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Abstract: Remote sensing stands out as one of the most widely used operations in the field. In
this research area, UAVs offer full coverage of large cultivation areas in a few minutes and provide
orthomosaic images with valuable information based on multispectral cameras. Especially for
orchards, it is helpful to isolate each tree and then calculate the preferred vegetation indices separately.
Thus, tree detection and crown extraction is another important research area in the domain of
Smart Farming. In this paper, we propose an innovative tree detection method based on machine
learning, designed to isolate each individual tree in an orchard. First, we evaluate the effectiveness of
Detectron2 and YOLOv8 object detection algorithms in identifying individual trees and generating
corresponding masks. Both algorithms yield satisfactory results in cherry tree detection, with the
best F1-Score up to 94.85%. In the second stage, we apply a method based on OTSU thresholding
to improve the provided masks and precisely cover the crowns of the detected trees. The proposed
method achieves 85.30% on IoU while Detectron2 gives 79.83% and YOLOv8 has 75.36%. Our work
uses cherry trees, but it is easy to apply to any other tree species. We believe that our approach will
be a key factor in enabling health monitoring for each individual tree.

Keywords: machine learning; tree detection; remote sensing; smart farming; Detectron2; YOLOv8

1. Introduction

The agriculture domain explores innovative methods to leverage production and
improve the quality of the products. In this context, recent technologies play a vital role and
improve many aspects of the production procedure. We are living at the beginning of a new
era called Smart Farming, where Unmanned Aerial Vehicles (UAVs), Unmanned Ground
Vehicles (UGVs), and Machine Learning are only a few of the advanced technologies
aiming to transform the traditional cultivation methods [1]. Consequently, many advanced
operations in cultivation, such as remote monitoring, disease detection, weed detection and
management, aim to offer additional information channels and provide valuable support
for farmers and agronomists.

Tree detection is another research area with practical applications in agriculture and
forestry [2]. Tree identification, tree counting, and crown delineation are three of them.
Data sources suitable for this purpose include UAVs, satellites, and Light Detection And
Ranging (LiDAR) [3]. While the most common choice for images from UAVs and satellites
is in the visible band, multispectral [4] and hyperspectral images are also viable options.
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There are various approaches in this research area, such as image processing, tech-
niques based on point clouds, Machine Learning, and Deep Learning [5]. Image processing
techniques [6] include simple methods with low complexity, offering fast results but com-
ing with comparatively lower accuracy. They work well in simple scenarios and with
clear images but may face challenges in complex environments. Additionally, they have
relatively low costs as they rely on standard image processing techniques.

The second category includes methods based on point clouds. Most approaches in
this category rely on LiDAR [7,8] for data acquisition, ensuring high accuracy. However,
they come with a relatively high cost, as well as moderate to high complexity and slow
preparation time, but they offer fast processing time. Alternatively, other methods utilise
Structure from Motion (SfM) [9,10], providing medium accuracy and moderate complexity
but at a lower cost.

Machine Learning algorithms, such as Support Vector Machines (SVM) or K-Means [11],
can achieve medium to high accuracy, depending on the quality and representativeness
of the training data. They require moderate training time, but inference can be relatively
fast. Moreover, the cost is moderate, as it is associated with data labelling and computa-
tional resources for training. On the other hand, Deep Learning constitutes a subset of
Machine Learning and includes state-of-the-art algorithms for object detection and image
segmentation based on Convolutional Neural Networks (CNNs) [12]. They can achieve
high accuracy, but the cost is relatively high due to the necessity for large labelled datasets
and significant computational resources. In addition, they have high complexity with high
preparation time, but the processing time is relatively fast. Finally, a combination of the
above methods is also a commonly used practice.

Table 1 summarises the main characteristics of the main categories in tree detection.
The values on the characteristics of the table are indicative as they are highly dependent on
various parameters such as the data acquisition method, the complexity of the dataset, as
well as the selected method within the category.

Table 1. Categories of research methods for tree detection and crown extraction.

Category Examples Accuracy Complexity Preperation
Time

Processing
Time Cost

Image
Processing

Template Matching
Vegetation Index Low Low Fast Fast Low

Machine
Learning

SVM
K-Means Moderate/High Moderate Moderate Relative Fast Moderate

Point Cloud LiDAR High Moderate/High Slow Fast High
SfM Medium Moderate Moderate/High Fast Low

Deep Learning CNNs High High Slow Relative Fast High

Regarding Deep Learning, numerous algorithms for object detection exist, with vary-
ing results in speed and accuracy. Fast-RCNN, Faster-RCNN, Mask-RCNN, SSD, and
YOLO are only some of them [13]. All of them are based on Convolutional Neural
Networks (CNN) and promise to detect the location of different objects with high accuracy
in images or videos.

In addition, remote sensing based on images from UAVs is becoming a promising
technique to observe large areas with cultivation and automatically identify possible
diseases. Many vegetation indices exist that are used to predict different parameters of
cultivation. For example, the Normalised Difference Vegetation Index (NDVI), Normalised
Difference Red Edge (NDRE), and Soil-Adjusted Vegetation Index (SAVI) are three of the
most known vegetation indices. In cultivations such as wheat or barley, it is sufficient to
apply the preferred index and then use a classification algorithm to divide the field into
different areas based on health status. However, in the case of orchards where the trees
do not cover the entire field, it is appropriate first to detect each individual tree and then
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check their health status based on the preferred vegetation index. For example, the authors
in [14] present a method that uses the canopy shape and vegetation indices to identify
citrus greening disease.

In this paper, we present a tree detection method as a key enabler for remote health
monitoring based on UAV images. We evaluated the proposed method on cherry trees,
and the results show efficiency on tree detection with F1 Score up to 94.85% for Detectron2
(version 2.0, Facebook) and 87.51% for YOLOv8 (version 8.0, Ultralytics). In addition, the
proposed improvement in effective coverage of the tree crown gives better results than
Detectron2 and YOLOv8. In particular, it reaches effectiveness up to 85.30% on IoU when
the cultivation has low coverage from weeds and grass. The effectiveness of Detectron2 is
79.53%, and of YOLOv8 is 75.36%. Moreover, our method can be easily used in other types
of trees when they are not densely planted in the field.

Detectron2 is an object detection framework based on Mask-RCNN. It uses Convolu-
tional Neural Networks (CNNs) and, as a result, returns the position and the mask of the
detected objects in an image. YOLOv8 is the newest version of the YOLO (You Only Look
Once) family and is considered state-of-the-art in object detection.

