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Abstract: Molecular breeding has revolutionized the improvement of forage crops by offering
precise tools to enhance the yield, quality, and environmental resilience. This review provides a
comprehensive overview of the current technologies, applications, and future directions in the field
of forage crop molecular breeding. Technological advancements in the field, including Quantitative
Trait Loci (QTL) mapping, Genome-Wide Association Studies (GWASs), genomic selection (GS),
and genome-editing tools such as CRISPR-Cas9, have significantly advanced the identification
and incorporation of beneficial traits into forage species. These approaches have dramatically
shortened the breeding cycles and increased the efficiency of developing cultivars with improved
yield, disease resistance, stress tolerance, and nutritional profiles. The implementation of these
technologies has led to notable successes, as demonstrated by case studies on various forage crops,
showcasing enhanced forage quality and adaptability to challenging environmental conditions.
Furthermore, the integration of high-throughput phenotyping with advanced bioinformatics tools
has streamlined the management of large-scale genomic data, facilitating more precise selection and
breeding decisions. Looking ahead, this review explores the potential of emerging technologies, such
as the application of artificial intelligence in predictive breeding, along with the associated ethical
and regulatory considerations. While we stand to gain benefit from these innovations, the future
of molecular breeding in forage crops must also confront the challenges posed by climate change
and the imperative of sustainable agricultural practices. This review concludes by emphasizing the
transformative impact of molecular breeding on the improvement of forage crop and the critical need
for ongoing research and collaboration to fully realize its potential.

Keywords: forage crops; molecular breeding; quantitative trait loci (QTL) mapping; genomic selection
(GS); CRISPR-Cas9; high-throughput phenotyping (HTP); artificial intelligence (AI)

1. Introduction

Forage crops play an integral role in sustainable agriculture, serving as a cornerstone
in ruminant diets and contributing significantly to soil conservation, carbon sequestration,
and biodiversity. As global change imposes stresses on ecosystems, there is an increasing
demand for improved varieties of forage crops that are resilient to environmental chal-
lenges, including drought, salinity, and extreme temperatures. The traditional breeding
methods have enhanced the forage species, but are constrained by long breeding cycles, the
complex nature of traits in forage crops, and the polyploidy of many forage species, which
complicates genetic improvement. The urgency for the molecular breeding of forage crops
is underscored by the need to expedite the development of improved cultivars with en-
hanced nutritional quality, increased yield, and greater stress tolerance. Molecular breeding
tools, including marker-assisted selection, genomic selection, and advanced biotechnolo-
gies like CRISPR/Cas9 genome editing, offer the potential to surpass the limitations of
traditional breeding by enabling precise and targeted genetic improvements. These tools
can assist in dissecting complex traits and expedite the breeding process, ensuring the swift
introduction of forage varieties adapted to changing climates and capable of supporting

Agriculture 2024, 14, 279. https://doi.org/10.3390/agriculture14020279 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14020279
https://doi.org/10.3390/agriculture14020279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-6556-892X
https://doi.org/10.3390/agriculture14020279
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14020279?type=check_update&version=1


Agriculture 2024, 14, 279 2 of 13

livestock production systems. The subsequent sections will elaborate on the innovative
molecular breeding technologies and their applications to forage crops.

2. Quantitative Trait Loci (QTL) Mapping

Quantitative Trait Loci (QTL) mapping is a statistical technique utilized in genetics to
pinpoint the genomic regions associated with specific quantitative traits. These complex
traits, influenced by multiple genes, exhibit continuous variation across populations. The
main objective of QTL mapping is to connect the genetic markers with phenotypic traits,
thus unraveling the genetic blueprint of complex traits [1]. Following the identification
of QTLs, the subsequent steps include validation and fine mapping to accurately identify
the specific genes implicated [2]. QTL mapping has become a pivotal tool in the genetic
analysis of forage crops, shedding light on the complex genetic makeup underlying pivotal
agronomic characteristics, including the yield potential, forage quality, and resilience
to biotic as well as abiotic stressors [3]. The application of this methodology has been
instrumental in the development of novel cultivars endowed with enhanced attributes.
This progress has been accelerated by utilizing detailed, high-density genetic maps in
conjunction with the latest advances in next-generation sequencing technologies, which
together have propelled the precision and efficiency of forage crop breeding programs [3].
Table 1 lists the QTL loci identified in forage crops from recent studies.

