediction.
Two variable reduction methods were examined: the variable importance value method
and the principal component analysis (PCA) method. Finally, the sensitivity of RF to highly
correlated variables was tested [17]. However, previous studies have lacked research on
estimating ADF and NDF. Additionally, few machine learning models used in estimation
have analyzed the importance of features, and traditional importance analysis results
cannot explain whether the relationship between features and estimation results is positive
or negative. A substantial number of scholars employ principal component analysis (PCA)
as a means to determine the significance of hyperspectral bands [18]. By reducing the
dimensionality of high-dimensional spectral data and extracting principal components,
PCA emphasizes crucial bands. Although this method aids in streamlining models, it is
constrained by its dependence on linear assumptions, resulting in a limited capacity to
analyze chemical constituents with weak linear relationships to reflectance. In the study by
Nishikawa et al., 2023, it was found that during the process of estimating DMY and NC
using visible and near-infrared (V-NIR) spectroscopy, PCA was not the optimal method
for feature extraction due to its lack of interpretability [19]. Furthermore, it does not ex-
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plicitly reflect the impact of individual features on target variables, leading to suboptimal
interpretability. RF feature importance analysis proficiently identifies the significance of
hyperspectral bands [20]. This machine learning algorithm is capable of managing complex
non-linear relationships, thereby uncovering key bands. Numerous algorithms designed
for the interpretation of machine learning models, such as the least absolute shrinkage
and selection operator, assist in overcoming the black box effect during the estimation
process [21]. However, these algorithms are hindered by a lack of local interpretability,
rendering it challenging to provide comprehensive feature contribution explanations for
individual samples. More critically, traditional methods encounter limitations in discerning
the positive and negative contributions of features to prediction outcomes, complicating the
optimization of models based on the results of interpretation algorithms. SHapley Additive
exPlanations (SHAP) analysis is a game theory-based explanation framework that seeks
to quantify the contributions of features in machine learning models [22]. By generating
detailed explanations for individual samples, SHAP analysis enables a more profound
exploration of the roles specific bands play in estimating chemical constituents. Zhong et al.,
2021, explored the modeling potential of deep convolutional neural networks (DCNNs) for
soil properties based on a large soil spectral library [23]. The SHAP method was used to
interpret the outputs of the DCNN model (LucasResNet-16), demonstrating the potential
of deep learning in utilizing hyperspectral soil data for modeling [23]. In this study, it
is particularly significant that the approach can identify the positive and negative contri-
butions of features to the prediction outcomes, thereby enabling a more comprehensive
understanding of the relationship between spectral bands and chemical compositions.

The primary objective of this research is to develop a high-accuracy forage chemical
composition prediction method based on a reduced number of spectral bands, thereby
promoting the development of cost-effective multispectral sensing devices for the prediction
of forage yield and quality, specifically, to explore and assess machine learning approaches
employing hyperspectral remote sensing data for the estimation of forage DMY, NC,
NDF, and ADF content, and to provide an interpretation of feature importance within the
estimators and to identify the most indicative bands corresponding to the various chemical
constituents of forage.

2. Materials and Methods
2.1. Study Site

The study site is situated in Hailar City, Hulunber, Inner Mongolia Autonomous
Region (49◦23′13′′ N, 120◦02′47′′ E), at an average altitude of 631 m, and is characterized
by a mid-temperate semi-arid continental climate. In 2022, the region experienced an
average annual temperature of approximately 3 ◦C. The annual average precipitation
was approximately 350~370 mm, predominantly occurring between July and September.
The plant community within the experimental area primarily consists of Leymus chinensis,
accompanied by prevalent species such as Vicia amoena, Thalictrum squarrosum, and Pul-
satilla turczaninovii. The soil type is classified as dark chestnut calcareous soil. Starting from
2013, long-term annual mowing treatments have been carried out regularly, and the area
has been encircled and safeguarded. A gradient treatment of nitrogen fertilizer concen-
trations was employed in the area. Each plot encompasses an area of 60 m2, with a 2 m
buffer strip established between subplots. In total, seven different treatments were applied
to each group. Fertilization treatments were implemented using two approaches: chemical
and organic fertilizers. Since 2014, our study has conducted fertilization treatments on
experimental fields at the beginning of June each year, employing a broadcasting method
for granular fertilizers. Taking into consideration the average application rate of organic
fertilizers in local farmlands, findings from relevant literature, and baseline soil survey
data, our experiment established 4 distinct fertilization levels based on nitrogen content.
Urea was used as the chemical fertilizer, with application rates set at 0 kg/ha2, 75 kg/ha2,
150 kg/ha2, and 225 kg/ha2. The organic fertilizer, composed of granular N + P2O5 + K2O
(dry basis) ≥ 7% and organic matter ≥ 45%, had effective nutrient application rates of
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0 kg/ha2, 63 kg/ha2, 127 kg/ha2, and 190 kg/ha2. The NC remained consistent between
the two fertilization techniques at each level (Figure 1).
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Figure 1. The location of the Hulunber research area in the Inner Mongolia Autonomous Region.
The orthophoto for the experimental area with a gradient of nitrogen fertilizer applications is dis-
played on the right. “N0” represents the untreated grass, while “N3” represents the grass treated with
the highest concentration of nitrogen fertilizer. “Chemical” and “organic” indicate that the nitrogen
fertilizer types are chemical fertilizer and organic fertilizer, respectively.