Some research efforts are already available for tree detection, but most of them are
limited only to detection while not providing the mask of the tree. In [15,16], the authors
compare Mask-RCNN with other methods of tree detection, but they lack the precision
of the provided mask. In contrast, our approach not only adequately provides the mask
for detected trees but also enhances these masks, ensuring they accurately represent the
crown of the trees. To the best of our knowledge, there are no similar works for images
captured from UAVs that automatically detect trees in an orchard and try to improve the
provided masks.

The outline of our work is as follows:

• Acquiring and annotating orthomosaic images of orchards with cherry trees of various
species.

• Training machine learning models with Detectron2 and YOLOv8 and evaluating their
effectiveness in cherry tree detection.

• Generating a mask for each cherry tree using Detectron2 and YOLOv8.
• Improving the provided masks with an additional algorithm based on the OTSU [17]

thresholding method to ensure comprehensive coverage of the tree crown.
• Evaluating the effectiveness of the provided masks based on Detectron2, YOLOv8 and

the proposed algorithm.

Using the generated masks, we calculate various vegetation indices such as NDVI and
NDRE, enabling the evaluation of potential stress for each tree. This assessment involves
comparisons between different trees or the same tree across previous seasonal periods.
Furthermore, it is crucial to conduct additional investigations using ground cameras to
identify any potential diseases. We aim for this research to become an easy tool for remote
health monitoring of various species of trees, contributing to future endeavours in Smart
Farming research.

The rest of this paper is as follows: In Section 2, we present the most relevant research
works for tree detection using Machine Learning. Section 3 briefly discusses the basic
concepts of image segmentation and provides the essential features of Detectron2 and
YOLOv8. Section 4 analyses the methodology we follow in this research. Next, Section 5
presents the evaluation results between Detectron2, YOLOv8 and the mask improvement
method with OTSU thresholding. Section 6 discusses the results of this research and
explores potential applications for remote sensing. Finally, Section 7 concludes this paper.

2. Related Work

Machine Learning has strong potential in Smart Farming. Disease, weed and pest
detection and classification are some of the applications aiming to improve the quality and
quantity of products by providing timely notifications to agronomists and farmers about
potential threats.
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Tree detection is one of the research areas with various applications. For example,
species recognition or simple tree counting are two of them. Furthermore, Machine Learn-
ing and Deep Learning are the most promising technologies for extracting information from
multiple sources. This section provides an overview of research efforts in tree detection
based on Machine Learning or similar research areas.

In [18], the authors present a computer vision-based citrus tree detection method
based on Connected Components Labelling (CCL) algorithm. The proposed method was
evaluated on high-resolution orthomosaic multi-spectral images from UAVs and showed
an accuracy of 97% and precision of 95% in heterogeneous agriculture patches. The authors
in [19] used Mask-RCNN to extract trees from images captured from UAVs. The evaluation
was based on three large-scale images with various tree species, and tests at different scales
showed no impact on the detection, even with 40% lower resolution. Nevertheless, this
was one of the first research efforts with Mask-RCNN, and the results were not used to
create masks but only for tree detection.

In [20], the authors propose a tree detection method based on Deep Learning. The
proposed method uses two CNNs to detect oil palm trees and achieves an accuracy of up
to 94.99% for the F1-score. The first CNN is responsible for land cover classification, while
the second is responsible for palm tree classification.

In [21], the authors used Convolutional Neural Networks for automatic citrus tree
detection on UAV images. Their approach consists of three steps. In the first step, a
CNN was used on a sliding window to detect the centres of tree rows. In the second step,
the proposed method selects the possible centres of trees in the detected rows with high
probability. The final step uses a CNN to specify whether the candidate centres as citrus
trees or not.

The authors in [15] provide a comparison between U-Net and Mask-RCNN on tree
detection of pomegranate trees. Their experiment uses a dataset captured with a UAV and
shows that Mask-RCNN achieves better performance than U-Net.

A coconut tree detection method is presented in [22], where authors use Mask-RCNN
to detect and provide a mask for each individual tree. The Mask-RCNN was evaluated with
both ResNet-50 and ResNet-101, and several experiments were conducted with various
configuration parameters. The best configuration achieves an accuracy of over 90%.

The authors in [16] provide a comparison of tree detection between Mask-RCNN,
Local Maxima (LM) algorithm and Marker-Controlled Watershed Segmentation (MCWS).
The results show that Mask-RCNN can achieve better accuracy than the other methods.
Moreover, Mask-RCNN was tested in RGB band, single-band and multi-band images,
showing that RGB images result in better accuracy.

A tree and building detection method based on LiDAR measurements is proposed
in [23]. The proposed method is separated into different stages. Firstly, trees and buildings
are extracted from LiDAR measurements. In the second stage, a Support Vector Machine
(SVM) is used to distinguish trees from buildings. The next stage includes mathematical
operations responsible for rejecting small objects and correcting some artefacts of the shape
of trees and buildings. In the final stage, a K-means algorithm separates buildings based
on height.

Another research project based on LiDAR measurements is presented in [24], com-
paring eight tree detection algorithms. The dataset includes different types of forest trees.
The experimental results show comparable detection rates but differ in extraction and
omission/commission rates.

3. Background

Image classification and object detection are two tasks that are highly used in Smart
Farming for various purposes, such as detecting or classifying diseases [25–27], weeds [28,29],
fruits [30,31], pests [32,33] or monitoring crops [34] in the fields or greenhouses. Various
machine learning and deep learning algorithms based on Convolutional Neural Networks
(CNN) have been developed in recent years. Fast-RCNN, Faster-RCNN, and Mask-RCNN
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belong to the family of Region-based RCNN and provide the specific region of the detected
object. More specifically, Fast-RCNN and Faster-RCNN provide the boundaries of a rectangle
that surrounds the detected object, while Mask-RCNN [35] also provides a mask that specifies
the exact pixels of the detected objects. These characteristics classify them as algorithms
for instance segmentation. Detectron2 [36] is the latest and most used framework for object
detection and image segmentation and uses Mask-RCNN as the basic model architecture.

Another promising object detection algorithm that achieves high accuracy in real-time
is YOLO (You Only Look Once) [37] and its successors, with YOLOv8 being the newest
version. To achieve high performance in real-time, it uses only a one-stage Convolutional
Neural Network. A similar approach has SSD MobileNet, as it is also designed as a
single-shot detector able to detect multiple objects in an image in real time.

In the following paragraphs, we will describe in brief Detectron2 [36] and YOLOv8 [38],
which we are evaluating in this manuscript for cherry tree detection. Both belong in the
category of instance segmentation, providing a mask of the detected object along with a
boundary box.