Yield maximization remains the principal objective for forage crop improvement pro-
grams. Significant advancements have been made in identifying the QTLs influencing yield
determinants. For example, a comprehensive genetic map for rye (Secale cereale L.) was con-
structed, identifying a significant QTL linked to spike length, a critical yield determinant [4].
In intermediate wheatgrass, a synergistic approach that combines genetic and physical
mapping has uncovered QTLs associated with the traits related to domestication, clarifying
the genetic intricacies underlying its domestication [5]. For alfalfa (Medicago sativa L.), a
key forage crop, several QTLs regulating yield and its sub-traits have been identified,
laying the groundwork for future yield improvements [6]. An innovative high-density
genetic map for Elymus sibiricus was developed, addressing the widespread issue of seed
shattering and highlighting the key QTLs related to seed yield [7]. In perennial ryegrass
(Lolium perenne L.), the extensive mapping of a self-compatibility locus was conducted,
producing diagnostic markers essential for implementing marker-assisted selection for
this trait [8]. Furthermore, the integration of QTL mapping with RNA-Seq has facilitated
the identification of genes involved in alfalfa leaf development, a trait that significantly
influences both the forage yield and quality [9]. An extensive linkage map for Stylosanthes
guianensis was also constructed, identifying the QTLs affecting yield and quality traits,
showcasing the efficacy of marker-assisted selection in the genetic enhancement of these
characteristics in the tropical forage legumes [10]. Collectively, these studies are poised to
transform the yield and quality improvement strategies through the application of QTL
mapping and marker-assisted selection to forage crop breeding.

Our understanding of complex agronomic traits has advanced, with the efficacy of
DNA marker-assisted selection in enhancing alfalfa’s biomass productivity being vali-
dated, particularly under a condition of water deficit. The findings, however, indicated
the variability in performance across distinct genetic backgrounds [11]. Utilizing a nested
association mapping population proved pivotal in identifying the QTLs influencing the
regrowth vigor of switchgrass (Panicum virgatum L.), an essential trait for ensuring consis-
tent biomass yields across multiple harvests [12]. Furthermore, the timing of flowering, a
critical factor in biomass accumulation, has been thoroughly investigated. Choi et al. (2023)
pinpointed a QTL affecting flowering time in switchgrass [13], whereas Jiang et al. (2022)
identified several QTLs that control this trait in alfalfa [14]. These groundbreaking discov-
eries provide essential insights that are crucial in developing breeding strategies aimed at
optimizing biomass production.
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Table 1. The QTL loci identified in forage crops from recent studies.

Species QTLs Map Position LOD Associated
Traits Candidate Genes Reference

Secale cereale 1 LG4 6.11 spike length ScWN4R01G329300 and
ScWN4R01G329600 [4]

Thinopyrum
intermedium 111 15.00

grain
production

traits

42 possible
domestication

orthogenes
[5]

Medicago sativa 21 >3.00 yield and yield
components [6]

Elymus sibiricus 29 seed-related
traits

30 candidate genes for
seed shattering [7]

Lolium perenne 1 LG5 7.17 self-
compatibility seven candidate genes [8]

Medicago sativa 24 leaf size seven candidate genes [9]

Stylosanthes
guianensis 52 >2.50

important
agronomic

traits
[10]

Panicum virgatum 10 regrowth vigor [12]
Panicum virgatum 1 flowering time PvHd1 [13]

Medicago sativa 38 >3.00 flowering time seven candidate genes [14]

Boehmeria nivea 9 CF7 and CF13 >4.05 crude fiber and
crude protein whole_GLEAN_10016511 [15]

Medicago sativa 83 quality traits
cellulose synthase-like

protein A1, E3
ubiquitin-protein ligase

[16]

Trifolium pratense 1
resistance to

southern
anthracnose

[17]

Trifolium pratense 8 rot resistance [17]

Medicago sativa 5 4D, 6B, 6D, and
8C 3.00 Verticillium

Wilt Resistance

two putative candidates
of nucleotide-binding
site leucine-rich repeat

disease resistance genes

[18]

Lolium multiflorum 1 LG4 bacterial wilt
resistance [19]

Brachiaria grasses 3 >3.00 aluminum
tolerance 30 genes [20]

Panicum virgatum 3 surface wax 50 candidate genes [21]
Eragrostis curvula 2 diplospory [22]

Megathyrsus
maximus 47 LG4 6.11 complex Traits

and Apospory 55 candidate gene [23]

Forage quality, which includes nutrient density and digestibility, is of critical impor-
tance. Recent research has illuminated the genetic framework that determine the levels
of crude protein and fiber content in ramie (Boehmeria nivea (L.) Gaud.), identifying the
QTLs and candidate genes that could be utilized to improve the forage quality via marker-
assisted selection strategies [15]. Additionally, the genetic loci associated with crude protein
content and fiber composition were identified in alfalfa, highlighting the complex genetic
mechanisms that influence these traits that are integral to forage quality [16].

