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Abstract: Abiotic stress is a major cause of the declining crop yield worldwide, especially in tropical
agricultural areas. Meeting the global food demand has become a serious challenge, especially
in tropical areas, because of soil acidity, Al and Fe toxicity, drought and heat stress, and climate
change. In this article, we reviewed several research and review papers from Google Scholar to list
the different solutions available for the mitigation of abiotic stress, especially in tropical regions
where several major crops, such as maize, sorghum, wheat, rice, soybean, and millet, are affected
by abiotic stress and fertilizer input. In particular, Sub-Saharan Africa (SSA) has been affected by
the low use of fertilizers owing to their high cost. Therefore, soil and plant researchers and farmers
have developed many techniques to mitigate the effects of stress and improve the crop yield based
on the agroecological zone and crop type. Nutrient management using chemical fertilizers alone or
in combination with organic crops is a strategy recommended to cope with abiotic stress and increase
the crop yield, particularly in developing countries. Notably, integrated soil fertility management
has been effective in semi-arid areas under drought and heat stress and in subhumid and humid
areas with high soil acidity and Fe toxicity in Africa. Recent advances in the molecular physiology
of various crops considered a staple food in SSA have facilitated the breeding of transgenic tolerant
plants with high yield. However, the feasibility and implementation of this technique in the African
continent and most tropical developing countries are major issues that can be solved via adequate
subsidies and support to farmers. This review can aid in the development of novel strategies to
decrease hunger and food insecurity in SSA.

Keywords: abiotic stress; acid soil; Al toxicity; crops; drought; fertilizer; heat; SSA

1. Introduction

The global population is estimated to reach approximately 10 billion by 2050 [1,2].
However, many challenges, such as food insecurity, abiotic stress, and increased pest
outbreaks, attributed to climate change demand global attention, particularly in tropical
regions [3]. Approximately 50% of the global population lives in tropical regions, and
more than two-thirds live in extreme poverty [4]. However, in recent years, this situation
has been exacerbated by the continuous decline in crop yield owing to increased abiotic
stress [4]. The Food and Agriculture Organization (FAO) has emphasized the need for
a 50% increase in food production to meet the rising demand by adopting sustainable
farming practices [5,6]. The efficient management of nutrients and irrigation using seeds
of high-yielding crop varieties will be necessary to meet the increasing food demand in
tropical regions and promote green agriculture.

Agriculture 2024, 14, 285. https://doi.org/10.3390/agriculture14020285 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14020285
https://doi.org/10.3390/agriculture14020285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://doi.org/10.3390/agriculture14020285
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14020285?type=check_update&version=2


Agriculture 2024, 14, 285 2 of 21

The use of high-yield crop varieties, inorganic fertilizers, irrigation systems, and
synthetic pesticides has substantially enhanced crop productivity in various Asian and
developed countries. These agricultural practices have played a vital role in meeting
the increasing food demand to ensure sufficient food supply [7,8]. Many studies have
focused on the detrimental effects of these practices on surface and groundwater pollution
in Asia [9–11] and Europe [12]. Among the developing countries, Sub-Saharan Africa (SSA),
which accounts for 13% of the total arable land worldwide [13], is characterized by various
factors, such as limited fertilizer availability, high soil acidity [14–16], drought, water
stress [17], and nutrient deficiency [18]. The International Fertilizer Association has strongly
emphasized the critical role of fertilizer inputs in promoting food production and ensuring
food security in Africa [19–22]. However, the adverse effects of pesticide misuse, excessive
reliance on synthetic inputs, abiotic stress, and climate change in the tropical regions of both
developed and developing countries have raised concerns [23]. Therefore, proactive and
emergency strategies that prioritize green, efficient, and sustainable agricultural practices
are necessary to ensure food security for future generations.

Over the past decade, studies have focused on the use of organic compounds to pro-
mote sustainable agriculture while mitigating the ecological consequences of increasing
global food demand [24–26], especially in tropical regions [27]. Consequently, alternative
strategies based on research findings in the fields of plant nutrition, climate change, and
molecular physiology have been developed for different geographical areas, especially
tropical regions. The synergistic application of inorganic and organic compounds can
increase the crop yield [7,28,29]. Several studies have elucidated the molecular mechanisms
underlying various stresses, such as drought [30], high temperature [31], and soil acid-
ity [32–34]. These findings offer valuable insights on plant nutrient management, fertilizer
use, and molecular breeding to enhance the agricultural yield in tropical regions.

This review provides comprehensive information on the various abiotic stresses af-
fecting tropical crops, with a particular focus on soil acidity, Al and Fe toxicity, drought
and heat stress, and climate change. Furthermore, this review highlights the recent ad-
vancements in plant nutrient management and the molecular breeding strategies used to
enhance crop yields, fortify sustainable agricultural practices, and ensure food security.