2.2. Ground Measurements

Field investigations were conducted during the peak growing season in July 2022.
Six evenly distributed 1 m × 1 m quadrats were established within each plot, leading
to a total of 126 quadrats. All plants within each quadrat were harvested, and forage
samples were subjected to an initial drying process at 105 ◦C for 30 min. Subsequently, the
temperature was reduced to 60 ◦C and maintained until the samples were completely dry,
yielding the forage’s DMY. The samples were then ground, and their nutritional chemical
components were analyzed. Plant NC was determined using the Kjeldahl method after
sulfuric acid and hydrogen peroxide digestion, while the van Soest method was employed
to measure plant NDF and ADF content [24,25].

2.3. Hyperspectral Data Sets

In this study, hyperspectral remote sensing technology was used for predicting the
nutritional chemical components of forage. To gather spectral data, we used the RS8800
hyperspectral instrument (Spectral Evolution, Haverhill, MA, USA). The RS8800 has a
broad wavelength range (350–2500 nm), with a spectral resolution of 3 nm between
350 and 1000 nm and 10 nm between 1001 and 2500 nm. Spectral sampling intervals
are 1.5 nm in the 350–1000 nm range and 2 nm in the 1001–2500 nm range. The instrument
features a full field of view angle of 28◦ and a spectral response time of 10 milliseconds,
making it suitable for studying various vegetation types. During the in situ measurements,
the RS8800 hyperspectral instrument was positioned one meter above the ground to ensure
the stability and accuracy of the spectral data. To circumvent issues arising from low solar
angles, measurements were conducted between 10 a.m. and 2 p.m. The operator faced
the sun to avoid any obstructions. Throughout the measurement process, we adhered
to the recommendations and guidelines specified in the instrument’s user manual, cali-
brated the device using a whiteboard, and maintained stable environmental conditions.
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Moreover, we collected spectral data from six sample points within each plot to increase
data representativeness.

We employed the isolation forest algorithm on the hyperspectral data to remove
outliers, thereby enhancing the accuracy of forage nutrient component predictions. This ap-
proach mitigates the impact of noise on the RF regression model, consequently improving
the prediction accuracy for DMY, NC, ADF, and NDF.

2.4. Experiments Process

This study employs a series of analytical techniques to evaluate and estimate the
nutritional value of forage samples. Initially, forage samples were collected, and compre-
hensive spectral information was obtained through hyperspectral data. The isolation forest
algorithm was used to detect outliers in the hyperspectral data, ensuring the quality and
accuracy of the data. Subsequently, reflectance data were utilized to predict the samples’
DMY, NC, ADF, and NDF. To process and analyze the high-dimensional hyperspectral
data, three different methods were adopted for dimensionality reduction and for extracting
the most informative features, with a comparative analysis conducted. On this basis, the
study not only used the RF algorithm but also employed the ERT algorithm for predictive
modeling, thereby ensuring the accuracy of the results. By comparing these two models,
the study aims to identify the most suitable estimation method for hyperspectral data in
the context of forage nutritional value assessment (Figure 2).
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Figure 2. Flowchart for comparing algorithms of feature importance in estimating nutritional value
of forage.

2.5. Band Importance Analysis Algorithm

Band importance analysis was conducted using three methods: PCA, RF’s feature
importance analysis, and SHAP. The PCA analysis allowed us to identify the most important
features in our data set, while the RF modeling provided us with a way to measure the
relative importance of each feature. We used the SHAP analysis to identify the most
significant contributions of each feature to the prediction results, allowing us to gain deeper
insights into the complex relationships between the spectral features and the grassland
nutrient properties.