Enhancing stress tolerance is crucial for the resilience and sustainability of forage crop
production systems. The QTLs that confer resistance to southern anthracnose and clover
rot have been discovered in red clover (Trifolium pratense L.), setting the stage for genomic-
assisted breeding approaches [17]. The construction of high-density linkage maps and the
identification of QTLs related to resistance against Verticillium wilt in alfalfa offer genetic
markers to aid in the creation of new alfalfa varieties with improved disease resistance [18].
Furthermore, pooled DNA sequencing has revealed SNPs linked to a major QTL for
bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lamk.), providing molecular
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tools for marker-assisted selection to enhance resistance in this forage species [19]. The
studies on Brachiaria grasses have identified QTLs that contribute to tolerance against high
aluminum concentrations by mapping the transcriptional responses to aluminum stress [20].
A recent study uncovered QTLs that the control leaf surface wax load in switchgrass, a key
trait for plant resilience to various environmental stresses [21]. Collectively, these research
efforts highlight the intricate genetic basis of stress tolerance in forage crops across a range
of biotic and abiotic stressors. They also illustrate the importance of QTL mapping in
identifying the genetic loci for breeders to target, paving the way for the development of
forage varieties that are more resilient and productive.

Additionally, the utilization of QTL mapping has illuminated the genetic foundations
of apomixis, an asexual mode of seed reproduction. The locus responsible for diplospory
has been accurately identified in the species Eragrostis curvula, representing a critical
advancement in the incorporation of apomixis into plant breeding programs [22]. Concur-
rently, the genomic regions associated with the regulation of complex traits and apospory
have been precisely mapped in guinea grass, advancing our understanding of the genetic
mechanisms that govern apomictic reproduction [23].

3. Genome-Wide Association Studies (GWASs)

Integrating Genome-Wide Association Studies (GWASs) into forage crop breeding
programs has significantly improved our understanding of the genetic factors influencing
yield, quality, and stress resistance. GWASs enable the association of genetic variants
across the genome with complex phenotypes by analyzing diverse germplasm collections,
providing a powerful method to identify the genetic markers for breeding programs. Table 2
presents a summary of the GWAS findings for forage crops from recent studies.

Table 2. A summary of GWAS findings for forage crops from recent studies.

Species GWAS Model
or Software

Chromosomal
Location SNPs Associated Traits Candidate

Genes Reference

Lolium perenne
FarmCPU,

MLMM, and
BLINK

Hv_chr4H and
Hv_chr6H 3

leaf growth
reduction under

water deficit

phytochrome B
and a MYB41
transcription

factor

[24]

Cenchrus
purpureus

BLINK.R and
MLMM 35

agronomic,
morphological, and
water-use efficiency

[25]

Lotus
corniculatus

MLMM,
FarmCPU, and

BLINK

Chr6_22318549,
chr5_19909005,

and chr3_
691967

3 CNglcs content and
growth

LjMTR, LjZCD,
LjZCB, and

LjZCA
[26]

Medicago sativa Six different
models 28 quality 20 [27]

Sorghum
sudanense

EMMAX
(emmax-
intel64-

20120205.gz)

Sobic.001G012300 1 HCN-p CYP79A1 [28]

Lolium perenne MLM hundreds phenology [29]

Trifolium
subterraneum

PLINK
v1.90b3.42

Chr1, 2, 3, 5, 6,
and 7 8 Boron toxicity

tolerance

respiratory
burst

oxidase-like
protein etc.

[30]

rifolium pratense MLMM LG1, LG2, LG3,
and LG6 8 freezing tolerance 10 [31]
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Table 2. Cont.