2. Effects of Abiotic Stress on Nutrient Imbalance and Crop Yield

Abiotic stress, namely soil acidity, Al and Fe toxicity, drought and heat stress, and cli-
mate change, pose serious environmental challenges that affect and reduce the production
of crops worldwide [35]. Crop yields are expected to reduce owing to climate change and
the side effects of the increased world population that force the extension of urban areas,
thereby limiting agriculture to areas less appropriate for crop cultivation [36]. Among
various abiotic stresses, soil acidity, drought, elevated temperatures, and salinity are recog-
nized as the predominant limiting factors [37]. These stresses, in combination with climate
change and the emergence of new pests and diseases, have a significant effect on global
agricultural production, particularly in tropical regions [38]. Abiotic stresses frequently
induce morpho-anatomical and physiological growth constraints, further exacerbating
challenges in crop production [39]. Soil acidity, heat stress, drought, and climate change
are the most critical limiting factors for maize (Zea mays), millet (Panicum milliaceum), and
sorghum (Sorghum bicolor) production, but not cassava (Manihot esculenta), which is mainly
limited by floods in SSA [40]. In this article, we aimed to outline the adverse effects of these
factors, specifically focusing on their impact on tropical crops.

2.1. Al and Fe Toxicity

Soil acidity, characterized by a pH level of ≤5.5, is a significant constraint to crop
production worldwide [41]. This condition is particularly prevalent in tropical and sub-
tropical regions [42,43]. The primary challenge associated with acidic soils is the toxicity of
aluminum (Al3+), phosphate (PO4

2−), and iron (Fe2+), which can have detrimental effects
on the plant [32,44,45]. This phenomenon adversely affects crops, such as sesame (Sesamum
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indicum), and impedes nutrient mineralization [43]. It also affects other vegetable crops,
such as Brassica juncea, Phaseolus vulgaris, Pisum sativum, and Vigna mungo [46]. This phe-
nomenon affects approximately 600 Mha of land in SSA [14]. In South America, particularly
Brazil, soil acidity affects approximately 205 Mha of land [47].

In the tropics, Al toxicity affects 25–80% of crop production [48]. The detrimental
effects of Al3+ are manifested in developing root tips, as they disrupt crucial processes
related to cell division, elongation, and genotoxicity. This disturbance ultimately leads to
the inhibition of root growth, hindering the ability of crops to extend their roots for nutrient
uptake [32,34]. In SSA, Al significantly decreases the yields of several crucial crops (Table 1).
For example, in Ethiopia, Al reduces the grain yield of wheat (Triticum aestivum L.), barley
(Hordeum vulgare), and beans (Phaseolus vulgaris L.) [49]. Across SSA, elevated soil acidity
can trigger various indirect consequences. These include the suboptimal nodulation of
legumes, the proliferation of acid-tolerant weeds, stunted root growth, and a reduction
in the yields of various crops, such as millet, sorghum, tomato (Solanum lycopersicum),
sweet potato (Ipomoea batatas), and tea [50,51]. Soil acidity also reduces enzymatic activity,
interrupts microbially mediated nutrient cycling, and hampers microbial activity [52,53].
These constraints vary depending on the degree of acidity [54]. For instance, wheat [54],
maize, and canola [55,56] exhibit yield-specific responses to soil pH. Moreover, Al reduces
nitrogen (N) uptake and decreases N use efficiency (NUE) and water use efficiency (WUE)
in crops such as maize [57], reducing its yield and contributing to high drought stress and
nutrient unavailability due to root growth inhibition [46]. In high-income economies, the
widespread application of lime to enhance the soil pH has led to remarkable increases in
crop yields over the past century [58–61]. In contrast, low-income economies, particularly
those in tropical and subtropical regions, face significant challenges. Extreme poverty often
prevents farmers from producing lime to ameliorate soil acidity and boost crop yields [41].
Furthermore, these regions are characterized by iron toxicity, which causes severe damage
to rice (Oryza sativa).

Table 1. Major crops sensitivity level to abiotic stresses in Sub-Saharan Africa.

Abiotic Stresses Major Crops References

Soil acidity and Al Toxicity

Sensitive

Barley [27]

Maize [62]

Wheat [38]

Soybean, Peanut [48]

Less sensitive

Pineapple, Sweet potato, [48]

Cassava, Yam [50]

Fe toxicity Rice (lowland) [63,64]

Heat and drought

Sensitive

Soybean, Peanut [65,66]

Wheat [67]

Barley [68]

Rice [64]
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Table 1. Cont.

