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Abstract: The development of modern genomic tools has helped accelerate genetic gains in the
breeding program of food crops. More recently, genomic resources have been developed for tropical
forages, providing key resources for developing new climate-resilient high-yielding forage varieties.
In this study, we present a genome-wide association study for biomass yield and feed quality traits in
buffel grass (Cenchrus ciliaris L. aka Pennisetum ciliare L.). Genome-wide markers, generated using
the DArTSeq platform and mapped onto the Setaria italica reference genome, were used for the
genome-wide association study. The results revealed several markers associated with biomass yield
and feed quality traits. A total of 78 marker–trait associations were identified with R2 values ranging
from 0.138 to 0.236. The marker–trait associations were distributed across different chromosomes. Of
these associations, the most marker–trait associations (23) were observed on Chr9, followed by Chr5
with 12. The fewest number of marker–trait associations were observed on Chr4 with 2. In terms of
traits, 17 markers were associated with biomass yield, 24 with crude protein, 26 with TDN, 14 with
ADF, 10 with NDF and 6 with DMI. A total of 20 of the identified markers were associated with at
least two traits. The identified marker–trait associations provide a useful genomic resource for the
future improvement and breeding of buffel grass.

Keywords: climate change; marker-assisted breeding; tropical forage; forage improvement; genetic
resources; drought tolerance

1. Introduction

Achieving improved livelihoods, reduced poverty and reduced malnutrition in the
world would be very difficult without addressing the challenges of sustainable livestock
production in low- and middle-income countries (LMIC). Livestock play multiple crucial
roles in rural livelihoods and the economy of LMIC [1–3] where smallholder farmers
account for most of the crop–livestock production. Under smallholder farmers’ conditions,
natural pasture is the main source of feed for livestock animals and, among others, feed
resources are the major limiting factor for livestock production and productivity [4]. Hence,
there is a strong need to increase feed resource availability through the development of
climate-resilient, low-input forage varieties that provide better yields of quality forage in the
current trend of climate change and enable expanding livestock production to marginally
suitable areas and agroecological conditions.

Among agricultural technologies, plant breeding has played a considerable role in crop
yield improvements over the last several decades [5]. In the past few years, the development
and integration of modern genomic tools has benefited plant breeding programs [6] and
contributed to the development of new varieties of major food crops. In more recent
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years, genomic resources have also been developed for a limited number of important
species of tropical forages. For example, during the last few years, at the International
Livestock Research Institute, genome-wide markers were generated for Napier grass, buffel
grass, Rhodes grass, lablab and Sesbania sesban [7–10] and are being developed for Urochlao
spp. and Megathyrus maximus (unpublished data). Similarly, high-throughput genome-
wide markers have also been developed for tropical forages elsewhere [11–13]. Reference
genomes have also been developed for a few of the key tropical forage crops [14–20].
These genomic resources have been used for the analysis of genetic diversity, subsetting,
genome-wide association and population genetic studies, and will continue to be useful
tools and resources for tropical forage research and development. The integration of these
genomic tools into field screening and evaluation will enable efficient and accelerated
forage breeding programs to develop adaptive and climate-resilient varieties to transform
livestock production in tropical regions.