Species GWAS Model
or Software

Chromosomal
Location SNPs Associated Traits Candidate

Genes Reference

Lolium perenne MLM 8

heading date, plant
width, and plant

biomass and
water-soluble
carbohydrate
accumulation

a number of
candidate genes [32]

Avena sativa MLM
Mrg21, Mrg05,
Mrg17, Mrg18,

and Mrg20
9 hullessness and lemma

color [33]

Boehmeria nivea EMMAX Chr5, 4, and 13 5 FWP, FWPC, LDWP,
and DWP 9 [34]

In a study of forage yield, GWASs were proven crucial for identifying the markers
closely associated with biomass accumulation in perennial ryegrass, a critical grass species
for temperate agroecosystems. A GWAS was conducted to identify the DNA polymor-
phisms strongly correlated with reduced leaf growth under water scarcity conditions and
closely linked to the genes coding for phytochrome B and the MYB41 transcription factor.
These findings are crucial for breeding programs aimed at enhancing biomass production
during mild summer drought periods, which are expected to become more frequent due to
global climate change [24]. Similarly, the genetic architecture underlying complex traits
in Napier grass (Cenchrus purpureus), a tropical perennial grass, was explored through the
evaluation of 84 genotypes for agro-morphological and nutritional traits across varying
soil moisture levels. This study identified more than 35 QTL regions associated with these
traits, providing markers that are valuable for genetic improvement and future QTL explo-
ration [25]. Moreover, the resequencing of global Lotus corniculatus accessions has clarified
the population structure and identified the genetic loci associated with the accumulation of
cyanogenic glycosides and growth traits. By employing GWASs, this research identified
the candidate genes and an SNP site crucial for influencing these traits, thus aiding the
molecular breeding efforts of L. corniculatus [26].

Forage quality traits, such as fiber digestibility and lignin content, are critically im-
portant and influenced by environmental factors. GWASs have enabled the identification
of markers linked to these quality attributes, as demonstrated in a study on alfalfa that
found two markers consistently associated with nine fiber digestibility traits in various
environments. A single marker associated with lignin content was identified in various
contexts, revealing candidate genes that are potentially involved in lignin biosynthesis and
cell wall formation [27]. These markers and genes offer the potential for genetically en-
hancing forage quality in alfalfa, pending marker validation. A study by Li et al. (2023) on
sudangrass (Sorghum sudanense), a hybrid forage known for its significant biomass and low
dhurrin content, uncovered a QTL closely linked to hydrocyanic acid potential (HCN-p),
with associated SNPs pointing to the CYP79A1 gene, a key player in dhurrin synthesis.
This finding is pivotal in understanding the genetic underpinnings of the dhurrin content
in sudangrass, as opposed to sorghum (Sorghum bicolor (L.) Moench), which plays a critical
role in ensuring the safety and quality of forage [28].

Resistance to stress, particularly to water deficit, is a critical breeding objective in
the context of changing climatic conditions. A GWAS was utilized to identify the genetic
variants that confer enhanced tolerance to water scarcity. High-throughput genome-wide
genotyping was employed to identify significant correlations with agronomic and adaptive
characteristics in perennial ryegrass, including multiple markers linked to phenological
traits, potentially contributing to environmental adaptation. These correlations are crucial
for leveraging natural genetic diversity to develop improved grassland species adapted to
regional climates [29]. Apart from drought, boron toxicity tolerance is a significant trait for
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forages grown in the alkaline soils of arid and semi-arid regions. A GWAS utilizing a diverse
panel of subterranean clover (Trifolium subterraneum L.) identified SNPs on chromosomes 1,
2, and 3 associated with boron toxicity tolerance. These SNPs align with haplotype blocks
suggesting potential genes for boron toxicity tolerance assays, offering markers for pasture
improvement programs [30]. In red clover, the loci associated with freezing tolerance (FT)
were identified through a GWAS within a collection of European germplasm. The study
noted considerable variability in FT and identified multiple loci linked to this trait, which
may aid in developing molecular tools for breeding more resilient red clover varieties for
cold climates [31].

The integration of a GWAS with additional genomic tools is demonstrated by
Harper et al. (2019), who combined a BAC-based physical map with a GWAS on a col-
lection of European ecotypes of perennial ryegrass. This approach identified the loci
significantly associated with agriculturally important traits, including the heading date,
plant width, biomass, and water-soluble carbohydrate content, advancing the search for
candidate genes within large genomic regions [32]. A GWAS was performed on a collection
of oat (Avena sativa L.) landraces and cultivars, examining traits including hullessness and
lemma color. This study revealed significant correlations with the markers located on
different linkage groups, uncovering genetic diversity and population structure patterns,
which have important implications for oat breeding at high altitudes [33]. In ramie, a
GWAS examining six forage traits demonstrated consistent associations across these traits
and identified the candidate genes potentially involved in nitrogen metabolism, growth,
and development. This provides a foundation for breeding ramie varieties with improved
forage qualities [34].