Abiotic Stresses Major Crops References

Less sensitive

Yam, Cassava [69]

Sweet potato [70]

Sorghum [71]

Finger Millet [72,73]

Climate change

Sensitive

Maize, Rice [74]

Wheat [67]

Barley [75]

Less sensitive
Cassava, Millet, Sweet potato [74,76]

Sorghum [75]

Iron toxicity is another major factor that significantly limits crop yields, particularly
rice production in West Africa (Table 1). In comparison to Asia, rice production in SSA
faces significant challenges arising from additional factors, such as nutrient deficiencies,
low base cation exchange, a low nutrient-holding capacity, and high levels of phosphorus
fixation [63,77]. Iron toxicity is characterized by physiological indicators, such as leaf
chlorosis and necrosis, leading to yield reductions ranging from 10% to 100% [78,79].
Excessive iron uptake and its subsequent accumulation in leaves occur when soil iron
concentrations exceed the critical threshold of 500 mg Fe kg−1 [80]. This phenomenon is
linked to the development of symptoms of iron toxicity, commencing as brown spots at
the leaf tip and advancing to purple, reddish-brown, or yellow discoloration. Ultimately,
the affected leaves desiccate, giving the plant a scorched appearance. Concurrently, the
root architecture becomes dark brown and weakened [81]. The risk of Fe toxicity is notably
high in regions characterized by high rainfall, such as sub-humid and humid zones [77],
owing to the poor management of water, crops, and mineral fertilizers [81]. In semi-arid
zones, the situation deviates because of the co-occurrence of drought and heat stress, which
overlaps with the prevalence of Fe toxicity, ultimately resulting in reduced rice yields [82].

2.2. Drought and Heat Stress

Drought and heat stress are two major abiotic stresses that can occur simultane-
ously and severely affect crop growth and productivity, especially in arid and semi-arid
zones [83–85]. Although extensive research has been conducted on drought and heat
stress individually [86–90], their combined effects are gaining increasing scientific relevance
because of climate change-induced water scarcity.

Several staple African crops, such as cassava (Manihot esculenta), potatoes (Solanum
spp.), sweet potatoes (Ipomoea batatas), yams (Dioscorea spp.), and plantains (Musa spp.),
have adverse effects on yield due to rising temperatures and the prolonged effects of
climate change-induced drought (Table 1). Drought affects nearly 80% of agricultural
land, imposing limitations on global yield and crop production in both temperate and
tropical regions [65,91,92]. The impact of drought on cereal production has been particularly
severe [93]. Recent studies have shown that the combined effects of drought and heat are
more severe on maize, barley, and sorghum yields than either stress alone [85]. Moreover,
drought and heat stress are affected by climate change.

Climate change is projected to have a significant impact on crop yields in the tropics,
particularly in West Africa, where the projected temperature rise of 2.1 ◦C could severely
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reduce the maize yield in dry lowlands and lowlands (Table 1). Drought has been estab-
lished in numerous tropical areas as a factor that leads to decreased crop yields, affecting
crops, such as wheat, cowpeas (Vigna unguiculata) [93], millet [94], and cassava [69,95].
For instance, up to 84.27% of cassava mortality has been attributed to drought stress [96].
Furthermore, climate change, primarily through drought stress, is recognized for its ad-
verse impact on maize, groundnut [97], and bean yields, as well as on their nutritional
quality [98,99]. In SSA, the limited response of major staple crops, such as maize, soybean
(Glycine max), sorghum, rice, and cassava, to chemical fertilizers, possibly due to soil acidity,
drought, and heat stress, presents a substantial challenge (Table 1). Therefore, optimiz-
ing crop nutrient management through fertilizer application (both inorganic and organic)
while mitigating stress factors such as Al3+ and Fe2+ toxicity, drought, and heat stress [100]
is crucial.

3. Nutrient Management under Abiotic Stress: Combined Use of Inorganic and
Organic Fertilizers
3.1. Effects of Organic and Inorganic Fertilizers on Nutrient Availability

The application of organic fertilizers, whether used in conjunction with chemical
fertilizers or as a discrete method, has demonstrated efficacy in mitigating soil acidification
and enhancing soil fertility [100,101]. For example, the incorporation of pig manure and
straw as amendments in maize and wheat has been found to enhance the immobilization
of abiotic NH4

+−N and NO3
−−N by increasing the soil carbon content. Notably, manure

application independently ameliorated soil acidity, whereas straw amendment did not
yield a comparable effect [102]. In tobacco (Nicotiana tabacum) cultivation, cow manure,
whether discrete or combined with synthetic fertilizer in acidic soil, significantly reduced
the soil exchangeable acid content, with a substantial 51.28% reduction in exchangeable Al3+

when organic matter was applied, thereby mitigating soil acidification [103]. This practice
further led to a 37.19% and 42% increase in exchangeable base cations for cow manure and
the combined organic–inorganic fertilizer, respectively, compared to the discrete use of
chemical fertilizer. The use of mixed poultry manure (50%) + NPK (50%) or 100% poultry
manure significantly elevated the soil pH, cation exchange capacity (CEC), and NPK uptake
compared with 100% synthetic NPK [104] (Table 2). Conversely, the incorporation of crop
residues has demonstrated a high potential to alter soil CEC, organic carbon levels, P, K,
and pH [105]. Most studies conducted in Asia have revealed the importance of combining
organic and inorganic fertilizers to mitigate environmental stresses, such as water pollution,
soil acidity, and plant nutrient deficiency. However, reports indicate that the levels of
chemical fertilizers and organic inputs for nitrogen supply are significantly lower in Africa
than in Europe and North America [106]. Taken together, it is important to highlight trends
in nutrient management to mitigate environmental stress in Africa.