2.5.1. Principal Component Analysis

In our application of principal component analysis (PCA), we focused on x-loadings to
determine the wavelengths showing the highest variance in the dataset. These x-loadings,
indicative of each wavelength’s contribution to the principal components, highlighted
bands representing the most significant general spectral variability. This method allowed
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us to identify those bands that are most pronounced across all spectra, signifying the
greatest variance, rather than correlating them with specific forage nutrient characteristics.

2.5.2. RF Feature Importance Analysis

In our study, we utilized the random forest (RF) algorithm’s inherent capability to
calculate the importance of each wavelength (feature). This is based on how much each
feature contributes to the decision-making process in the model. We then normalized these
importance scores to a scale of 0 to 1, allowing for a straightforward comparison of each
wavelength’s relevance in predicting forage chemical parameters.

2.5.3. SHAP Analysis

SHAP (SHapley Additive exPlanations) analysis, a cutting-edge interpretability tech-
nique, was employed to assess each feature’s (wavelength’s) individual contribution to
our model’s predictions. Unlike the broad-spectrum approach of PCA and the informa-
tion gain assessment in RF, SHAP provides a detailed, feature-specific analysis. It allows
us to distinguish both the positive and negative impacts of each wavelength, offering
a comprehensive understanding of their roles in predicting forage chemical parameters.
This nuanced analysis, grounded in cooperative game theory, enhances our model’s trans-
parency and elucidates the “black-box” nature of complex algorithms, setting it apart from
conventional methods. The method is based on the SHAP values from game theory, which
are used to quantify the contribution of each feature to the model’s prediction outcome.
For a given feature i, its SHAP value can be calculated using the following formula:

ϕi = ∑
S⊆N{i}

|S|!(|N| − |S| − 1)!
|N|! [v(S ∪ {i})− v(S)] (1)

Herein, N is the feature set, S is an arbitrary subset of features that do not contain
feature i, and v(S) is the contribution value of feature set S to the prediction result, which
is usually predicted by the model. |S| is the number of elements in set S. ϕi is the SHAP
value of feature i.

2.6. Vegetation Indices

In order to reduce data redundancy, we calculated the corresponding vegetation index
from the selected optimal band to predict the parameters. Five vegetation indices (VIs)
were selected as features for the RF and ET model (Table 1). These include the Normalized
Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Normalized
Difference Red Edge Index (NDRE), the Normalized Difference Water Index (NDWI),
and the Blue-light Normalized Difference Vegetation Index (BNDVI). These vegetation
indices encompass spectral information from multiple bands, such as blue, red, red-edge,
near-infrared, and shortwave-infrared.

Table 1. Vegetation indices for yield and quality estimation used in this study.

Index Acronym Formula References

NDVI NIR − RED
NIR + RED [26]

EVI G × NIR − RED
NIR + C1 × RED − C2 × BLUE + L

[27]

NDRE NIR − REDEDGE
NIR + REDEDGE

[28]

NDWI NIR − SWIR
NIR + SWIR

[29]

BNDVI NIR − BLUE
NIR + BLUE

[30]
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2.7. Estimation Process and Evaluation Metric

The estimation process used in this study is based on the methods proposed by
Breiman, 2001, and Geurts et al., 2006, and random forest (RF) and extreme randomized
trees (ERT) algorithms were used as estimators and the results were compared [31,32].

The random forest (RF) algorithm is widely adopted for regression tasks. This tech-
nique enhances the model’s generalization abilities by incorporating multiple decision
tree models and implementing bootstrap sampling along with random feature selection
strategies [33]. The primary advantages of the RF algorithm lie in its capacity to handle
various data types, its resilience against overfitting, and its high predictive accuracy and
robustness [34]. In this study, the Python 3.10 environment was employed, utilizing the
scikit-learn package to implement the RF regression algorithm.

The Extra-Trees algorithm (ERT) was utilized for estimating the yield and quality in-
dices of forage. This ensemble method constructs multiple decision trees with random splits
on features, enhancing predictive accuracy for multi-dimensional agricultural data [35].
Extra-Trees introduces greater randomness in the selection of split nodes, potentially reduc-
ing computational time and improving model performance in certain scenarios.

Initially, vegetation indices containing important bands were used as input features,
and grassland DMY, NC, ADF, and NDF were designated as target variables. Subsequently,
we applied K-fold cross-validation (K = 5) to dividing the dataset into training and testing
sets. In this method, the entire dataset is randomly divided into five equal parts. In each
iteration, one of the parts is used as the test set, while the remaining four parts are combined
into the training set. This process is repeated five times, with each part having one opportu-
nity to serve as the test set. Cross-validation enables more reliable estimation of the model’s
generalization capability, reduces the risk of overfitting, and obviates the need for an
additional validation set, thereby streamlining the model training and evaluation process.