4. Genomic Selection

Genomic selection (GS) has emerged as a transformative approach in plant breed-
ing, offering the potential to accelerate genetic improvements for complex traits such as
forage yield, quality, and stress tolerance. GS is distinguished from QTL mapping and
GWASs by not focusing on identifying the specific genetic loci linked to traits. Instead, it
leverages all the available marker data across the genome, including Single-Nucleotide
Polymorphisms (SNPs), Microsatellites (also known as Simple Sequence Repeats or SSRs),
and Insertion–Deletions (indels), to predict the genetic merit of individuals. The primary
aim is to estimate the breeding values of individuals for selection purposes, rather than
unraveling the genetic basis of traits. This methodology enables breeders to more efficiently
identify the individuals with desirable traits, even when these traits are influenced by
complex genetic architectures involving multiple genes with minor effects.

In the field of forage crop research, GS has been applied to various species, each
presenting unique challenges due to their complex genomes. For instance, triticale, a hybrid
crop from the crossbreeding of wheat and rye, has shown significant improvements through
GS application, despite its large and complex genome. A study by Ayalew et al. (2022)
analyzed dense marker data to explore the genetic diversity and population structure of
cultivated triticale [35]. The study revealed a significant R genome substitution with the D
genome and demonstrated the potential of GS to enhance the forage yield, achieving a mean
accuracy of 0.52. While this is not perfect (a value of 1 would indicate perfect prediction),
an accuracy of 0.52 indicates that GS can make the selections more accurate than random.
Similarly, substantial progress has been made in applying GS to perennial grasses, which
are typically characterized by obligate outcrossing. A recent study explored the challenges
and successes of implementing GS in species such as perennial ryegrass, switchgrass, and
timothy (Phleum pratense L.), observing that GS has the potential to significantly enhance
the genetic gain for traits with varying heritabilities. The authors also highlighted the
importance of utilizing enough markers and considering the genotype-by-environment
interactions in GS models [36]. The potential of GS for various nutritive traits in perennial
ryegrass, which showed moderate-to-high predictive abilities, suggests the practicality of
implementing GS for these traits. This highlights the potential applications of multi-trait
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GS in forage crop research [37]. The efficacy of genotyping-by-sequencing and GS in
crested wheatgrass breeding revealed moderate prediction accuracies for the agronomic,
morphological, and nutritive traits, indicating GS’s potential applicability to non-model
species [38]. GS has also been implemented in alfalfa to predict the canopy height and
dry matter yield using family bulks. This strategy considered the interaction between
the genotype and environment, leading to improved predictive capabilities [39]. The
global alfalfa diversity panel was analyzed, identifying the genomic selection signatures
specifically in Chinese varieties. Additionally, genomic associations with root development
were discovered, offering valuable insights into improving the alfalfa traits [40].

The recent findings highlight the potential of advanced computational approaches to
enhance GS in complex genomes. Six GS models were evaluated for Panicum maximum,
an autotetraploid forage crop, demonstrating diverse applications. Specifically, GS-TD
(Genomic Selection considering Tetraploid Dosage) and GS-DD (Genomic Selection consid-
ering Diploid Dosage) models were compared using 1223 informative markers. The results
indicated that GS-TD outperformed GS-DD in predictive abilities, though all the models
showed a relatively comparable performance. This research provides bioinformatic and
modeling guidelines to account for tetraploid dosage effects, suggesting that applying these
insights could improve the recurrent selection program for P. maximum [41]. Additionally, a
machine learning method utilizing a joint learning approach for polyploid grasses resulted
in over 50% accuracy improvements compared to those of the traditional methods [42].
Decision support software was used to simulate the effects of GS on genetic gain in terms of
the dry matter yield for perennial ryegrass. The findings revealed significant improvements
in the genetic gain rates and, in certain scenarios, enhanced cost-effectiveness [43]. Fur-
thermore, multi-trait genomic prediction models were introduced, potentially improving
the predictive accuracy for traits like dry matter yield and water-soluble carbohydrates in
perennial ryegrass [44].