Table 2. Evaluation of different types of fertilizer application depending on crops in SSA.

AEZ Crops Fertilizer Use

Semi-arid zone

Cereals
maize (Zea mays), millet (Panicum milliaceum),

sorghum. (Sorghum bicolor), soybean (Glycine max),
bean (Phaseolus vulgaris L.), wheat (Triticum aestivum L.)

pigeon pea (Cajanus cajan)
Root tubers

cassava (Manihot esculenta)
Perennial crops

cotton (Gossypium herbaceum)

SI+N [107]
CA+mulch+Manure [108]

Manure [109]
Biological N-fixation (Acacia mangium) [110]

Urea/DAP/TSP/KCl [111]
NPK [112]

Sulfur(S) [113]
ISFM [114]
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Table 2. Cont.

AEZ Crops Fertilizer Use

Sub-humid zone

Cereals
rice (Oryza sativa), maize (Zea mays), millet (Panicum

milliaceum), sorghum (Sorghum bicolor), soybean
(Glycine max), bean (Phaseolus vulgaris L.), cowpea

(Vigna unguiculata)
Root tubers

cassava (Manihot esculenta), yam (Dioscorea alata), sweet
potato (Ipomoea batatas), groundnut (Arachis hypogaea)

Perennial crops
cotton (Gossypium herbaceum), cashew nut (Anacardium

occidentale), cocoa (Theobroma cacao), coffee (Coffea
canephora), sugar cane (Saccharum officinarum),

Lime and Gypsum [115–117]
NT+NPK/CT+NPK+Manure/
NT+NPK+Manure) [118–120]

Biochar [121]
NPK+Ca+Zn+B/N+Manure [122,123]
Biological N-fixation (Acacia mangium,

Casuarina equisetifolia [110]
ISFM [124–127]

NPK/Urea/DAP/TSP/KCl/ISFM [111]
INPM [114,128]

Humid zone

Cereals
rice (Oryza sativa), maize (Zea mays) wheat (Triticum

aestivum L.)
sweet potato (Ipomoea batatas)

Root tubers
cassava (Manihot esculenta), yam (Dioscorea alata)

Perennial crops
rubber tree (Hevea brasiliensis), oil palm tree (Elaeis
guineensis), cocoa (Theobroma cacao), coffee (Coffea

canephora), plantain banana (Musa paradisiaca), desert
banana (Musa acuminata), mango (Mangifera indica),
avocado (Persea americana), ananas (Ananas comosus)

Lime and Gypsum [115–117,129]
INPM [114,128]

Crop residue [130]

3.2. Crop Responses to Fertilizer Management Practices in SSA

In SSA, the implementation of Integrated Soil Fertility Management (ISFM), which
strategically combines organic and inorganic fertilizers, is progressively recommended for
African agricultural practices across distinct agroecological zones [124,127,131,132]. ISFM
is an approach aimed at enhancing crop yields and sustaining long-term soil fertility by
strategically combining fertilizers, recycled organic resources, responsive crop varieties,
and improving agronomic practices [51]. In semi-arid zones, where drought and heat stress
are severe, plant nutrient management differs significantly from that in sub-humid and
humid regions [133,134] (Table 2). ISFM enhances N and P efficiency in maize by 54 and
16%, respectively [135]. The combination of organic input and urea for maize cultivation
led to a 64% increase in N uptake and an 84% increase in yield, while the synergistic effects
of both (organic input and urea) nearly doubled the yield to 114% [128]. Studies conducted
in Ethiopia have demonstrated that the simultaneous application of inorganic and organic
fertilizers yielded significantly higher crop production in tropical agroecosystems than
using either fertilizer alone. Furthermore, they concluded that the synergy between manure
and NP fertilizer, coupled with practices, such as crop rotation, green manuring, and crop
residue management, resulted in substantial increases in wheat and faba bean grain yields,
emphasizing the economic incentives for farmers to adopt ISFM practices [136]. For exam-
ple, the yields of maize and sorghum were significantly enhanced by the co-application of
NPK, manure, and micronutrients in Mali, Kenya, Nigeria, and Tanzania [136]. The efficient
uptake of N and P owing to an increase in soil organic matter (SOM) has also been reported
in southern Nigeria [136,137]. Furthermore, the utilization of local fertilizers, such as crop
residue application, and the implementation of techniques such as mulching or straw
application [138] have been shown to notably mitigate soil temperature and drought stress,
resulting in enhanced crop yields (Table 2). Recently, African agronomists have emphasized
the use of blended fertilizers, such as NPK+S or NPK+Zn, to enhance rice yield [139]. This
approach is driven by the potential of certain compounds, such as sulfur (S), to significantly
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increase agronomic N-use efficiency [140]. This approach may be because of S, Si, Zn, and
P deficiencies in most West African countries [141–143].