Detectron2 is an object detection framework, based on Mask-RCNN; developed on top
of Faster-RCNN and considered as state-of-the-art for instance segmentation. A simplified
architecture diagram of Mask-RCNN is presented in Figure 1a. In the first stage, a Region
Proposal Network (RPN) is responsible for extracting proposals as possible Regions of
Interest (RoI) that contain an object of the image. As the backbone network, ResNet-50
and ResNet-101 are two of the default options for this stage. Mask-RCNN also utilises
Feature Pyramid Network (FPN) along with ResNet-50 and ResNet-101, a more effec-
tive backbone network that results in better performance by reducing training time and
improving accuracy.

(a) (b)

Figure 1. Simplified diagrams of architecture for (a) Mask-RCNN architecture [35], and (b) YOLO architecture.

The second stage is responsible for classifying the region proposals derived from the
previous stage into specific classes. As outputs, it provides predictions of bounding boxes
surrounding the detected objects. Furthermore, a parallel stage delivers the corresponding
masks for the detected objects.

YOLOv8 [38] is the newest version of YOLO (You Only Look Once) [37] object detection
family and is considered the state-of-the-art in object detection. YOLOv8 also has image
segmentation capabilities, providing a corresponding mask of the detected object. It is
a single-shot detector that performs object detection in a single pass through the neural
network. In addition, it is designed to achieve real-time performance, making it suitable for
various applications and adopted by many research works. Figure 1b illustrates simplified
the network architecture of the initial version of YOLO. It has 24 convolutional layers
followed by 2 fully connected layers. The network extracts features from the image with its
initial convolutional layers and predicts output probabilities and coordinates using its fully
connected layers.

YOLO divides the input image into a grid of cells, each responsible for predicting one
or more bounding boxes. In the following step, YOLO calculates a score for each bounding
box where higher values indicate the presence of an object. Finally, YOLO predicts class
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probabilities for each bounding box and decides the class of each detected object. To
improve class predictions, it uses anchor boxes which have predefined shapes and sizes.

4. Materials and Methods

This section describes the methodology we follow to provide better results in tree de-
tection and improve the provided mask. Firstly, we describe the data acquisition procedure
for collecting images from UAVs from the experimental area. Secondly, we present the
annotation process and the tools used to annotate the cherry trees. In the next subsection,
we describe the configuration used for both Detectron2 and YOLOv8 to obtain optimal
results. The final step involves presenting details for the additional algorithm designed
to improve the masks created in the previous step. An overview of the methodology
employed in our work is summarised in Figure 2.

Figure 2. Methodology Diagram.

Table 2, presents a comparison of our work with similar research in orchards. It
appears that most studies focus on tree detection rather than crown extraction. For instance,
none of the works attempts to improve the provided masks. Additionally, the F1-Score in
other comparable research is similar to our work, as they are based on similar algorithms
like Mask-RCNN or simpler CNN-based approaches. It is important to note that a direct
quantitative comparison is challenging since the metrics are highly dependent on the
specific dataset used. For example, the proposed method in [18] achieves slightly better
performance in F1 Score, but it uses additional data with point clouds along with high-
resolution multispectral images.

Table 2. Comparison with similar research.

Research Tree Detection F1-Score Tree Masks Improve Masks

[18] Yes 95.99% Yes -
[19] Yes - - -
[20] Yes 94.99% - -
[21] Yes 94.00% - -
[15] Yes - Yes -
[22] Yes - - -
[16] Yes 94.68% Yes -

this work Yes 94.85% Yes Yes
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4.1. Data Acquisition

Data acquisition was acquired in two consecutive seasons in 2019 and 2020, in the
Grevena Prefecture of Western Macedonia, Greece (lat: 40.1487, long: 21.3910) (Figure 3).
Two flights took place during each season with a fixed-wing UAV. More specifically, the
eBee X from senseFly SA (Lausanne, Switzerland) (Figure 4a) was used to acquire images
from a flight altitude of approximately 120 m. The flight area was 1300 acres, where most
of the cultivation was cherry trees. The eBee X was equipped with the parrot sequoia+
camera (Parrot, Paris, France) (Figure 4b) capable of capturing images in RGB bands as
well as bands of RED, GREEN, REDEDGE and NIR.

Figure 3. Location of the experimental area (Grevena Prefecture, Greece).

(a) eBee X (b) Parrot Sequoia+
Figure 4. UAV and camera used to capture photos in the experimental area.

We use Pix4Dmapper software (version 4.5.6) to create orthomosaic images for each
flight and for each individual band. We use only the orchards with cherry trees for data
annotation. Thus, we cropped the orthomosaic images in separate image files, where only
cherry trees were present. We followed this procedure, respectively, for all image bands,
but only those in RGB format were used for annotation. Figure A1 in Appendix A displays
a small fraction of the dataset.

4.2. Annotation

We used the VGG Image Annotator (VIA) [39] for the annotation process, which is
one of the most common image annotation tools. However, since the annotation process is
time-consuming, we decided to reduce the manual annotation by following the next steps.

First, we annotated 3751 trees, using 2303 of them for training the model and 1448 for
evaluating the machine learning procedure. Each tree was annotated four times for each
cultivation year unless it did not appear in the orthomosaic image since it was too small
or had no leaves on the flight day. Thus, the annotation dataset consists of two different
classes, cherry trees and the background.
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The trained model at this step was used to detect cherry trees of other orchards. We
used the detected masks from this step and converted them to new annotated cherry trees.
To achieve this, we used the following procedure. First, we detected all pixels on the edge
of the mask and created a polygon. The polygon was simplified to reduce complexity by
removing vertices and then converted to JSON format suitable for VGG Image Annotator.

In the next step, a second stage of manual annotation took place with the VIA tool.
We manually corrected any faulty tree detections in this step and added those trees that
the algorithm did not detect. Finally, we obtained 11,254 cherry trees annotated, 6440 for
the training dataset and 4814 for the evaluation dataset. Thus, 57.22% of cherry trees were
used for training and 42.78% were used for evaluation. In addition, we converted the final
annotations to the corresponding format for YOLOv8. All information about annotation is
summarised in Table 3.

Table 3. Dataset information.