Integrating GS with high-throughput phenotyping and advanced statistical models
offers a promising strategy for accelerating the breeding cycles and enhancing the genetic
potential of forage crops. The review covered the status and potential future applications
of GS in tropical forage crops. This review emphasized the critical role of utilizing genotyp-
ing, phenotyping, and envirotyping strategies to enhance the genetic gains. The authors
discussed promising preliminary results from implementing GS in tropical forage crops.
Additionally, they highlighted the importance of establishing adequately sized training
populations [45]. The study also examined the application of imaging phenotyping and
GS in advancing bromegrass breeding. The authors assessed the potential of these tech-
nologies to promote genetic gains and facilitate adaptation in future bromegrass breeding
programs [46].

5. Genome Editing

Genome editing, particularly CRISPR/Cas9 technology, has undergone significant
advancements in forage crop improvement. These advancements have demonstrated the
potential to enhance traits, such as the biomass yield, forage quality, disease resistance,
and stress tolerance, which are vital for the sustainability of livestock industries and bio-
fuel production. A recent review provided a comprehensive summary of the advances in
CRISPR/Cas9 technology for plant genome editing, particularly emphasizing its applica-
tions in forage crops and the technology’s precision and efficiency. The progress in targeted
mutagenesis across various forage crops was also evaluated, discussing the potential
benefits and challenges associated with the use of CRISPR/Cas9 in forage breeding [47].

Robust transformation protocols have been developed for perennial ryegrass, facilitat-
ing advancements in functional genomics and breeding for this important grass species [48].
A chromosome-level, allele-aware genome assembly for cultivated alfalfa has been de-
veloped, alongside the establishment of an efficient CRISPR/Cas9-based genome editing
protocol. This enables the precise induction of tetra-allelic mutations and the inheritance
of traits without transgenes, potentially accelerating the molecular breeding efforts [49].
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The high-efficiency gene editing of perennial ryegrass has been demonstrated using an
Agrobacterium-mediated system with a single Cas9-sgRNA transcript. By controlling Cas9
and sgRNA expressions via the maize Ubiquitin 1 (ZmUbi1) promoter, a 29% editing effi-
ciency for the PHYTOENE DESATURASE (PDS) was achieved, with most plants exhibiting
bi-allelic mutations [50].

In alfalfa, the multiplexed CRISPR/Cas9-mediated mutagenesis of the FLOWERING
LOCUS Ta1 (MsFTa1) has been utilized to delay flowering, resulting in an enhanced forage
biomass yield and quality. A polycistronic tRNA-gRNA system successfully introduced
mutations, delaying flowering and increased the forage biomass yield by up to 78% in
fresh weight and 76% in dry weight compared to those of the control plants. This method
also led to a reduction in lignin content and an increase in crude protein and mineral
contents, particularly in the plant stems, potentially enhancing forage digestibility and
the nutritional value [51]. In sheepgrass (Leymus chinensis (Trin.) Tzvel.), an efficient
Agrobacterium-mediated CRISPR/Cas9 genome editing platform has been developed. By
targeting the Teosinte Branched1 (TB1) gene, an increase in tiller number and biomass was
observed, demonstrating the method’s effectiveness for gene function studies and breeding
in sheepgrass [52]. The study also investigated genome evolution and initial breeding in
sheepgrass, suggesting that genome editing could play a pivotal role in enhancing the
yield-related traits. The knockout of monocot-specific miR528 using CRISPR/Cas9 resulted
in increases in the tiller number and growth rate, offering a framework for the genetic
improvement of this species and potentially other Triticeae grasses [53].

In a follow-up study, the challenges of polyploidy in bahiagrass (Paspalum notatum
Flüggé) were addressed using CRISPR/Cas9 technology to target the magnesium chelatase
(MgCh) gene, a key enzyme in chlorophyll biosynthesis. The study demonstrated a high
rate of successful mutagenesis and the identification of progeny plants with consistent
genetic edits, suggesting the potential of this technology to expedite the development of
novel bahiagrass cultivars [54]. The effects of CRISPR/Cas9-mediated modifications on
the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 (MsSPL8) in alfalfa revealed
significant phenotypic changes, including reduced leaf sizes and earlier flowering [55].
These findings suggest that the spectrum of phenotypic expression is influenced by the
degree of allelic mutations, indicating the variability in MsSPL8′s function depending on
the genotype, environmental factors, or particular alleles. Furthermore, an in vitro regener-
ation protocol for sudangrass was developed in conjunction with the use of CRISPR/Cas9
to precisely edit the Caffeic acid O-methyltransferase (COMT) gene, which is crucial in lignin
synthesis. This affects the digestibility of forage and the efficiency of bioethanol biomass
conversion [56]. The successful modification of the COMT gene represents a significant ad-
vancement in improving the quality of forage and biomass in sudangrass, offering consider-
able benefits for agricultural biotechnology and the sustainability of bioenergy production.