Among the tropical forages, buffel grass is an important drought-tolerant perennial
species [21] grown throughout the tropical and subtropical regions of the world [21,22]. It
is an apomictic species with a basic chromosome number of nine and three ploidy levels:
tetraploid (2n = 4x = 36), pentaploid (2n = 5x = 45) and hexaploid (2n = 6x = 54) [23,24]. It
is an important grass cultivated as a pasture or for hay production [25]. Under no input
production conditions, it can produce up to 18 t DM (dry matter)/ha/annum [25] and
forage with a crude protein content of 6–16% [22]. Buffel grass has been reported to produce
DM yields of up to 12 t/ha in Kenya [26,27], 8 t/ha in USA [28], 7 t/ha in Pakistan [29]
and 21 t/ha in Ethiopia [30]. Improved forage varieties that are better adapted to produce
more quality biomass across a range of agroecologies and production systems are a pre-
requisite and are required more than ever for supporting enhanced livestock production
in a sustainable manner [31]. Despite limited improvement efforts, conventional tropical
forage breeding programs have contributed to the development of improved forage cul-
tivars with a number of buffel grass cultivars developed over the last few decades [22].
However, genetic gains from conventional tropical forage breeding programs have been
low, particularly in view of the growing demand for animal source foods globally, and
breeding programs should leverage the combination of phenotyping, genotyping, and envi-
rotyping strategies in order to increase genetic gains and help secure the future of livestock
production in the tropics [31]. The International Livestock Research Institute (ILRI) holds a
large collection of buffel grass germplasm collected from different countries in Africa and
Asia [9]. Agro-morphological studies have revealed the diversity embedded in the buffel
grass collection maintained in the forage genebank at ILRI [32,33]. Facultative apomictic
lines that could offer a potential resource for forage breeding programs to generate new
and improved varieties have also been identified in the collection [34]. Recently, we gen-
erated a large set of genome-wide markers using a next generation sequencing approach
and reported on the large amount of genetic diversity held in the collection [9]. To our
knowledge, there have been no genomic studies in buffel grass that combine phenotypic
and genotypic data analysis to investigate the crops’ genetic architecture. Thus, in this
current study, we envisage filling this gap by employing a genome-wide association study
for biomass yield and feed quality traits. Here we leveraged the data generated from
previous agro-morphological [33] and genotyping studies [9], and present a genome-wide
association study (GWAS) for biomass yield and feed quality traits in buffel grass.

2. Materials and Methods
2.1. High-Density Genome-Wide Markers

Genome-wide SNP and SilicoDArT markers, generated using the DArTSeq plat-
form [35], were used in this study. The markers were mapped onto the Setaria italica
reference genome [36] as described previously [9].
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2.2. Phenotypic Data

The phenotypic data were collected from a field experiment as described elsewhere [33]
and used for GWAS. Briefly, the experiment was established in 2014 during the main rainy
season at the Bishoftu field genebank, Bishoftu, Ethiopia [33]. All the accessions evaluated in
the experiment were obtained from the Zwai field genebank, Zwai, Ethiopia. The passport
data of the accessions are provided in Supplementary Table S1. The experiment was conducted
using a randomised complete block design with three replications, and data were collected
during the main growing seasons (August–September) of 2015 and 2016. During both growing
seasons, the plants were clean cut at 10 cm above ground (August 18th), and the data
were collected 45 days after the clean cut. The data collected include biomass yield (YLD,
kg/ha/annum), plant height (PH, cm), crude protein (CP, % of dry matter (DM)), Neutral
Detergent Fibre (NDF, % of DM), Acid Detergent Fibre (ADF, % of DM), total digestible
nutrients (TDN, % of DM) and dry matter intake (DMI, % of body weight). For biomass yield
estimation, the plants within a quadrat with an area of one square metre were harvested at
10 cm above the ground and weighed immediately, and the weight was converted to yield
per hectare. For plant height, three plants per plot were measured from the ground to the tip
of the tallest inflorescence, and the average was used for further analysis. For feed quality
analysis, 300 g of freshly harvested material was oven dried (72 h at 55 ◦C), ground to pass
through a one mm sieve and used for Near Infrared Spectroscopy (FOSS Forage Analyzer
5000 with software package WinISI II) (NIRS) scanning, as described previously [37]. TDN
and DMI were estimated using ADF and NDF values from the NIRS data using the equations
TDN = 88.9 − (0.779 × ADF) and DMI = 1.2/NDF × 100 [38].

2.3. Data Analysis

A normality test analysis based on the Shapiro-Wilk method was conducted using the
R package nortest (version 1.0.4) [39]. Statistical analysis was conducted using analysis of
variance (ANOVA) in R software (version 4.2.2) to determine the significance of the main
effects and the interactions using the following model:

Yijk = µ+ Gi + Bj + Tk + (Gi × Tik) + εijk (1)

where Yijk is the response, µ = overall mean, Gi = effect of the ith buffel grass genotype,
Bj = effect of the jth Block effect, Tk = effect of the kth growing season, G × Tij = the
interaction of ith genotype and jth growing season and εijk = the residual error. The least
significant difference (LSD) test for a comparison of the mean values of traits was employed
to compare genotypes for traits with significant differences. Genetic parameters, genotypic
coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were estimated
using the formulae [40]

GCV =

√
σg2

X
× 100 (2)

PCV =

√
σp2

X
× 100 (3)

where GCV = genotypic coefficient of variation, PCV = phenotypic coefficient of variation,
σg2 = genotypic variance, σp2 = phenotypic variance and X = grand mean.