Orchards Orthomosaic
Images

Cherry Tree
Annotations

Cherry Tree
Annotations (%)

Train Dataset 32 128 6440 57.22%
Evaluation Dataset 20 80 4814 42.78%

Total 52 208 11,254

4.3. Configuration

For the training process, we used a Debian Linux (version 11) virtual machineon
the cloud with 2 vCPU cores, 8 GB of RAM and a Tesla T4 NVIDIA GPU. We evaluated
both Detectron2 and YOLOv8 for instance segmentation in order to detect cherry trees in
orchards. As the backbone network for Detectron2, we tested both ResNet-50 and ResNet-
101. For YOLOv8 we tested YOLOv8m-seg and YOLOv8x-seg as pre-trained models. For
YOLOv8, we trained both configurations for 500 epochs, and for Detectron2, we used
16,000 iterations, which are also equal to 500 epochs compared to the number of images
included in the training dataset. In addition, we used a batch size of 4 for all configurations.

Furthermore, since all cherry trees have almost round crowns or are slightly elliptical,
we selected a small difference in the length of the edges of the orthogonal for the anchor
boxes. Thus, we have selected the values (0.8, 1.0, 1.2) as aspect ratios for Detectron2.
Figure 5 illustrates the possible anchor boxes with these values for RoI extraction.

Figure 5. Aspect ratios of anchor boxes.

YOLOv8 has an anchor-free mechanism, meaning it predicts directly the centre of an
object instead of the offset from a known anchor box.

The configuration mentioned above and some of the main hyper-parameters used for
Detectron2 and YOLOv8 are summarised in Tables 4 and 5, respectively.
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Table 4. Configuration for Detectron2.

Name Value

pre-trained model ResNet-50 & ResNet-101
batch size 4
iterations 16,000
lr 0.005
lrf 0.01
momentum 0.9
aspect ratios of anchor boxes 0.8, 1.0, 1.2
warm up factor 0.001
weight decay 0.0001

Table 5. Configuration for YOLOv8.

Name Value

pre-trained model YOLOv8m-seg & YOLOv8x-seg
batch size 4
epochs 500
lr 0.01
lrf 0.01
momentum 0.937
warm up epochs 3
weight decay 0.0005

4.4. Mask Improvement

While most of the masks generated by Detectron2 and YOLOv8 closely approximate
the actual crowns of the trees, minor corrections are required to achieve optimal results.
Furthermore, in some cases, two of the provided masks overlap for both Detectron2 and
YOLOv8. When we want to calculate and analyse vegetation indices based on the tree
crowns, it is preferable to ensure the independence of each tree.

For the above reasons, we employed an additional method to improve the provided
masks. More specifically, we utilised the NDVI index of the orchard and applied a threshold
based on the OTSU [17] method, along with gamma correction, to precisely outline the
crown of the trees.

OTSU efficiently divides a given image into two areas of interest by determining the
optimal threshold based on the image’s histogram. It achieves this by iteratively searching
for a threshold that minimises the intra-class variance, defined as the sum of the two
variances of the two weighted classes, as shown in Equation (1).

σ2
w(t) = ω0(t)σ2

0 (t) + ω1(t)σ2
1 (t) (1)

The weights w0 and w1 represent the probabilities of the two classes separated by
a threshold t, while σ2

0 and σ2
1 denote the variances of the two classes based on the

image’s histogram.
Assuming the image’s histogram has L bins, the class probabilities w0 and w1 are

calculated using Equations (2) and (3), respectively.

ω0(t) =
t−1

∑
i=0

p(i) (2)

ω1(t) =
L−1

∑
i=t

p(i) (3)

The OTSU method for threshold estimation is implemented in various graphics pro-
gramming libraries, such as OpenCV.
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Furthermore, before applying OTSU thresholding, we use gamma correction to im-
prove the effectiveness of the algorithm, particularly in areas where the presence of weeds
and grass is obvious.

We selected the NDVI since it is defined as the index that identifies the presence of
photosynthesis. Thus, values over a threshold indicate the presence of the cherry trees in
the orchard, while lower values indicate the soil surface or the surface with low coverage
by grass and weeds. The image of the NDVI index should be perfectly aligned with
the corresponding orthomosaic image of the orchard. Moreover, for optimal results, it is
preferable to have low coverage of weeds in the orchard and to have all trees detected,
especially those in close proximity to others.

The proposed method is divided into two stages. In the first stage, the algorithm is
as follows: Firstly, we calculate the corresponding NDVI index for the cultivation area.
Subsequently, based on this index, we create a grayscale pseudocolour image and use it as
input for the next steps.

Secondly, for each detected cherry tree, we use the OTSU method to calculate a
threshold on the surrounding area, which is enlarged by 100% of the mask provided by
Detectron2 or YOLOv8. Before applying the threshold to the area, we apply a gamma
correction based on Equations (4) and (5), where To is the threshold provided by the OTSU
method in this step, Vin are the pixels of the input image, Vout are the pixels of the output
image and 255 is the maximum value of a pixel. Gamma correction helps to make cherry
trees more distinct from grass and weeds.

Vout =

(
Vin
255

)gamma

× 255 (4)

gamma =
255

255 − To
(5)

In the next step, after applying gamma correction, we recalculate the threshold using
the OTSU method and apply it to obtain a thresholded image of the subsection around a
specific tree.

Finally, we concatenate all the derived results from the subsections of the image to
create a final thresholded image.

For example, Figure 6b displays the pseudocoloured grayscale image of the NDVI
index for the orchard in Figure 6a. Figure 7a depicts the surrounding area of the image for
a specific tree. In addition, Figure 8 displays the corresponding histogram and the detected
threshold from the OTSU method for the specific tree. Furthermore, Figure 7b displays the
same surrounding area for the specific tree after applying gamma correction.

Figure 7c displays the resulting black and white image of the two different classes
defined by the OTSU method of the tree after the gamma correction. Finally, Figure 9
presents the overall image of the orchard, obtained by concatenating all thresholded images
for each tree.

In the second stage of our method, we use this image as a reference to improve the
mask of each tree detected from Detectron2 or YOLOv8. In our examples, we used the
derived masks from Detectron2 since they provide better accuracy in cherry tree detection.
Furthermore, the final masks from our method remain almost the same even when we
choose as initial masks those from YOLOv8.

First, we remove all pixels from the perimeter of the mask where the corresponding
pixels in the OTSU black and white image are equal to black. In addition, we remove
pixels from the perimeter that belong to other masks. This part of the method resolves any
overlaps with nearby trees.

Secondly, we search for nearby pixels of the mask where the corresponding pixel in
the OTSU black-and-white image is equal to white. We conduct this process step by step
for one additional pixel at a time along the perimeter of the existing mask. Throughout this
procedure, we ensure that the additional pixels do not belong to other masks, preventing
any overlap. At each step of our approach, we invert the order of the masks to ensure equal
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expansion when two cherry trees share the same area. We repeat this procedure until no
additional pixels are left.