The investigation into CRISPR/Cas9-mediated genome editing’s potential to enhance
disease resistance in alfalfa underscored its value as a precise genetic alteration tool in breed-
ing. The procedures outlined for generating a single nonhomologous end-joining-derived
indel at a targeted genomic locus demonstrate the method’s precision and efficiency [57].
In a related study, CRISPR/Cas9 was used to knock out the isoflavone synthase gene in red
clover, leading to significant reductions in isoflavone concentrations, without impacting
nodulation, indicating its potential role in rhizosphere defense over rhizobial signaling [58].

6. The Integration of High-Throughput Phenotyping (HTP) and Deep Learning

High-throughput phenotyping (HTP) has emerged as a transformative approach in
forage breeding, enabling the rapid and precise measurement of complex traits, such
as the biomass yield. The integration of unmanned aerial vehicles (UAVs) and sophisti-
cated machine learning techniques has proven pivotal in the recent advancements of HTP
applications for forage crops.

Sharma et al. (2022) demonstrated the application of UAV-based remote sensing
coupled with machine learning to estimate the above-ground biomass in oats. Using a UAV
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equipped with a multispectral sensor (DJI Matrice 600 hexcopter, SZ DJI Technology Co.,
Ltd., Shenzhen, China; MicaSense RedEdge-MX camera, MicaSense, Inc., Seattle, WA, USA)
over experimental fields, researchers calculated vegetation indices (VIs) and employed
machine learning algorithms to develop biomass estimation models. Although the accuracy
varied across various locations, the study highlighted the potential of integrating UAV
remote sensing with machine learning for biomass estimation in oat breeding nurseries [59].
The predictability of alfalfa biomass was confirmed using UAV-based photogrammetry
(DJI Phantom 4 Pro UAV, SZ DJI Technology Co., Shenzhen, China; Double 4 K Multi-
Spectral Ag camera, Sentera Inc., St Paul, MN, USA) and automated plot segmentation.
This study developed a predictive model based on multispectral camera images from a
UAV, which accounted for a significant proportion of the biomass variation. This study also
indicates that UAV-based HTP could improve the efficiency of biomass selection in alfalfa
breeding [60]. Similarly, UAV-based imagery and spatial analysis were used in selecting
alfalfa for herbage accumulation (HA). UAV imagery captured prior to each harvest enabled
the calculation of various VIs, which exhibited high correlations with HA. Spatial analysis
significantly improved genetic parameter estimation, demonstrating the effectiveness of
HTP in alfalfa phenotyping [61]. The application of multispectral sensors and unmanned
aerial systems (UAS) was also assessed for evaluating the biomass in perennial ryegrass
field trials, identifying significant correlations between the biomass yield and Normalized
Difference Vegetation Index (NDVI) [62]. These technologies demonstrated the potential in
replacing visual scoring and serving as valuable proxies for yield estimation.

Deep learning applications have been extended to forage phenotyping, as demon-
strated by de Oliveira et al. (2021), employing convolutional neural networks (CNNs) for
estimating dry matter yield in a guineagrass breeding program. Several CNN architectures
were evaluated, some yielding high-level heritability and genetic correlations between the
observed and HTP-derived traits. Specifically, the pre-trained ResNeXt50 CNN architec-
ture yielded optimal results for indirect selection [63]. The application of deep learning
techniques and UAV-based RGB imagery for phenotyping biomass yield in forages was
investigated. Comparative analysis of several CNN models revealed the AlexNet model to
exhibit a high correlation and minimal mean absolute error in biomass estimation [64]. In
mixed sward environments, Bateman et al. (2020) introduced an innovative CNN architec-
ture, the local context network (LC-Net), achieving a high segmentation accuracy; however,
its biomass estimation accuracy was limited, suggesting that incorporating additional data
sources could enhance the accuracy [65].