In sub-humid and humid zones, a substitutive approach for ISFM is strongly recom-
mended. This approach involves the application of 50% of the recommended inorganic
N or P combined with total manure [125,135] (Table 2). This practice is recommended to
compensate for the loss of organic matter and soil nutrients [144]. For example, crop N
uptake can be enhanced by 26% by combining synthetic N with manure in maize cultiva-
tion [144]. Seasonal variations in crop production, climate change, and abiotic stresses have
led researchers, farmers, and governments to diversify organic fertilizer sources, provide
guidance, and offer fertilizer subsidies (Figure 1). The utilization of a rock-based fertilizer
(phosphate rock) in conjunction with compost resulted in enhanced Maize and Soybean
yields of 2.5 t·ha−1 during both the dry and rainy seasons. Similarly, Yam yields increased
to 2.5 t·ha−1 during the rainy season and 3.0 t·ha−1 during the dry season [145]. In Nigeria,
rock phosphate combined with poultry manure increased the P content and yield of maize
and cowpea [146]. Furthermore, N, P, and K uptake was significant in sorghum in the
presence of combined rock phosphate and farmyard manure [147]. Sustainable agricultural
productivity can be improved through effective disease management, optimized soil and
water resources, the use of organic fertilizers, the utilization of new tools and facilities
(Figure 1), and the adoption of improved plant varieties with good-quality seeds from
traditional or biotechnological sources, including transgenic breeding. Transgenic varieties
are considered a promising approach for doubling or tripling African crop yields [70,148].
However, their successful utilization for abiotic and biotic stress tolerance requires a clear
understanding of the molecular physiological mechanisms related to stresses, such as Al
and Fe toxicity, nutrient deficiency, drought, and heat stress, whether occurring individually
or in combination, within specific crop species.
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Figure 1. Model for sustainable agricultural production adapted for tropical regions, especially in
Sub-Saharan Africa. ISFM, integrated soil fertility management; IPNM, integrated plant nutrition
management; EM, efficient management. The Four Rs’ Law (right time, right source, right rate,
and right place) in fertilizer input indicates the practices that must be promoted (black arrow) and
supervised (dotted arrow) by the government through private, public, and semi-private sectors to
ensure food security. Farmers can also co-operate with these sectors for sustainable crop production.
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4. Molecular and Physiological Mechanisms of Abiotic Stress

In this section, we explore the molecular and physiological mechanisms developed
by plants to alleviate Al toxicity and cope with drought and heat stress. Additionally, we
provide examples of major crops cultivated in tropical regions that hold potential for the
future molecular breeding of crop varieties.

4.1. Molecular and Physiological Mechanisms Underlying Al Stress

It has been observed that the mechanisms regulating Al tolerance are different in
various phytospecies under Al stress conditions [149]. In some species, various mechanisms
can function simultaneously to generate Al resilience through their combined effects.
Although the type of tolerance generation mechanism for Al3+-induced phytotoxicity
remains controversial, Al exclusion mechanisms are widely accepted to be involved in Al3+

detoxification [150]. However, the molecular and physiological mechanisms underlying
Al phytotoxicity have been extensively studied, primarily utilizing model plants, such as
Arabidopsis, and important crops such as wheat and rice [30,32,151,152]. Based on these
studies, two primary categories of plant tolerance mechanisms have been proposed to
mitigate the toxic effects of Al: “Exclusion” and “Internal Al tolerance” [153,154]. In
the context of Al, exclusion mechanisms are characterized by their capacity to reduce
the presence of rhizotoxic Al ions (Al3+) within the symplasm of plant cells, whereas
internal tolerance mechanisms effectively mitigate Al toxicity and damage within the
cytosol. Furthermore, additional mechanisms have been identified, such as the alteration
of rhizosphere pH, Al efflux across the plasma membrane [152], and the removal of Al
by the sufficient application of calcium at the plasma membrane surface, which creates a
negatively charged screen between Al and the plasma membrane [155].