(a) RGB (b) NDVI

Figure 6. Orthomosaic image of an orchard with cherry trees: (a) in visible band (RGB), (b) in
greyscale based on NDVI index.

(a) (b) (c)

Figure 7. Example of OTSU thresholding for a cherry tree: (a) Grayscale image of the surrounding
area of a specific tree on the NDVI, (b) Grayscale image of the tree on NDVI after gamma correction,
(c) Black and white image after applying OTSU thresholding method.

Figure 8. Histogram of the grayscaled image based on NDVI index for the surrounding area of a
cherry tree.
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Figure 9. Mask of the orchard based on OTSU thresholding after gamma correction.

As an example, Figure 10c,d display masks detected by Detectron2 and YOLOv8,
respectively, for the same cherry tree. The predicted masks are precise to ground truth
(Figure 10b) but are not exactly the same. Figure 10a shows part of the orthomosaic photo
from the specific cherry tree.

(a) Cherry tree (b) Ground truth mask

(c) Mask from Detectron2 (d) Mask from YOLOv8

Figure 10. Comparison of the masks provided for a specific tree. (a) Cherry tree from the orchard.
(b) Ground truth mask. (c) Mask from Detectron2. (d) Mask from YOLOv8.

Furthermore, Figure 11a shows the area removed or added to the initial mask using
the OTSU method. Dark grey pixels indicate the removed area, while light grey pixels
indicate the added area. Finally, Figure 11b shows the final mask of the detected tree after
the step based on OTSU. Definitely, it aligns more precisely with the ground truth mask in
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Figure 10b. Figure 11c illustrates the corresponding image in RGB format and the perimeter
of the final mask, highlighting the improvement achieved through the suggested method.
It is important to note that the proposed method effectively addresses even the shadows
from the trees as seen in Figure 11c. This is due to the characteristics of the NDVI used,
which has low values in areas with no vegetation. The shadow is separated from the cherry
trees as the NDVI values belong to different classes during the OTSU thresholding.

(a) (b) (c)

Figure 11. Example of changes in the mask of a specific tree. (a) Modifications on the provided
mask from YOLOv8. (b) Final mask after OTSU thresholding. (c) The perimeter of the mask on the
orthomosaic image for the specific cherry tree.

5. Evaluation

In this section, first, we present the evaluation of cherry tree detection accuracy
using Detectron2 and YOLOv8. Secondly, we provide an evaluation of masks generated
by Detectron2, YOLOv8 and the improved masks based on OTSU thresholding. The
evaluation was conducted on orchards with cherry trees characterised by low weed and
grass coverage.

5.1. Results of Cherry Tree Detection

After the training process, both Detectron2 and YOLOv8 are capable of detecting
cherry trees and provide a mask for each one. To evaluate the accuracy of detection, we
use the metric F1-Score. First, we have to calculate two other metrics, Precision (P) and
Recall (R). The Precision metric corresponds to correctly identified trees divided by the
total number of detected trees and is given in Equation (6). The Recall metric corresponds
to correctly identified trees divided by the total number of actual trees and is given in
Equation (6). Finally, we calculate the F1 score according to the Equation (8).

Precision =
TP

FP + TP
(6)

Recall =
TP

FN + TP
(7)

F1 Score =
2 × P × R

P + R
(8)

where TP (True Positive) measures the correct detected cherry trees, FP (False Positive)
corresponds to falsely detected cherry trees, and FN (False Negative) corresponds to the
number of cherry trees not detected by the algorithm.

In Table 6, we present a comparison of Detectron2 and YOLOv8. The first one
utilises ResNet50 and ResNet101 as the backbone networks, while the second one em-
ploys YOLOv8m-seg, and YOLOv8x-seg as pre-trained models. The comparison reveals
that Detectron2 with ResNet101 achieves slightly better performance (F1-Score: 94.85%) in
cherry tree detection compared to ResNet50 (F1-Score: 93.88%). Additionally, YOLOv8’s
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performance lags behind, with the highest achieved by YOLOv8x-seg (F1-Score: 87.51%)
and the lowest by YOLOv8m-seg (F1-Score: 86.94%).

Table 6. Performance of Detectron2 and YOLOv8 on cherry tree detection.

Algorithm Precision (%) Recall (%) F1 Score (%)

Detectron2 (ResNet50) 91.42 96.47 93.88
Detectron2 (ResNet101) 92.67 97.13 94.85
YOLOv8 (YOLOv8m-seg) 92.58 81.94 86.94
YOLOv8 (YOLOv8x-seg) 91.75 83.65 87.51

Figure 12 displays Precision and Recall values during the training process of Detec-
tron2 for both pre-trained models based on ResNet-101 and ResNet-50. The peak F1-Score
is achieved at iteration 15,680 and 15,200 for ResNet-101 and ResNet-50, respectively.
Moreover, Figure 13 shows the Precision and Recall values during the training process of
YOLOv8 for both pre-trained models YOLOv8x-seg and YOLOv8m-seg. The optimal F1-
Score is attained at epochs 126 and 103 for YOLOv8x-seg and YOLOv8m-seg, respectively.

Figure 12. Convergence of Precision and Recall in Detectron2 with ResNet-101 and ResNet-50.

Figure 13. Convergence of Precision and Recall in YOLOv8 with YOLOv8x-seg and YOLOv8m-seg.
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Although both algorithms detect some false trees or do not detect others, most prob-
lems occur with young trees whose crowns are too small or with trees that have no leaves
making them difficult to discern in the captured UAV image.

Figure 14a shows the trees detected by Detectron2 in an orchard that has mostly adult
trees and a moderate presence of grasses and weeds.. In this example, both algorithms
successfully identified all cherry trees, except those with no leaves or some young trees
close to others (red rectangles). Figure 14b shows another example of detected trees in an
orchard where many trees are young with small crowns. However, both Detectron2 and
YOLOv8 detect almost all of them, with the exception of one tree (red rectangle). Finally,
both algorithms give satisfactory results even in fields with unclear terrain with high weed
coverage. Figure 14c shows such an example, where some cherry trees are not detected
(red rectangle) and one tree is falsely detected (orange rectangle).

(a) Orchard with adult trees. (b) Orchard with young trees.

(c) Orchard with high weed and grass coverage.

Figure 14. Examples of detected cherry trees in orchards: (a) Orchard that has mostly adult trees and
moderate coverage in grass and weeds, (b) Orchard with young trees, (c) Orchard with high presence
of weeds and grass.
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Both algorithms generate a corresponding mask for the crowns of the detected trees.
As an example, Figure 15a shows the corresponding mask of a specific tree detected with
Detectron2 from the orchard of Figure 14a, while Figure 15b presents a composite image of
all masks from the detected trees in the orchard.