Taken together, these studies suggest that HTP, enabled by UAV-based remote sensing
and deep learning techniques, offers significant potential for improving both the efficiency
and accuracy of biomass assessments in forage breeding programs. Although challenges,
such as variable accuracy across different environments, persist, ongoing advancement in
these technologies and methods are expected to further improve the capabilities of HTP in
forage breeding programs.

7. The Future of Molecular Breeding in Forage Crops

The future of forage crop breeding lies in technological innovation and addressing
pressing global challenges. Artificial intelligence (AI) is substantially advancing predic-
tive plant breeding by facilitating the integration of complex multi-omics data through
machine learning and deep learning techniques. This advancement enables the devel-
opment of accurate predictive models of plants’ performance. The concept of integrated
genomic-enviromic prediction (iGEP) introduced by Xu et al. (2022) exemplifies this ad-
vancement by extending genomic prediction to encompass environmental data alongside
genotypic and phenotypic information. This integration yields more refined phenotype
predictions by considering the intricate interactions between the genotype, envirotype, and
genotype–environment (GxE) interactions, which are crucial for successful plant breed-
ing [66]. Furthermore, AI’s capacity to manage and interpret the inherent complexity of
multi-omics data has been demonstrated, leading to significant advancements in plant
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phenotyping [67]. This integration promises to revolutionize the field by enabling more
comprehensive analyses, improved prediction, and enhance the management of plant
diseases and stress responses. As AI models evolve, they are poised to play a pivotal role
in the developing new forage varieties tailed to the specific needs of diverse ecosystems
and agricultural practices.

The introduction of CRISPR/Cas9 genome editing technology has prompted critical
inquiries regarding biosafety, biodiversity, and the ownership of genetic resources, particu-
larly with respect to precise genome editing in forage crops. The biosafety risks associated
with CRISPR variants were explored, which include off-target effects and the unintended
gene transfer to non-target organisms. This also proposes strategies for mitigating these
risks and methods for the detection of edited genes [68]. Within the European Union
context, the European Court of Justice’s ruling underscored the necessity for a case-specific
environmental risk assessment (ERA) for genome-edited plants. The ruling advocates
integrating considerations of traits introduced by genome editing and method-related
unintended effects into the ERA. This aims to provide specific guidance for a focused
assessment and monitoring approach for genetically edited plants [69]. Such considerations
are essential to ensure the biosafety and sustainability of agricultural practices involving
genome-edited crops, including forage crops.

Climate change poses a significant threat to global food security, and forage crops are
no exception. Rising temperatures, shifting precipitation patterns, and increased incidences
of pest and disease necessitate developing more resilient forage crops varieties. Molecular
breeding techniques, such as marker-assisted selection, genomic selection, and CRISPR-
Cas9, serve as powerful tools to enhance forage crops’ stress tolerance. Identifying and
selecting the genes that confer resistance to biotic and abiotic stresses enables breeders to
develop varieties more suited to thrive in changing climates [70].

In summary, the advancement of forage crop improvement is being shaped by signifi-
cant advances in molecular breeding technologies and the integration of AI into predictive
breeding. These innovations could significantly accelerate the development of forage vari-
eties with an enhanced yield, nutritional value, and resilience to environmental stressors.
However, these advancements also bring challenges. AI and machine learning stand to
revolutionize breeding by analyzing complex data to enhance the performance. Ethical
and regulatory frameworks need to be established for the governance of genome editing
technologies such as CRISPR/Cas9 to ensure responsible application and the equitable dis-
tribution of benefits. Given the threat of climate change to food security, molecular breeding
techniques, such as marker-assisted selection based on QTL mapping and GWASs, along
with GS, are instrumental in developing stress-tolerant forage varieties. These methods
enable breeders to identify and utilize the genes that confer resistance to stressors, thereby
developing forage crops that are better equipped to fulfill the future agricultural demands.
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integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture. Biology 2023, 12, 1298.
[CrossRef]

68. Movahedi, A.; Aghaei-Dargiri, S.; Li, H.; Zhuge, Q.; Sun, W. CRISPR Variants for Gene Editing in Plants: Biosafety Risks and
Future Directions. Int. J. Mol. Sci. 2023, 24, 16241. [CrossRef]

69. Eckerstorfer, M.F.; Grabowski, M.; Lener, M.; Engelhard, M.; Simon, S.; Dolezel, M.; Heissenberger, A.; Lüthi, C. Biosafety of genome
editing applications in plant breeding: Considerations for a focused case-specific risk assessment in the EU. BioTech 2021, 10, 10.
[CrossRef]
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