Numerous studies have provided evidence supporting the Al exclusion mechanism,
that is, the excretion of organic acids (OAs) that effectively chelate Al3+ toxic ions in various
plants, including staple food crops commonly grown in tropical regions. This phenomenon
is mediated by specific transporters for OAs, such as aluminum-activated malate trans-
porter1 (ALMT1), which is encoded by the ALMT1 gene in wheat [156]. This gene has
been characterized in several other plants and crops (Table 3), including AtALMT1 in
Arabidopsis [157], BnALMT1 and BnALMT2 in rapeseed (Brassica napus) [158], and VrALMT1
in mung beans (Vigna radiata) [159]. In addition, similar patterns of Al-activated citrate
transporter genes from the multidrug and toxic compounds extrusion (MATE) family, such
as HvAACT1 [160] and SbMATE [161,162], have been observed, with their constitutive
expression reported for the first time in barley (Hordeum vulgare) and sorghum (Sorghum
bicolor). Moreover, citric acid has been shown to have a strong affinity for Al and enhance
phosphorus availability from insoluble Al phosphate in snap beans (Phaseolus vulgaris
L.) [163]. Recently, several MATE family genes associated with citrate secretion have been
identified in various crops, including maize (Zea mays), rice (Oryza sativa), peanut (Arachis
hypogaea), and soybean (Glycine max) (Table 3). Studies in Arabidopsis have provided strong
evidence that the expression of AtALMT1 and AtMATE is regulated by several transcription
factors [155,164]. A notable example is the involvement of the master regulator SENSITIVE
TO PROTON RHIZOTOXICITY1 (STOP1), which has been identified as a key regulator
of the Al-inducible expression of both AtALMT1 and AtMATE under Al stress [165–167].
In contrast, STOP1 was highly conserved among plants [168]. Recently, it was suggested
that SbSTOP1 in Sorghum activates the transcription of the β-1,3-glucanase, which re-
duces callose deposition under Al toxicity [169]. In addition to its role in the Al stress
response, STOP1 has demonstrated pleiotropic regulation under various stresses, such as
salt, drought, hypoxia, low pH, and nutrient management [170,171]. For example, in maize,
ZmSTOP1 plays a crucial role in drought tolerance by exhibiting hypersensitivity to abscisic
acid (ABA) treatment in the roots and insensitivity to stomatal hormones, consequently
promoting stomatal closure [172]. Therefore, STOP1 is a useful genetic factor for alleviating
Al stress and other growth-limiting factors. Therefore, further studies should analyze the
STOP1-mediated environmental stress tolerance in various crops.



Agriculture 2024, 14, 285 9 of 21

Table 3. Transporters responsible for Al-responsive organic acid secretion from roots in various plants.

Plant Species Organic Acid Transporter Reference

Malate secretion

Triticum aestivum TaALMT1 [156]
Arabidopsis thaliana AtALMT1 [157]

Brassica napus BnALMT1, 2 [158]
Secale cereale ScALMT1 [173]

Medicago sativa MsALMT1 [174]
Holcus lanatus HlALMT1 [175]
Vigna radiata VrALMT1 [159]

Citrate secretion

Sorghum bicolor SbMATE [161]
Hordeum vulgare HvMATE (HvAACT1) [160]

Arabidopsis thaliana AtMATE [176]
Phaseolus vulgaris MATE-a, -b [177]

Secale cereale ScMATE2 (ScFRDL2) [178]
Zea mays ZmMATE1, ZmMATE6 [179,180]

Oryza sativa OsFRDL4, OsFRDL2 (OsMATE2) [181,182]
Eucalyptus camaldulensis EcMATE1 [183]

Triticum aestivum TaMATE1B [184]
Vigna umbellata VuMATE1 [185]
Brassica oleracea BoMATE [186]

Amaranthus hypochondriacus AhMATE1 [187]
Fagopyrum esculentum FeMATE1 [188]

Medicago truncatula MtMATE66 [189]
Populus trichocarpa PtrMATE1 [190]

Brachypodium distachyon BdMATE [191]
Cajanus cajan CcMATE1 [153]
Glycine soja GsMATE [192]
Glycine max GmMATE75, 79, 87, GmMATE13 [193,194]

Arachis hypogaea AhMATE (AhFRDL1) [195]
Oxalic secretion

Hevea brasiliensis HbOT1, 2 [196]
Al-responsive transcriptome

Populus tremula MATE [197]
Camellia sinensis MATEs, ALMTs, CsMATE1,CsALMT1 [190,198]
Citrus sinensis MATEs, ALMTs [199]
Stylosanthes MATE family [200]

Nicotiana tabacum NtMATE [201]
Populus trichocarpa PoptrALMT10, 54 [202]

Solanum lycopersicum SlALMT3 [203]
Saccharum officinarum ALMT2,4,5,7,9,11 [162]

Lens culinaris ALMT-1, MATE-a,b,c [204]
Triticum aestivum TaMATE85,100,114 [205]

Cicer arietinum CaMATE2,4 [206]
Chenopodium quinoa CqALMT6 [207]