(a) Final mask of a cherry tree. (b) All masks combined in one image.

Figure 15. Detected masks from Detectron2: (a) Corresponding mask of a cherry tree. (b) All masks
of the orchard combined in one image.

5.2. Results of Mask Improvement

To evaluate the effectiveness of our proposed additional algorithm, we manually
delineated the crowns of 812 cherry trees from three different orchards with low weed
and grass coverage. Each orchard was used four times, corresponding to four flights in
two years. The masks derived from this precise annotation were considered the ground
truth masks of the tree’s crowns. To evaluate the masks provided by Detectron2, YOLOv8
and those after the OTSU thresholding, we used the Intersection over Union (IoU) metric
between them and their corresponding ground truth mask. Intersection over Union was
calculated with Equation (9), as the ratio of the intersection between the ground truth mask
and the detected mask of the object to the union of the two masks. Alternatively, IoU can
be defined with Equation (10), where TPa (True Positive Area) is the area detected and
belongs to the ground truth mask, FPa (False Positive Area) is the falsely detected area, and
FNa (False Negative Area) is the area belonging to the ground truth but not detected.

IoU =
Area o f Overlap
Area o f Union

(9)

IoU =
TPa

TPa + FPa + FNa
(10)

Moreover, we defined FPoU (Equation (11)) as the ratio between FPa and the union of
the predicted mask with the ground truth mask.

FPoU =
FPa

TPa + FPa + FNa
(11)

Finally, we defined FNoU (Equation (12)) as the ratio between FNa and the union of
the predicted mask with the ground truth mask.

FNoU =
FNa

TPa + FPa + FNa
(12)
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Table 7 shows the evaluation results between the ground truth masks and the masks
provided by Detectron2, YOLOv8 and the additional improvement method based on
OTSU thresholding.

Table 7. Evaluation of mask accuracy for Detectron2, YOLOv8 and the additional algorithm based on
OTSU thresholding.

Algorithm IoU (%) FPoU (%) FNoU (%)

Detectron2 79.53 10.54 9.92
YOLOv8 75.36 14.07 10.56
OTSU 85.30 6.39 8.31

The proposed improvement method based on OTSU thresholding achieves better
results in all metrics. More specifically, for IoU it reaches 85.30% while Detectron2 reaches
79.53% and YOLOv8 has 75.36. In addition, in the FPoU% metric, where lower values are
better, our improvement gives 6.39%, Detectron2 10.54% and YOLOv8 14.07%. Finally,
in the FNoU metric, where lower is better, the proposed method achieves 8.31%, while
Detectron2 and YOLOv8 give 9.92% and 10.56%, respectively.

6. Discussion

Regarding our research on tree detection and crown extraction, Detectron2 and
YOLOv8 can accurately detect cherry trees and extract a mask covering their crowns.
Although most masks do not need too much correction, in some cases, a significant im-
provement is appropriate, and the proposed algorithm is suitable to deliver. For ex-
ample, Figure 16a shows a slightly improved mask, while Figure 16b shows a mask
significantly improved.

(a) Slightly improved mask. (b) Significantly improved mask.

Figure 16. Examples of improved masks based on the OTSU thresholding. Dark grey pixels indicate
the removed area, while light grey pixels indicate the added area.

The final masks correspond significantly better to each individual tree, enabling us to
extract valuable information based on vegetation indices such as NDVI, NDRE or SAVI.

Equation (13) defines the NDVI index, which is frequently used for remote sensing.
As an example, we used the generated masks by our method on the NIR and RED channels
to calculate the NDVI for the corresponding cherry tree. The resulting NDVI pseudocolour
images for four different flights from a cherry tree are displayed in Figure 17.

NDVI =
NIR − Red
NIR + Red

(13)



Agriculture 2024, 14, 322 18 of 23

(a) 6 May 2019 (b) 13 June 2019 (c) 25 May 2020 (d) 24 July 2020

Figure 17. NDVI for a specific tree in four different flights. (a) On 6 May 2019. (b) On 13 June 2019.
(c) On 25 May 2020. (d) On 24 July 2020.

Many research articles propose methods for detecting stress or identifying specific
plant diseases using various vegetation indices. It is proved that multispectral cameras can
provide additional information regarding the health status of the cultivation. In cultivations
with full field coverage, such as wheat or barley, it is essential to analyse vegetation indices
and divide the field into distinct areas based on the values of these indices. Such an
approach may reveal potential diseases in areas with lower vegetation index values. In
the case of orchards, where each tree can be defined as identical to the others, it may be
helpful to examine the vegetation index separately for each tree. This can reveal trees
with stress that should be further examined, as orthomosaic images from UAVs may
not provide sufficient information at the leaf level. A closer examination, either with a
ground multispectral camera or by an agronomist expert, is crucial for further estimation
of potential diseases.

Furthermore, the proposed method demonstrates accurate performance in orchards
with low to mid coverage of grass and weeds. In orchards where almost the entire free
area is covered with grass, Detectron2 and YOLOv8 can still detect cherry trees with
acceptable accuracy. However, the additional method for mask improvement may not yield
optimal results. Nevertheless, we consider this to be non-crucial, as farmers can ensure the
cleanliness of their orchards before a UAV flight if they intend to utilise such a service.

In addition, the proposed method for mask improvement is capable of removing
shadows from the detected trees, even if they have been included in the generated masks
by Detectron2 and YOLOv8. Figure 18 illustrates an example of the effective removal of a
tree shadow. More specifically, Figure 18a shows part of the orthomosaic image where the
shadow of the tree can be seen on the left. Figure 18b illustrates the generated mask from
Detectron2, which includes part of the shadow. In Figure 18c, the NDVI index is displayed
after gamma correction, indicating that the pixels belonging to the shadow have noticeably
different values than those from the cherry tree. Thus, after applying the OTSU method,
we separate them into different classes. Finally, Figure 18d, displays the improved mask
derived from our method where it is clear that the shadow has been excluded.

(a) (b) (c) (d)

Figure 18. Example of excluding the shadow of a cherry tree. (a) Part of the orthomosaic image;
(b) Mask detected from Detectron2; (c) NDVI after gamma correction; (d) Final mask with no shadow.

Moreover, our method works well even when some of the trees are close enough. In
a few instances, Detectron2 and YOLOv8 may create overlapped masks. The proposed
method is designed to equally separate the common area to generate individual masks
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for each of the involved cherry trees. For example, Figure 19a shows the original image
with two nearby cherry trees. Subsequently, Figure 19b displays the detected masks from
Detectron2, while Figure 19c shows the masks after they have been separated using the
proposed method.