The performance of an RF and ERT regression model for predicting four plant nutrient
indicators was evaluated using three evaluation metrics: R2, mean absolute error (MAE),
and root-mean-square error (RMSE).

y =
∑n

i=1 yi

n
(2)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

MAE =
∑n

i=1|yi − ŷi|
n

(4)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

Herein, yi represents the observed value, ŷi denotes the predicted value, y signifies the
mean of the observed values, and n refers to the number of samples. Smaller values of MAE
and RMSE indicate smaller errors. R2 expresses the degree of fit in the regression analysis.

3. Results
3.1. The Grass Yield and Quality

In the analysis of grassland yield and quality parameters, the DMY exhibited a range
from 302.83 g/m2 to 773.14 g/m2, with an average value of 485.54 g/m2 and a standard
deviation of 107.12 g/m2. The NC varied between 1.45 g/100 g and 2.60 g/100 g, averaging
at 2.05 g/100 g with a standard deviation of 0.26 g/100 g. The ADF percentages spanned
from 54.51% to 68.97%, with a mean value of 61.88% and a standard deviation of 3.27%.
Lastly, the NDF percentages ranged from 30.71% to 38.16%, with an average of 35.11% and
a standard deviation of 1.29%. These statistics reflect the inherent variability and central
tendencies observed in the field measurements of grassland yield and quality parameters.
The results of in situ measurements are given in Table 2.
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Table 2. Forage sample measurements: Min: minimum; Max: maximum; Mean: average; Std: stan-
dard deviation of the attribute; DMY: dry matter yield (g/m2); NC: nitrogen content (g/100 g);
ADF: acid detergent fiber (%); NDF: neutral detergent fiber (%). N0 represents the untreated grass,
while N3 represents the grass treated with the highest concentration of nitrogen fertilizer. All repre-
sents the data of all samples.

DMY (g/m2) NC (g/100 g)

Min Max Mean Std Min Max Mean Std

All 302.83 773.14 493.87 107.12 1.45 2.60 2.04 0.26
N0 302.83 542.52 404.89 60.33 1.45 2.34 1.88 0.18
N1 304.26 708.28 484.54 125.54 1.51 2.49 2.06 0.24
N2 345.57 755.58 521.77 83.27 1.53 2.60 2.00 0.32
N3 415.58 773.14 571.12 96.26 1.92 2.53 2.24 0.17

ADF (%) NDF (%)

Min Max Mean Std Min Max Mean Std

All 54.51 68.97 61.99 3.27 30.71 38.16 34.90 1.29
N0 54.51 65.03 59.59 2.61 30.71 36.95 34.45 1.29
N1 55.22 67.97 61.43 2.95 32.52 37.64 34.90 1.43
N2 57.06 68.63 63.11 2.93 31.56 38.16 35.02 1.26
N3 58.26 68.97 64.29 2.82 31.94 36.63 35.23 1.05

The interrelationship among four key grassland parameters was elucidated through
a Pearson correlation matrix. It is evident that DMY and NC exhibit a strong positive
correlation (r = 0.61, n = 126, p < 0.05), suggesting that an increase in DMY might be
associated with heightened NC. This can be attributed to the fact that higher NC often leads
to enhanced plant growth, contributing to increased biomass. On the contrary, the ADF
and NC show a moderate negative correlation (r = −0.38, n = 126, p < 0.05). This inverse
relationship implies that as the ADF content in the grassland increases, there tends to be
a decrease in its NC. ADF, being an indigestible part of plant material, might deter the
accumulation of nitrogen-rich compounds. Additionally, the slight negative correlation
between DMY and NDF (r = −0.25, n = 126, p < 0.05) indicates that an increase in DMY
might slightly reduce the NDF content, although this relationship is not as strong as the
aforementioned pairs. The Pearson correlation coefficients of yield and quality parameters
of forage are displayed in Figure 3.
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3.2. Hyperspectral Band Analysis

All hyperspectral measurement data after removing outliers are displayed in Figure 4. “N0”
to “N3” represent different treatments of grass with varying concentrations of nitrogen fertilizer.
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the wavelength is plotted on the x-axis and reflectance on the y-axis.

Correlation analysis was conducted between the reflectance values across all wave-
lengths and the four indices: DMY, NC, NDF, and ADF, as illustrated in Figure 5. The results
indicate that for DMY, NC, and NDF, there is a pronounced positive correlation in the
500–800 nm range and a negative correlation around 1300 nm. Among them, the correlation
between NC and reflectance is superior to the others, followed by DMY, and then NDF.
In contrast, ADF did not exhibit a significant correlation with reflectance as observed with
the other three indices.
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Figure 5. The reflectance of all wavelengths in hyperspectral data shows correlation coefficients with
DMY, NC, ADF, and NDF, where dashed lines indicate non-significance (p ≥ 0.05) and solid lines
indicate significance (p < 0.05).