4.2. Drought and Heat Stress
4.2.1. Physiological Adaptation

Abiotic stresses, such as high temperatures and water deficits, can adversely affect
plant growth and development, resulting in irreversible declines in crop yields [28,208,209].
According to the Intergovernmental Panel on Climate Change [210], the synergistic ef-
fects of drought and heat stress are expected to increase. Consequently, it is crucial to
gain a comprehensive understanding of the mechanisms utilized by plants to respond
to both stresses. Drought-induced molecular physiological dysfunctions include stom-
atal closure, oxidative stress, reduced photosynthesis the, disruption of cell walls, and
a reduction in root length and plant growth [90,211]. Numerous plant species have de-
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veloped multiple mechanisms, including the alternative oxidase (AOX) [212], to mitigate
or withstand drought stress [213,214]. This stress triggers the activation of numerous
genes and transcription factors, leading to the synthesis of a wide array of proteins and
enzymes [211,215–218]. Extensive research has been conducted on diverse plant species,
including Arabidopsis [83,219], wheat [220], barley [221], and tobacco [82], to investigate
their responses to combined drought and heat stress, as well as their individual responses
to each stress condition. These studies revealed similar physiological responses, with more
severe damage being observed in plants exposed to both stresses than in those subjected
to a single stress. These findings highlight the existence of shared defense mechanisms
among these plant species in response to drought and heat stress [222]. In this section, our
primary emphasis is on the prominent crops cultivated in tropical regions, highlighting
the molecular and physiological mechanisms that have evolved to mitigate the combined
effects of drought and heat stress.

Plants adopt three primary strategies for coping with drought stress: escape, avoid-
ance, and tolerance [223]. Avoidance involves stomatal closure, reduced photosynthesis,
enhanced respiration, and suppressed transpiration to maintain the plant’s water status
and prevent water loss [82]. For example, morphophysiological mechanisms in maize and
sorghum under heat or drought stress are characterized by leaf wax, a lower leaf angle, com-
pact tassels, and a lower cob angle, all of which aim to prevent evapotranspiration [224,225].
An important physiological adaptation in plants is the increase in photosynthetic rates.
The maintenance of optimal photosynthetic activity contributes to membrane stability and
enhances heat tolerance [226]. Moreover, stomatal conductance is significantly reduced
under both stress conditions in Arabidopsis and citrus plants [83,219]. Plants exhibit time-
dependent responses to both drought and high temperatures. Initially, low levels of reactive
oxygen species (ROS), such as H2O2 and O2

−, are observed within the first 24 h, accom-
panied by an increase in antioxidant enzyme activity. However, at later time points (after
24 h), ROS levels increase substantially, while the antioxidant enzyme activity gradually
decreases, potentially indicating the disruption of the antioxidant pathway [227]. Stress-
dependent ROS detoxification mechanisms are also observed with heat-stress-inducing
cytosolic ascorbate peroxidase (APX) and thioredoxin peroxidase (TPX), whereas drought
stress leads to an increase in catalase (CAT) and glutathione peroxidase activities. How-
ever, a combination of these stresses uniquely induces glutathione S-transferase (GST),
glutathione reductase (GR), copper–zinc superoxide dismutase (CuZnSOD), AOX, and
glutathione peroxidase (GPX) enzymes [228].

4.2.2. Molecular Mechanism

Transcriptomic analyses of several plants under drought and heat stress have revealed
many transcripts [82,83,222] involved in mitigating these stresses. For example, the tran-
scriptome of sorghum under combined drought and heat stress revealed 5779 transcripts
(3003 upregulated and 2776 downregulated). Gene ontology analysis revealed enrichment
in categories related to lipid localization, the regulation of photosynthesis, fluid transport,
and protein folding. Importantly, these enriched categories overlapped with the responses
observed under drought or heat stress [229]. Moreover, a unique set of genes was identified
as a specific response of sorghum to combined stress. Similar trends were observed for
Arabidopsis [82], tobacco [83], and wheat [230]. Furthermore, OsMYB55 is tolerant to high
temperatures and drought stress in maize [231]. An analysis of OsMYB55 transgenic maize
revealed the significant upregulation of genes associated with abiotic stresses, such as
heat, dehydration, and oxidative stress [231]. This suggests that plants perceive combined
stress as a unique transcriptional response during adaptation. Interestingly, drought and
heat abiotic stresses induce several transcription factors, such as the ethylene-responsive
transcriptional co-activator, dehydration-responsive element-binding proteins (DREBs),
and WRKY, to improve plant endurance [82,83], calcium transporter ATPase 9, and pro-
teins involved in disease resistance [232]. Some transcription factors that are well-known
master regulators of stress-responsive genes under abiotic stresses (drought and heat) have
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been extensively studied because of their vital roles in crop yield improvement [233]. For
example, a DREB2 transcription factor from sorghum, the SbDREB2 gene, showed higher
resistance to water deficit than the wild type in transgenic rice [234], and potato StDREB
also showed the same resistance in transgenic cotton [235]. In Arabidopsis and wheat, At-
DREB1A and TaDREB1A exhibit high tolerance to abiotic stress [236]. Furthermore, in
barley, HD-zip genes (HDZI-3 and HDZI-4) from wheat can be used in combination with
DREB/CBF transcription factors to enhance abiotic stress (drought) tolerance and improve
crop yield [237]. Increased levels of phytohormone ABA, which plays a key role in regulat-
ing several plant responses during abiotic stress, in dry soil helps in the maintenance of root
growth, hydraulic conductivity, and water uptake [208]. ABA is also transported via the
xylem to the shoot, inducing stomatal closure to reduce the water use efficiency [208]. As
the transcriptome can vary depending on the type of plant, time, and severity of stress [228],
the functions of proteins encoded by these genes and their associated metabolic pathways
need to be further explored. This knowledge is crucial for a comprehensive understanding
of the mechanisms involved in mitigating the combined effects of drought and heat stress.
This understanding can be useful in arid and semi-arid regions such as Africa, tropical
parts of India, and Latin America where crops such as Sorghum bicolor hold significant
importance as grain crops [229]. These studies indicate the substantial advancements in the
development of crop varieties well suited for agriculture in arid and semi-arid regions.