(a) Original Image (b) Overlapped Masks (c) Final Masks

Figure 19. Resolving overlapped masks. (a) Original image. (b) Overlapped masks from Detectron2.
(c) Separated masks from the proposed method.

Although the trained models deliver satisfactory performance on the current orthomo-
saic images, augmenting the dataset is crucial. Our current dataset comprises orthomosaic
photos from four UAV flights, lacking diversity. Additionally, the low resolution of the
acquired orthomosaic images, attributed to flight height and camera limitations, poses
challenges. Additional photos captured by different cameras and under various weather
conditions may address these limitations. Moreover, flights with multicopters that are able
to fly at lower heights can acquire images with higher resolution. This strategic enhance-
ment aims to create a more comprehensive and generic dataset and increase the detection
of cherry trees across a diverse range of orthomosaic photos.

Regarding using the proposed method on different tree species, the most crucial factor
is the dataset selection. A high diversity of orthomosaic images with different weather
conditions and different types of cameras and UAVs may help. Challenges may arise when
dealing with tree species lacking rich and thick foliage or those with very small crowns,
as mentioned earlier. Our method is specifically designed for orchards with moderately
spaced trees. While it performs well when the crowns of some trees are connected, it may
face limitations in situations where trees are closely planted side by side in rows.

7. Conclusions

Remote sensing has become one of the most valuable tasks in smart farming, enabling
the observation of crop stress and facilitating timely decision-making for farmers and
agronomists. UAV-captured images, particularly those with multispectral or hyperspectral
information, serve as the primary source for this purpose.

In addition, various vegetation indices can extract valuable information from UAV
images. In many cases, where the cultivation covers the entire field, such as with wheat
or barley, we can use orthomosaic images captured from UAVs without any other pre-
processing. However, in the case of orchards, it is essential to extract the crown for
each individual tree before using it for further processing, such as calculating specific
vegetation indices.

In this paper, we present a method for detecting the crown of each individual tree in
an orchard and then improve the provided mask. We evaluate our method on orchards
with cherry trees and show that it is feasible to detect them and provide individual masks
with high accuracy. More specifically, we evaluated Detectron2 and YOLOv8 on cherry
tree detection, each returning precise masks of the detected trees. Moreover, we propose
a method to improve the provided mask, aiming for a more precise coverage of the tree
crowns. The evaluation of our method shows that both Detectron2 and YOLOv8 can
accurately detect cherry trees in orchards, achieving F1 scores up to 94.85% and 87.51%,
respectively. Furthermore, the proposed improvement for the provided masks reaches an
effectiveness of up to 85.30% on the Intersection over Union metric, when Detectron2 gives
79.53%, and YOLOv8 gives 75.36%.

Finally, we present an example for calculating vegetation indices like NDVI based on
the provided masks by our method. In addition, the proposed method has been evaluated
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on cherry trees but can be easily adapted to any tree species. Therefore, we believe that our
method can be a valuable tool for crop stress identification using aerial images for remote
sensing in orchards.

In future work, we intend to use our method as a tool to detect possible stress on
cherry trees. Differences in vegetation indices between trees of the same orchard or the
same tree in different seasons may unveil early signs of possible diseases. Subsequently,
additional information from ground multispectral cameras can further aid in identifying
potential diseases affecting the specified trees.
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Appendix A

(a) Orchard 9 (6-5-2019) (b) Orchard 9 (13-6-2019) (c) Orchard 9 (25-5-2020) (d) Orchard 9 (24-7-2020)

(e) Orchard 29 (6-5-2019) (f) Orchard 29 (13-6-2019) (g) Orchard 29 (25-5-2020) (h) Orchard 29 (24-7-2020)

(i) Orchard 52 (6-5-2019) (j) Orchard 52 (13-6-2019) (k) Orchard 52 (25-5-2020) (l) Orchard 52 (24-7-2020)

Figure A1. Samples from the dataset from three different orchards. Four orthomosaic images were
captured for each orchard in two consecutive years.
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10. Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A
Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [CrossRef]

http://doi.org/10.1016/j.cosrev.2020.100345
http://dx.doi.org/10.3390/rs13142837
http://dx.doi.org/10.3390/s19163595
http://dx.doi.org/10.3390/ijgi7080315
http://dx.doi.org/10.1088/1757-899X/705/1/012024
http://dx.doi.org/10.3390/rs12030585
http://dx.doi.org/10.3390/s19245421
http://dx.doi.org/10.1155/2018/2536327
http://dx.doi.org/10.3390/rs12010133
http://dx.doi.org/10.3390/f7030062


Agriculture 2024, 14, 322 22 of 23

11. Li, L.; Dong, J.; Njeudeng Tenku, S.; Xiao, X. Mapping Oil Palm Plantations in Cameroon Using PALSAR 50-m Orthorectified
Mosaic Images. Remote Sens. 2015, 7, 1206–1224. [CrossRef]

12. G. Braga, J.R.; Peripato, V.; Dalagnol, R.; P. Ferreira, M.; Tarabalka, Y.; O. C. Aragão, L.E.; F. de Campos Velho, H.; Shiguemori,
E.H.; Wagner, F.H. Tree Crown Delineation Algorithm Based on a Convolutional Neural Network. Remote Sens. 2020, 12, 1288.
[CrossRef]

13. Sultana, F.; Sufian, A.; Dutta, P. A review of object detection models based on convolutional neural network. In Intelligent
Computing: Image Processing Based Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–16.

14. Chang, A.; Yeom, J.; Jung, J.; Landivar, J. Comparison of Canopy Shape and Vegetation Indices of Citrus Trees Derived from UAV
Multispectral Images for Characterization of Citrus Greening Disease. Remote Sens. 2020, 12, 4122. [CrossRef]

15. Zhao, T.; Yang, Y.; Niu, H.; Wang, D.; Chen, Y. Comparing U-Net convolutional network with mask R-CNN in the performances
of pomegranate tree canopy segmentation. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques
and Applications VII; SPIE: Bellingham, WA, USA, 2018; Volume 10780; pp. 210–218.