3.3. Feature Importance Analysis
3.3.1. The Feature Importance Based on PCA

The cumulative variance ratios plot was utilized to determine the optimal number
of principal components to be retained in the analysis, and the “elbow” method was
employed to identify the balance point between the explained variance and the number of
principal components.

As shown in Figure 6, the cumulative variance ratios increased rapidly with the
increase in the number of principal components and then approached a plateau after a



Agriculture 2024, 14, 389 10 of 18

certain number of components. The “elbow” point, which represents the optimal number
of principal components, was determined to be 4. This finding indicates that the first
4 principal components contain the majority of the information in the original data and are
sufficient to explain the variation in the grassland nutritional components.
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Figure 6. Principal component analysis (PCA) of hyperspectral data for predicting grassland nutrient
concentrations. The plot shows the cumulative variance ratios explained by each principal component
(PC) as a function of the number of PCs included in the analysis. The elbow point is marked by a
red dot at PC4. The X-axis represents the number of PCs, and the Y-axis represents the cumulative
variance ratio.

Figure 7 illustrates the top four X-loadings ranked principal components (PCs) obtained
from PCA analysis. The X-loading peaks are primarily concentrated in the 400 nm, 520–550 nm,
670–720 nm, and 930–950 nm intervals, corresponding to the blue, green, red edge, and near-
infrared (NIR) bands, respectively, which are known to capture rich information on vegetation
nutritional content. Of particular interest is PC4, which exhibits a higher contribution to the
PCs in the 400 nm and 520–550 nm range. In the red edge band (670–720 nm), PC2, PC3,
and PC4 all exhibit some peaks. The 930–950 nm range is located in the NIR region of the
spectrum. PC4 shows some peaks in this range, as do several other PCs.
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3.3.2. The Feature Importance Based on RF

An RF regression model was used to identify the important wavelengths for predicting
grassland nutrient content through evaluation and ranking of feature importance. Figure 8
shows the evaluation and ranking of the top 10 important wavelengths for four nutrient
evaluation indices (DYM, NC, ADF, and NDF) using hyperspectral reflectance as features in
the RF regression model. To facilitate the comparison of the differences in the importance of
each wavelength in the model, we standardized the importance values. The results showed
that 930–940 nm and 700–730 nm were important features in the model for analyzing the
four nutrient components.
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Figure 8. Feature importance of the random forests (RF) model for estimating forage yield and
nutritional indices. The x-axis represents feature wavelengths in nanometers (nm), and the y-axis
denotes the importance of each feature: (a) DMY, (b) NC, (c) ADF, and (d) NDF.

3.3.3. The Feature Importance Based on SHAP

SHAP analysis was employed to explain the predictions of the ERT model. The top
20 features in terms of contribution values for each model prediction were calculated and their
results for the four nutrient components and yield are presented separately, as shown in Figure 9.
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SHAP values, while the y-axis represents feature wavelengths in nanometers (nm). The color scheme
corresponds to the reflectance values associated with each feature: DMY, NC, ADF, and NDF.

In evaluating the DMY estimator, the wavelengths 965 nm, 712 nm, and 1652 nm,
spanning the near-infrared, red-edge, and shortwave-infrared bands, exhibit pronounced re-
flectance contributions. For the NC estimator, significant reflectance is observed at 1390 nm
in the shortwave-infrared and 713 nm in the red-edge domain. The SHAP analysis for
ADF indicates subdued correlations across most bands, with a notable negative correlation
between the 1390 nm, 715–725 nm range, and ADF content, especially when juxtaposed
with other forage nutritional metrics. Regarding the NDF estimator, the key wavelengths
are 400 nm, 983 nm, 1350 nm, and 1800 nm. While 400 nm and 983 nm manifest a negative
correlation, the 1350 nm and 1800 nm wavelengths in the shortwave-infrared correlate
positively with NDF.

3.4. Estimation of Grassland Yield and Quality

The reflectance of significant bands and computed vegetation indices were used as
inputs for both RF and ERT regression analyses. Table 3 shows that for RF, the R2 values
for all plant nutritional indicators are above 0.57, with the highest for DMY (0.80). DMY
has the highest MAE (49.78) and RMSE (57.17). For ERT, the model performance improved,
with R2 values increasing notably for NC (0.67) and NDF (0.72). ERT also showed lower
MAE and RMSE across all indicators, suggesting enhanced prediction accuracy compared
to RF, particularly in estimating NC and NDF.