2.4. Marker–Trait Association Analysis

A Bartlett test, using the bartlett.test() function of the R package Stats (version 4.3.2) [41],
was used to assess the homogeneity of error variance prior to pooling the data for the GWAS.
The GWAS were performed as described by Muktar et al. [42] using fixed and random
model Circulating Probability Unification (FarmCPU) [43], Bayesian information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK) [44] and General linear model
(GLM) algorithms [45], implemented in the R package Genomic Association and Prediction
integrated tool version 3(GAPIT3) [46]. Linkage maps of the markers associated with
traits of interest were generated using the R package LinkageMapView (version 2.1.2) [47].
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To assess the putative functional genes underlying the genomic regions of the identified
marker–trait associations, an NCBI blast search was conducted using the sequence of
the markers.

3. Results

Genotyping data were available for 205 accessions [9], whereas phenotypic evaluation
data were available for 126 accessions. When these resources were combined, 120 accessions
had both genotypic and phenotypic data, and, hence, data from these 120 accessions were
considered for the marker–trait association studies. The normality test analysis showed
that the agronomic and feed nutrition trait data were normally distributed. Following a
normality test, outliers were removed, resulting in 110 and 114 accessions being used for the
GWAS for the 2015 and 2016 growing seasons, respectively. The homogeneity of variance
test showed that there was a significant difference between the 2015 and 2016 season data
for all traits except for CP and NDF; hence, the GWAS analysis was conducted for the 2015
and 2016 seasons separately, as well as after combining the two growing seasons’ data.

3.1. Variation in Biomass Yield, Plant Height and Feed Quality Traits of Buffel Grass Accessions

The average biomass yield per annum in 2015 and 2016 was 3231.47 and 5926.96 kg/ha,
respectively, whereas the two seasons combined mean biomass yield per annum was
4562.22 kg/ha. Figure 1 shows the boxplot visualisation of the distribution and outliers of
the data for biomass yield, plant height and feed quality traits by growing seasons. The mean
performance of each accession over the two growing seasons for agronomic and feed quality
traits are presented in the Supplementary information (Supplementary Tables S2 and S3).
The mean plant height was 85.58 cm, 121.18 cm and 103.31 cm for 2015, 2016 and the
combined seasons, respectively. The mean value for crude protein (CP) was 12.49%, 8.33%
and 10.02% for 2015, 2016 and the combined data, respectively. The mean value for NDF
and ADF for the combined seasons was 72.37% (70.42% for 2015 and 73.78% for 2016) and
43.77% (40.31% for 2015 and 47.78% for 2016), respectively. Similarly, the mean value for
TDN and DMI over the two seasons was 48.03% (52.54% for 2015 and 44.72% for 2016) and
1.66% (1.71% for 2015 and 1.63% for 2016), respectively.
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Figure 1. Boxplot visualisation showing the distribution and outliers of the data for biomass yield
(YLD, kg/ha/annum), plant height (PH, cm) and feed quality traits by growing seasons. The red,
green and blue boxes are for seasons 2015, 2016 and the combined mean, respectively. CP = Crude
protein, NDF = Neutral Detergent Fibre, ADF = Acid Detergent Fibre, TDN = total digestible nutrients
and DMI = dry matter intake.
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3.2. Effect of Genotype and Seasonality on Buffel Grass Forage Performance

ANOVA results for all of the traits revealed highly significant (<0.001) differences
among genotypes, blocks and seasons. The genotype–season interaction was not significant
except for NDF (Table 1). Overall, the results showed that the performance of buffel grass
was primarily affected by the genotype and season of production. The significant difference
for the block effect shows that blocking was effective in reducing the soil heterogeneity.

Table 1. ANOVA summary for agronomic and feed quality traits from 126 buffel grass accessions in
2015 and 2016 growing seasons at Bishoftu, Ethiopia.

Traits/Sources of Variation YLD PH NDF ADF CP TND DMI

Genotype <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Replication <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Season <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Genotype: Season NS NS NS 0.001 NS NS NS

CV% 34.9 17.9 2.3 4.7 13.4 4.1 2.3

R-square % 73 73 77 88 85 89 78

Coefficient of variation (CV), YLD = Biomass yield, PH = Plant height, CP = Crude protein, NDF = Neutral
Detergent Fibre, ADF = Acid Detergent Fibre, TDN = total digestible nutrients, DMI = dry matter intake and
NS = non-significant.