5. Conclusions

In this review, the multifaceted exploration of factors affecting global crop production
revealed the critical challenges posed by environmental stresses, such as soil acidity, Al
and Fe toxicity, drought, and heat stress. The far-reaching consequences of these factors
on nutrient balance and crop yield, particularly in tropical regions, highlight the urgent
need for new strategies to address these issues. The integration of organic and inorganic
fertilizers with region-specific nutrient management practices has emerged as a key solution
to enhance soil health and mitigate environmental stress. In SSA, ISFM is used as a strategic
approach combining organic and inorganic fertilizers to improve nutrient efficiency. This
article also discussed the beneficial effects of enhancing nitrogen and phosphorus uptake,
mitigating drought and heat stress in semi-arid regions, and tailoring practices to different
agroecological zones. The further exploration of Al tolerance mechanisms revealed the
complex strategies used by plants. The identification of key players, such as the ALMT1 and
MATE family members and STOP1 transcription factor, highlighted the potential of genetic
factors to overcome Al stress and other growth-limiting processes. This review lays the
foundation for the further investigation of STOP1-mediated stress tolerance and facilitates
the development of crop varieties resilient to different environmental conditions. The
interplay between drought and heat stress poses a substantial threat to global agriculture,
particularly tropical crops. The adaptive complexity of plant responses, including escape,
avoidance, and tolerance strategies, emphasizes the dynamic nature of the plant defense
system. The shared defense mechanisms of various plant species present new avenues for
targeted research and stress tolerance interventions. Transcriptomic analyses of various
plants under combined drought and heat stress provide valuable insights into the specific
gene expressions and pathways involved in stress mitigation, suggesting new targets
for crop improvement. Continued research and innovative approaches are crucial to
navigate the complex landscape of climate change and its impact on agriculture. This
article reveals the ongoing efforts to develop sustainable strategies for food security to
overcome the escalating abiotic stresses. The findings presented here may impact the
agricultural practices used in various regions and aid in adapting crops to challenging
environments and fostering sustainable agricultural practices.
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CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress,
Prospects, and Challenges. Front. Plant Sci. 2018, 9, 617. [CrossRef] [PubMed]

4. Campos, H.; Caligari, P.D. Genetic Improvement of Tropical Crops; Springer International Publishing: Cham, Switzerland, 2017.
5. FAO. Regional Overview of Food Security and Nutrition in Africa 2017. The Food Security and Nutrition—Conflict Nexus: Building

Resilience for Food Security, Nutrition, and Peace; FAO: Accra, Ghana, 2017.
6. FAO. (2018a): The Future of Food and Agriculture: Alternative Pathways to 2050. p. 228. Available online: http://www.fao.org/

publications/sofa/en/ (accessed on 15 February 2022).
7. Timsina, J. Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy 2018, 8, 214. [CrossRef]
8. Thilakarathna, M.S.; Raizada, M.N. A Review of nutrient management studies involving finger millet in the semi-arid tropics of

Asia and Africa. Agronomy 2015, 5, 262–290. [CrossRef]
9. Nakagawa, K.; Amano, H.; Asakura, H.; Berndtsson, R. Spatial trends of nitrate pollution and groundwater chemistry in

Shimabara, Nagasaki, Japan. Environ. Earth Sci. 2016, 75, 234. [CrossRef]
10. Yu, G.; Wang, J.; Liu, L.; Li, Y.; Zhang, Y.; Wang, S. The analysis of groundwater nitrate pollution and health risk assessment in

rural areas of Yantai, China. BMC Public Health 2020, 20, 437. [CrossRef] [PubMed]
11. Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.; Shan, Z.; Ren, L. The deep challenge of nitrate pollution in river water of China. Sci. Total

Environ. 2021, 770, 144674. [CrossRef]
12. Lawniczak, A.E.; Zbierska, J.; Nowak, B.; Achtenberg, K.; Grześkowiak, A.; Kanas, K. Impact of agriculture and land use on nitrate
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