Table 3. The performance evaluation metrics of both the RF and ERT regression models for four plant
nutrient indicators.

DMY (g/m2) NC (g/100 g) ADF (%) NDF (%)

RF
R2 0.80 0.57 0.58 0.62

MAE 49.78 0.14 0.78 1.84
RMSE 57.17 0.18 1.01 2.17

ERT
R2 0.82 0.67 0.63 0.72

MAE 44.16 0.12 0.82 1.47
RMSE 53.05 0.16 1.02 1.85

Figure 10 shows the predicted values and measured values of each plant nutrient index
for the best-performing runs of the 5-fold cross-validation. Overall, the predicted values
and measured values are in good agreement, with a relatively concentrated distribution
near the 1:1 line. Consistent with the results presented in Table 3, most of the model’s
predictions are reliable. However, for samples with relatively small or large measured
values, the RF model tends to produce higher or lower predicted values, respectively.
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4. Discussion

In PCA, the significance of the spectra for all indicators as a whole is reflected through
the X-loadings values of the principal components. Four principal components highlighted
the significance of multiple wavelengths. Specifically, the 400 nm and 520–550 nm wave-
lengths fall within the blue and green light bands, respectively. This range is pivotal for
estimating crude protein content [36] and is closely associated with chlorophyll and protein
concentrations. An increase in chlorophyll content results in a decrease in reflectance in
the visible light region, especially in the blue and green areas of the spectrum [37]. The red
edge band (670–720 nm), which is associated with chlorophyll and pigment content such
as chlorophyll a and b, plays a crucial role in vegetation analysis. Several studies have
demonstrated the importance of the red edge band for estimating canopy chlorophyll
content [38,39]. Vegetation indices constructed using the red edge band show greater
potential for predicting chlorophyll content than traditional indices, such as NDRE [28].
In the 930–950 nm range, vegetation indices derived from this range of reflectance values
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have been found to provide robust estimates of lipid content and aboveground biomass in
grasslands [40].

The RF feature importance analysis can provide band importance results for indi-
vidual indicators. Chen et al., 2018, present a method for automatically determining the
optimal feature subset using RF-RFE, validated across two completely distinct molecular
biology datasets [41]. Additionally, the SHAP analysis offers insights into the positive and
negative correlations between various wavelengths and indicators. The results show that
965 nm, 712 nm, and 1652 nm are the most important bands for the DMY estimator. It is
common for the reflectance in proximity to these bands to be linked with the photosyn-
thetic activity in forage grasses, specifically the chlorophyll content [42]. The reflectance
at 700 nm is associated with the leaf area index (LAI), biomass, and internal leaf struc-
ture [10], while the reflectance around 930 nm is related to the moisture content of the
biomass [43,44]. As a rule, enhanced photosynthetic activity correlates with increased
reflectance within these wavelength ranges. When encountering low chlorophyll content,
substantial fluctuations are observed in dry matter content, whereas, with elevated chloro-
phyll content, a positive correlation manifests between dry matter content and chlorophyll
content. This phenomenon can be explicated through the impact of nitrogen fertilization on
forage growth and photosynthesis. Adequate nitrogen fertilization facilitates plant growth,
augments chlorophyll content, and elevates photosynthetic efficiency. Nonetheless, both
excessive and insufficient applications of nitrogen fertilizer may culminate in hindered
plant growth. In scenarios with diminished chlorophyll content, one plausible explanation
is a deficit of nitrogen fertilizer. Nitrogen constraint in plants results in reduced chlorophyll
content and biomass. Under such circumstances, a positive correlation between chlorophyll
content and DYM may arise, with lower chlorophyll content corresponding to lower DYM,
exemplified by the distribution of blue points on the left side of Figure 10. Alternatively,
an overabundance of nitrogen fertilizer may be the cause. Excessive uptake of nitrogen
by plants could engender growth inhibition or other physiological perturbations, such as
nitrogen toxicity [45,46]. In this situation, chlorophyll content may be diminished, while the
high or low dry matter content is contingent upon the plant’s response to nitrogen toxicity.
Consequently, the relationship between chlorophyll content and dry matter content may be
ambiguous in this context. Conversely, in instances of elevated chlorophyll content, plants
might be experiencing an optimal supply of nitrogen fertilizer, leading to high chlorophyll
content and photosynthetic efficiency, ultimately resulting in increased dry matter content.
Under these conditions, a positive correlation between chlorophyll content and dry matter
content is probable.