3.3. Correlation of Phenotypic and Feed Quality Traits

Figure 2 shows correlation coefficients between yield, plant height and nutritional
quality traits among the buffel grass accessions for the two growing seasons and the
combined data. There was a positive and significant correlation among biomass yield,
plant height, NDF and ADF. Similarly, a positive and significant correlation was observed
among CP, TDN and DMI. On the other hand, CP and DMI had a negative and significant
correlation with biomass yield, plant height, NDF and ADF.

3.4. Quantitative Genetic Variation

The phenotypic coefficient of variation (PCV) and the genotypic coefficient of variation
(GCV) were calculated to assess the contribution of the factors to the respective traits
(Table 2). The PCV value for biomass yield was equivalent to the GCV values. PCV values
for plant height and feed quality traits were higher than the corresponding GCV values.

Table 2. Variations and heritability for biomass yield, plant height and feed quality traits of 126 buffel
grass accessions for 2015 and 2016 growing seasons at Bishoftu Ethiopia.

Traits/Statistics Minimum Maximum Mean PCV GCV

YLD (Kg/ha) 1609.65 9097.54 4562.22 28.1 28.1

PH (cm) 71.50 135.22 103.31 13.9 9.9

CP (%) 6.11 12.21 10.02 32.8 8.9

NDF (%) 69.98 75.68 72.37 11.8 1.2

ADF (%) 40.40 48.69 44.62 15.2 2.8

TND (%) 43.10 51.73 48.03 14.7 2.9

DMI (%) 1.59 1.72 1.66 77.6 1.2
YLD = Biomass yield, PH = Plant height, CP = Crude protein, NDF = Neutral Detergent Fibre, ADF = Acid
Detergent Fibre, TDN = total digestible nutrients, and DMI = dry matter intake, GCV = genotypic coefficient of
variation and PCV = phenotypic coefficient of variation.
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Figure 2. Correlation coefficient among agronomic and quality traits in the buffel grass collection.
The correlation coefficient value for 2015 (red), 2016 (light blue) and combined (black) data are shown
on the upper half part of the graph. YLD = Biomass yield, PH = Plant height, CP = Crude protein,
NDF = Neutral Detergent Fibre, ADF = Acid Detergent Fibre, TDN = total digestible nutrients and
DMI = dry matter intake. ** p-value < 0.01, *** p-value < 0.001.

3.5. Buffel Grass Accession Clustering Based on Phenotypic and Feed Quality Traits

Principal component analysis was used to group the buffel grass accessions based on
phenotypic and feed quality trait data from individual growing seasons and the combined
seasons. Figure 3 shows the clustering of buffel grass accessions based on phenotypic
and feed quality traits from the two growing seasons. The first two principal components
accounted for 87.2% of the total variation for the combined seasons’ data. The PCA grouped
the accessions into those with better biomass yield, better feed quality and poor feed quality
accessions. For example, accessions such as 19,369, 13,406, 19,425, 19,467 and 12,884 were
among the group of accessions with high crude protein content during both growing
seasons. Accessions 19,459, 19,448 and 19,439 had the lowest CP content. Accessions 19,442,
6646 and 19,459 were among those with a high biomass yield, whereas accessions 15,688,
13,121 and 12,769 produced the lowest biomass yield. The tallest accessions were 13,461,
16,609 and 19,414, whereas the shortest accessions were 6645, 19,470 and 19,371. NDF
contents were highest in accessions 13,461, 16,609 and 19,442, whereas accessions 6645,
19,420 and 19,367 contained the lowest NDF. Accessions 13,461, 19,462, 19,442, 19,448 and
16,609 were a few of those with high ADF (poor feed quality accessions), whereas accessions
12,769, 19,367 and 13,284 were among those with lowest ADF. The highest values for TDN
and DMI was observed in accessions 12,769, 18,094 and 19,467, and lowest values were
obtained from accessions 19,442, 13,461 and 19,448. Accessions 19,367, 12,769, 18,094, 19,425
and 19,420 were among the accessions with the highest DMI, whereas accessions 13,461,
16,609 and 19,442 were among those with the lowest DMI.
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3.6. Performance of Genetic Clusters Identified Using DArTSeq Genome-Wide Markers