16. Yu, K.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Lin, L.; Zhao, G.; Tian, S.; Liu, J. Comparison of Classical Methods and Mask R-CNN
for Automatic Tree Detection and Mapping Using UAV Imagery. Remote Sens. 2022, 14, 295. [CrossRef]

17. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
18. Donmez, C.; Villi, O.; Berberoglu, S.; Cilek, A. Computer vision-based citrus tree detection in a cultivated environment using

UAV imagery. Comput. Electron. Agric. 2021, 187, 106273. [CrossRef]
19. Ocer, N.E.; Kaplan, G.; Erdem, F.; Kucuk Matci, D.; Avdan, U. Tree extraction from multi-scale UAV images using Mask R-CNN

with FPN. Remote Sens. Lett. 2020, 11, 847–856. [CrossRef]
20. Li, W.; Dong, R.; Fu, H.; Yu, L. Large-scale oil palm tree detection from high-resolution satellite images using two-stage

convolutional neural networks. Remote Sens. 2018, 11, 11. [CrossRef]
21. Zortea, M.; Macedo, M.M.; Mattos, A.B.; Ruga, B.C.; Gemignani, B.H. Automatic citrus tree detection from UAV images based

on convolutional neural networks. In Proceedings of the 31th Sibgrap/WIA—Conference on Graphics, Patterns and Images,
SIBGRAPI, Paraná, Brazil, 29 October–1 November 2018; Volume 18.

22. Iqbal, M.S.; Ali, H.; Tran, S.N.; Iqbal, T. Coconut trees detection and segmentation in aerial imagery using mask region-based
convolution neural network. IET Comput. Vis. 2021, 15, 428–439. [CrossRef]

23. Zarea, A.; Mohammadzadeh, A. A novel building and tree detection method from LiDAR data and aerial images. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2015, 9, 1864–1875. [CrossRef]

24. Eysn, L.; Hollaus, M.; Lindberg, E.; Berger, F.; Monnet, J.M.; Dalponte, M.; Kobal, M.; Pellegrini, M.; Lingua, E.; Mongus, D.; et al.
A benchmark of lidar-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 2015,
6, 1721–1747. [CrossRef]

25. Chaschatzis, C.; Karaiskou, C.; Mouratidis, E.G.; Karagiannis, E.; Sarigiannidis, P.G. Detection and Characterization of Stressed
Sweet Cherry Tissues Using Machine Learning. Drones 2021, 6, 3. [CrossRef]

26. Gonzalez-Huitron, V.; León-Borges, J.A.; Rodriguez-Mata, A.; Amabilis-Sosa, L.E.; Ramírez-Pereda, B.; Rodriguez, H. Disease
detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4. Comput. Electron. Agric. 2021,
181, 105951. [CrossRef]

27. Shin, J.; Chang, Y.K.; Heung, B.; Nguyen-Quang, T.; Price, G.W.; Al-Mallahi, A. A deep learning approach for RGB image-based
powdery mildew disease detection on strawberry leaves. Comput. Electron. Agric. 2021, 183, 106042. [CrossRef]

28. Razfar, N.; True, J.; Bassiouny, R.; Venkatesh, V.; Kashef, R. Weed detection in soybean crops using custom lightweight deep
learning models. J. Agric. Food Res. 2022, 8, 100308. [CrossRef]

29. Zhuang, J.; Li, X.; Bagavathiannan, M.; Jin, X.; Yang, J.; Meng, W.; Li, T.; Li, L.; Wang, Y.; Chen, Y.; et al. Evaluation of different
deep convolutional neural networks for detection of broadleaf weed seedlings in wheat. Pest Manag. Sci. 2022, 78, 521–529.
[CrossRef]

30. Wu, L.; Ma, J.; Zhao, Y.; Liu, H. Apple detection in complex scene using the improved YOLOv4 model. Agronomy 2021, 11, 476.
[CrossRef]

31. Li, X.; Pan, J.; Xie, F.; Zeng, J.; Li, Q.; Huang, X.; Liu, D.; Wang, X. Fast and accurate green pepper detection in complex
backgrounds via an improved Yolov4-tiny model. Comput. Electron. Agric. 2021, 191, 106503. [CrossRef]

32. Dong, S.; Du, J.; Jiao, L.; Wang, F.; Liu, K.; Teng, Y.; Wang, R. Automatic Crop Pest Detection Oriented Multiscale Feature Fusion
Approach. Insects 2022, 13, 554. [CrossRef]

33. Tetila, E.C.; Machado, B.B.; Astolfi, G.; de Souza Belete, N.A.; Amorim, W.P.; Roel, A.R.; Pistori, H. Detection and classification of
soybean pests using deep learning with UAV images. Comput. Electron. Agric. 2020, 179, 105836. [CrossRef]

34. Moysiadis, V.; Kokkonis, G.; Bibi, S.; Moscholios, I.; Maropoulos, N.; Sarigiannidis, P. Monitoring Mushroom Growth with
Machine Learning. Agriculture 2023, 13, 223. [CrossRef]

35. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

36. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2, Version 2.0, Facebook Inc., 2019. Available online: https:
//github.com/facebookresearch/detectron2 (accessed on 10 October 2023).

37. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

http://dx.doi.org/10.3390/rs70201206
http://dx.doi.org/10.3390/rs12081288
http://dx.doi.org/10.3390/rs12244122
http://dx.doi.org/10.3390/rs14020295
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/j.compag.2021.106273
http://dx.doi.org/10.1080/2150704X.2020.1784491
http://dx.doi.org/10.3390/rs11010011
http://dx.doi.org/10.1049/cvi2.12028
http://dx.doi.org/10.1109/JSTARS.2015.2470547
http://dx.doi.org/10.3390/f6051721
http://dx.doi.org/10.3390/drones6010003
http://dx.doi.org/10.1016/j.compag.2020.105951
http://dx.doi.org/10.1016/j.compag.2021.106042
http://dx.doi.org/10.1016/j.jafr.2022.100308
http://dx.doi.org/10.1002/ps.6656
http://dx.doi.org/10.3390/agronomy11030476
http://dx.doi.org/10.1016/j.compag.2021.106503
http://dx.doi.org/10.3390/insects13060554
http://dx.doi.org/10.1016/j.compag.2020.105836
http://dx.doi.org/10.3390/agriculture13010223
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


Agriculture 2024, 14, 322 23 of 23

38. Jocher, G.; Chaurasia, A.; Qiu, J. YOLOv8, Version 8.0, Ultralitics, 2023. Available online: https://github.com/ultralytics/
ultralytics (accessed on 10 October 2023).

39. Dutta, A.; Zisserman, A. The VIA annotation software for images, audio and video. In Proceedings of the 27th ACM International
Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2276–2279. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://dx.doi.org/10.1145/3343031.3350535

	Introduction
	Related Work
	Background
	Materials and Methods
	Data Acquisition
	Annotation
	Configuration
	Mask Improvement

	Evaluation
	Results of Cherry Tree Detection
	Results of Mask Improvement

	Discussion
	Conclusions
	Appendix A
	References