In the NC estimator, the most important bands are concentrated around 1390 nm and
713 nm. When juxtaposed with the DYM model’s findings, the NC estimator accentuates
the impact of the shortwave-infrared band on the prognostic outcomes to a greater extent.
Primarily, the positive association between the shortwave-infrared band reflectance and
NC is corroborated across all samples in the 1390 nm SHAP analysis, whereby higher
red-edge band reflectance typically corresponds to elevated nitrogen and chlorophyll
levels [47]. Furthermore, although the near-infrared band exhibits a substantial advantage
in terms of model contribution, its performance in correlation is not particularly prominent.
The distribution of SHAP values across varying reflectance values appears rather dispersed,
with a clear demarcation in the red-edge band samples surrounding a SHAP value of 0.
This phenomenon may be ascribed to the extensive range of nitrogen application rates since,
in addition to NC sensitivity, the near-infrared band is also highly responsive to biomass,
as corroborated by a plethora of research [48–50]. Elevated nitrogen application rates
bolster forage nitrogen concentration; however, they do not perpetuate the augmentation
of biomass. Consequently, model uncertainty is manifested in the near-infrared band
reflectance. Contrasting the prominent contribution displayed by the near-infrared band,
the shortwave-infrared band seemingly offers a superior representation of the correlation
with NC, thus serving as a more robust spectral band for the estimation of forage NC.
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In the ADF estimator, the results show that the reflectance around 1390 nm and
715 nm–725 nm is the most important spectral information, and there is a significant nega-
tive correlation between them. On the one hand, the absorption capacity of chlorophyll
within this spectral domain is notably strong, and on the other hand, cellulose and hemi-
cellulose in forage grass also exert some influence in this region [51]. As a result, with the
increasing ADF content in the samples, it is plausible that the chlorophyll content experi-
ences a concomitant reduction [15]. Subsequently, the reflectance values in the vicinity of the
715–725 nm band demonstrate an increment, exhibiting an inverse correlation. However,
the reflectance within this band also pertains to the water content and structure of the
leaves, wherein forage leaves with elevated fiber content are likely to possess more sub-
stantial or compact structures, consequently influencing the spectral reflectance properties
within the 1390 nm [52]. From this inference, it can be deduced that leaves with higher
water content and fiber content may exhibit elevated reflectance values in this particular
wavelength band, and the reflectance within this band can serve as a significant feature in
the ADF estimator.

Through the NDF estimator analysis results, several significant wavelengths can be
identified. Notably, in the NDF estimator, the importance of reflectance in the shortwave-
infrared band is particularly prominent. Samples from this band in the SHAP analysis
are distinctly distributed on both sides of a SHAP value of zero. This phenomenon might
be attributed to the absorption effect of moisture content in the forage at this specific
wavelength. For forage, spectral bands near the shortwave-infrared are primarily associated
with water content [53], possessing strong absorption characteristics. This is due to the
spectral properties of water at wavelengths 1350 nm and 1800 nm, which are mainly caused
by the vibrations of hydrogen bonds present in water [54]. NDF primarily consists of
lignin, cellulose, and hemicellulose, which are the main structural components of plant cell
walls. The structure of the plant cell wall directly impacts the water content of plant tissues.
For instance, a higher NDF content in plant tissues might imply thicker plant cell walls,
potentially leading to an increase in the moisture content of plant tissues. Consequently,
this results in a pronounced positive correlation for 1350 nm and 1800 nm in the NDF
estimation model. Simultaneously, in the RF feature importance analysis, the spectral
region within the 930–940 nm range is also considered significant. This range, situated
within the near-infrared spectral domain, is closely associated with leaf structure and
pigments [55]. The absorption characteristics of C–H, C–N, N–H, and O–H bonds present
in cellulose, protein, and starch are manifested within this range [56].

In the inversion results of machine learning models, due to the uneven distribution
of data and the presence of extremes caused by nitrogen gradients, there is a bias in the
predicted values for samples with relatively large or small measurements. This effect is
particularly evident in the RF model [57]. Specifically, the nitrogen concentration gradient
caused a large overall range of values for the plant nutrient indices in the comparison
treatment and introduced extreme values that deviated from the central tendency. Similar
situations have been observed in other studies. Dhal et al., 2022, optimized nutrient levels
for plant growth in hydroponic irrigation systems, to overcome the impact of excessively
high data dimensions in the sample, machine learning techniques specifically designed for
small datasets were adopted [58]. This included using feature selection methods to train the
three most important features identified in the results and then deploying them to a machine
learning model on an Android application [58]. As a result, the RF and ERT algorithm,
which relies on decision trees, may have overemphasized the contribution of these extreme
values in constructing the trees, which in turn skewed the predictions for samples with
smaller and larger observed values [30,59]. Additionally, the model’s sensitivity to these
extreme values may have led to overfitting [31], which further contributed to the bias in
the predicted values. Therefore, when applying regression analysis based on decision tree
structure models in control experiments, considering the data distribution and the presence
of extremes is crucial.
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5. Conclusions