The performance of clusters identified using DArTSeq markers [9] were assessed.
Figure 4 shows the performance of the different clusters (Supplementary Table S4). Cluster
IV had the highest biomass yield followed by cluster VIII. Cluster II had the lowest biomass
yield. Similarly, cluster IV had the tallest plants, whereas cluster II had the shortest plants.
In terms of feed quality, clusters I, II and III were of a higher quality than the rest of the
clusters. These three clusters had the highest CP (10.69–10.78%) and TDN (48.90–49.06%).
Cluster IV had the lowest CP (9.95%) and TDN (46.82%). Cluster II had the highest TDN
and DMI values.
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height, CP = Crude protein, NDF = Neutral Detergent Fibre, ADF = Acid Detergent Fibre, TDN = total
digestible nutrients and DMI = Dry matter intake.

3.7. Genome-Wide Distribution and Density of Markers

The DArTSeq markers were mapped onto the Setaria italica reference genome [36].
Figure 5 shows the genome-wide distribution and density of the markers on the reference
genome. These mapped markers were used for genome-wide association studies for the
different traits. Accordingly, the total number of SNP and SilicoDArT markers used for
GWAS was 7206 and 8342, respectively (Supplementary Table S5).
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3.8. Data Filtering for Association Studies

For association studies, markers with known genomic positions were used. The
markers were also filtered for missing data (≤20%), polymorphic information content
(≥0.2) and minor allele frequency (MAF, 0.05). The phenotypic and feed quality data were
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checked for normality distribution (Supplementary Figure S1), and outliers were removed
from the genome-wide association studies.

3.9. Markers Associated with Biomass Yield and Plant Height

Using combined data from the two growing seasons, eight SilicoDArt markers were
found to be associated with biomass yield. Of these markers, two were detected by three of
the models (FarmCPU, BLINK and GLM), whereas one was detected by both Blink and
GLM models (Figure 6 and Table 3). In 2015, one SilicoDArT marker on Chr1 and one on
Chr8 was associated with biomass yield and plant height, respectively, using the BLINK
model (Supplementary Figure S2A, Supplementary Table S6), whereas no SNP marker was
found to be associated with biomass yield or plant height. In 2016, six silicoDArT markers
were found to be associated with biomass yield (Supplementary Figure S2B, Supplementary
Table S6). Of these markers, one marker on Chr8 was detected by all three of the models
(FarmCPU, BLINK and GLM).
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Figure 6. SilicoDArT markers associated with biomass yield using the combined data from the 2015
and 2016 growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes,
and the y-axis is the negative log base 10 of the p-values. The green horizontal line indicates the
significance level. QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and
the x-axis is the expected observed negative base 10 logarithm of the p-values.
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Table 3. List of SilicoDArT markers associated with biomass yield using the combined data from the 2015 and 2016 growing seasons.

No. Model Marker ID Marker Sequence RefSeq
Sequence Chr pos Allele Minor

Allele maf p-Value
R2

without
SNP

R2 with
SNP R2*

FDR
Adjusted
p Values

Effect Remark

1 GLM 30838261

TGCAGGT
TTGAGGCT

TGTCAGTGT
GCTCGTCC
CCTTGTGC
CGACCTTT
CCCAGGCG
TC CCTGTC

CGAGA

NC_028450.1 1 32,744,739 0/1 1 0.079 4.60 × 10−6 0.296 0.445 0.149 0.006 2009.364
Minor allele
has positive

effect

2 FarmCPU 30921428

TGCAGCA
AATACTTA

CCAGAGCA
CAGGTTGC
CAGAAAA
TATTGTT

GCAACAA
CAAGTGCT

GCTGATGCT

NC_028451.1 2 8,049,803 0/1 1 0.097 1.65 × 10−6 NA NA NA 0.005 −969.259

Minor allele
has

negative
effect

3 GLM 30912865

TGCAGAGA
GTTGCAAA

ACGTATCGA
AACAAATGT
TGGAGACTT
GCCGTGGG
GTGAGGTG

AAGACG
GACT

NC_028451.1 2 30,749,442 0/1 1 0.097 2.45 × 10−6 0.296 0.455 0.158 0.005 1608.405
Minor allele
has positive