In summary, this study successfully identified key spectral bands within hyperspectral
data, enhancing the precision of above-ground biomass and nutrient estimation in grass-
lands. Specifically, for the DMY estimator, the bands at 965 nm, 712 nm, and 1652 nm were
deemed most significant; for the NC estimator, the reflectance at 1390 nm and 713 nm bands
held the highest importance; for the ADF estimator, the bands around 1390 nm and within
the range of 715 nm to 725 nm were of higher importance; and for the NDF estimator, the
reflectance at 400 nm, 983 nm, 1350 nm, and 1800 nm bands was the most critical features
for the model.

By employing advanced machine learning techniques, including RF and ERT regres-
sion, we demonstrated the potential of these methods in agricultural remote sensing.
The models exhibited a high degree of fit for estimating grassland biomass and nutrient
levels (0.57 < R2 < 0.82). These findings contribute to more effective grassland quality assess-
ment and can inform the development of cost-effective multispectral sensors, underscoring
the significance of targeted spectral analysis in precision agriculture.

Author Contributions: Conceptualization, Y.Z., X.W. and X.X.; methodology, Y.Z. and Z.L.; software,
Y.Z., Z.L. and D.X.; validation, Y.Z., S.L. and K.T.; formal analysis, Y.Z. and Z.L.; investigation, Y.Z. and
K.T.; resources, X.W., R.Y. and X.X.; data curation, Y.Z. and H.Y.; writing—original draft preparation,
Y.Z. and D.X.; writing—review and editing, Y.Z., Z.L. and K.T.; visualization, Y.Z.; supervision, X.W.
and X.X.; project administration, X.W. and X.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by the National Key Research and Development Program of
China (2021YFD1300502), the National Natural Science Foundation of China (42301365), the Natural
Science Foundation of Jiangsu Province (No. BK20230566) and the Lv Yang Jin Feng Plan of Yangzhou
city (YZLYJFJH2022YXBS137).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We are grateful to Jiangwen Wang and Chunling Zhao with the Hulunber
Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and
Regional Planning, Chinese Academy of Agricultural Sciences (CAAS) for their work during the
ground data collection.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tilman, D.; Downing, J.A. Biodiversity and Stability in Grasslands. Nature 1994, 367, 363–365. [CrossRef]
2. Liu, W.; Zhang, Z.; Wan, S. Predominant Role of Water in Regulating Soil and Microbial Respiration and Their Responses to

Climate Change in a Semiarid Grassland. Glob. Chang. Biol. 2009, 15, 184–195. [CrossRef]
3. Hector, A.; Dobson, K.; Minns, A.; Bazeley-White, E.; Hartley Lawton, J. Community Diversity and Invasion Resistance:

An Experimental Test in a Grassland Ecosystem and a Review of Comparable Studies: Community Diversity and Invasion. Ecol.
Res. 2001, 16, 819–831. [CrossRef]

4. Török, P.; Brudvig, L.A.; Kollmann, J.; Price, J.N.; Tóthmérész, B. The Present and Future of Grassland Restoration. Restor. Ecol.
2021, 29, e13378. [CrossRef]

5. Liu, Y.; Wang, Q.; Zhang, Z.; Tong, L.; Wang, Z.; Li, J. Grassland Dynamics in Responses to Climate Variation and Human
Activities in China from 2000 to 2013. Sci. Total Environ. 2019, 690, 27–39. [CrossRef] [PubMed]

6. Conant, R.T.; Paustian, K. Potential Soil Carbon Sequestration in Overgrazed Grassland Ecosystems: Potential C Sequestration in
Overgrazed Grasslands. Glob. Biogeochem. Cycles 2002, 16, 90-1–90-9. [CrossRef]

7. Qi, A.; Holland, R.A.; Taylor, G.; Richter, G.M. Grassland Futures in Great Britain—Productivity Assessment and Scenarios for
Land Use Change Opportunities. Sci. Total Environ. 2018, 634, 1108–1118. [CrossRef]

8. Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative Assessment of the Contributions of Climate
Change and Human Activities on Global Grassland Degradation. Environ. Earth Sci 2014, 72, 4273–4282. [CrossRef]
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