effect

4 GLM 30829864

TGCAGGCC
GATCACGC
TGTACGCC
ATGTGACC
CAGCCGC

GACGCCAC
CTGCACCGC

GAACCGC
AAAATG

NC_028452.1 3 3,213,526 0/1 1 0.118 6.32 × 10−6 0.296 0.441 0.144 0.006 −1985.889

Minor allele
has

negative
effect

5 GLM 30944290

TGCAGCTG
CTCCACTG

TTTTCGCAC
TGCTGAAC
TGTTCTTCT
CTAACTGA

AGAATATTTG
TGGGCAACC

NC_028453.1 4 7,437,264 0/1 1 0.075 6.10 × 10−7 0.296 0.476 0.180 0.003 1779.373
Minor allele
has positive

effect
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Table 3. Cont.

No. Model Marker ID Marker Sequence RefSeq
Sequence Chr pos Allele Minor

Allele maf p-Value
R2

without
SNP

R2 with
SNP R2*

FDR
Adjusted
p Values

Effect Remark

6 Blink 30944290

TGCAGCTG
CTCCACTGT
TTTCGCACT
GCTGAACT
GTTCTTCTC

TAACTGAAG
AATATTTGTG

GGCAACC

NC_028453.1 4 7,437,264 0/1 1 0.075 3.27 × 10−8 NA NA NA 0.000 NA

7 GLM 30846885

TGCAGAG
AGAGGGA
GAGAGAG
GCTATCCT
ACTATGCA
ACGGTCAA
AAGGCTTC
AAAGGAGG
AGAAATCA

NC_028455.1 6 33,041,360 0/1 1 0.105 4.25 × 10−6 0.296 0.447 0.150 0.006 −1877.678

Minor allele
has

negative
effect

8 GLM 30838332

TGCAGTCC
TAAACACCA
GCACAGCA
CTCTCCTCT
CCTTCCATC
CCTAACATA
CATCATCA

GCGATACAG

NC_028456.1 7 28,411,310 0/1 1 0.079 8.87 × 10−7 0.296 0.470 0.174 0.003 1764.365
Minor allele
has positive

effect

9 FarmCPU 30838332

TGCAGTCCT
AAACACC

AGCACAGCA
CTCTCCTCT
CCTTCCATC
CCTAACATA
CATCATCAG
CGATACAG

NC_028456.1 7 28,411,310 0/1 1 0.079 1.08 × 10−8 NA NA NA 0.000 1528.874
Minor allele
has positive

effect

10 Blink 30838332

TGCAGTCCT
AAACACCA

GCACAGCAC
TCTCCTCTC
CTTCCATCC
CTAACATAC
ATCATCAG
CGATACAG

NC_028456.1 7 28,411,310 0/1 1 0.079 5.72 × 10−10 NA NA NA 0.000 NA
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Table 3. Cont.

No. Model Marker ID Marker Sequence RefSeq
Sequence Chr pos Allele Minor

Allele maf p-Value
R2

without
SNP

R2 with
SNP R2*

FDR
Adjusted
p Values

Effect Remark

11 GLM 30846154

TGCAGTCT
CCCAATCT
CCCGTGGG
AGCTCTGT

GATTTGATC
GCAGTCCT

TGAGATCCA
GATACC
TAAGC

NC_028457.1 8 26,442,566 0/1 1 0.088 6.10 × 10−6 0.296 0.441 0.145 0.006 −1463.693

Minor allele
has

negative
effect

12 FarmCPU 30846154

TGCAGTCT
CCCAATCT
CCCGTGG
GAGCTCT

GTGATTTG
ATCGCAGT

CCTTGAGAT
CCAGATA
CCTAAGC

NC_028457.1 8 26,442,566 0/1 1 0.088 3.30 × 10−6 NA NA NA 0.007 −853.891

Minor allele
has

negative
effect

13 Blink 30846154

TGCAGTCT
CCCAATCT
CCCGTGGG
AGCTCTGT
GATTTGAT
CGCAGTCC
TTGAGATC
CAGATAC
CTAAGC

NC_028457.1 8 26,442,566 0/1 1 0.088 3.91 × 10−9 NA NA NA 0.000 NA

* R2 = R2 with SNP − R2 without SNP.
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Using the combined data, three SNP markers were found to be associated with
biomass yield (Figure 7 and Table 4). Two of these markers were detected with the
GLM model, whereas the other one was detected using the FarmCPU model. Using 2016
data, three SNP markers were associated with biomass yield (Supplementary Figure S3,
Supplementary Table S7), of which one, on Chr1, was detected using both BLINK and GLM
models. The other two SNP markers associated with biomass yield were located on Chr3.
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Figure 7. SNP markers associated with biomass yield using the combined data from the 2015 and
2016 growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes, and the
y-axis is the negative log base 10 of the p-values. The green horizontal line indicates the significance
level. QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and the x-axis is
the expected observed negative base 10 logarithm of the p-values.

3.10. Markers Associated with Feed Quality Traits

Using the combined data from the two growing seasons, four SilicoDArT markers
were found to be associated with feed quality traits. Of these markers, two were asso-
ciated with both ADF and TDN (Figure 8 and Table 5). In addition, some additional
markers were also found to be associated with feed quality traits using individual season
data. In the 2015 season, four SilicoDArT markers were associated with CP using the
BLINK model (Supplementary Figure S4A, Supplementary Table S8), whereas no other
SNP marker was found to be associated with any of the feed quality traits in 2015. In
2016, two and three SilicoDArT markers were associated with CP and TDN, respectively
(Supplementary Figure S4B, Supplementary Table S8).
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Table 4. List of SNP markers associated with biomass yield using the combined data from the 2015 and 2016 growing seasons.

No. Model Marker ID Marker Sequence RefSeq
Sequence Chr pos Alleles Minor

Allele maf p-Value
R2

without
SNP

R2 with
SNP R2*

FDR
Adjusted
p Values

Effect Remark

1 GLM 30964292-
59-G/A

TGCAGCTC
AGAGCAGT
ACGACGCC
ATGGCGAT
CTCGGCGC

CCTTGAACC
CGTAGTCCA

GGCTCGG
GTTG

NC_028450.1 1 31,786,540 G/A A 0.179 7.11 ×
10−07 0.437 0.571 0.314 0.002 −1149.039

Minor allele
has a

negative
effect

2 FarmCPU 30935961-
51-C/T

TGCAGATC
TACTAAAAT
CTAGCCGC
GCCAGCAG
CGACGCGA
ACCGCTAA
ATCCACCC

AAACCT
AGCACC

NC_028454.1 5 3,450,894 C/T T 0.058 1.12 ×
10−06 NA NA NA 0.006 992.590

Minor allele
has a

positive
effect

3 GLM 30882610-
38-G/A

TGCAGCG
TGCGGCAG
CAGACCAG
ATCCGTCG
GGTTGAA

GTTCACCG

NC_028458.1 9 9,428,069 G/A A 0.079 4.99 ×
10−07 0.437 0.575 0.138 0.002 1629.385

Minor allele
has a

positive
effect

* R2 = R2 with SNP − R2 without SNP.
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Figure 8. SilicoDArT markers associated with feed quality traits using the combined data from the
2015 and 2016 growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes,
and the y-axis is the negative log base 10 of the p-values. The green horizontal line indicates the
significance level. QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and
the x-axis is the expected observed negative base 10 logarithm of the p-values.
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Table 5. List of SilicoDArT markers associated with feed quality traits using combined data from the 2015 and 2015 growing seasons.

No. Trait Model Marker
ID

Marker
Sequence

RefSeq
Sequence Chr pos Allele Minor

Allele maf p-Value
R2

without
SNP

R2 with
SNP R2*

FDR
Adjusted
p Values

Effect Remark

1 TDN FarmCPU 30930072

TGCAGC
TGGCGTC
GGCGACG
GCGTGCG
TCGCGCT
GTCGGCG
GCGCGGC
TCGCCCG

NC_028452.1 3 44,894,692 0/1 0 0.32 1.64 × 10−6 NA NA NA 0.005 −0.818

Minor
allele has
negative

effect

2

ADF Blink 30879386

TGCAGT
AGTGGC
GGTGGA

CTACGAC
GCCTCCC
CCTGCGA
GCACATC
ATATCCC
AGACGC
CTGCTCG

ACG

NC_028454.1 5 1,406,759 0/1 0 0.272 1.64 × 10−10 NA NA NA 0.000 NA

TDN GLM 30879386

TGCAGT
AGTGGC
GGTGGA
CTACGA

CGCCTCC
CCCTGCG
AGCACAT
CATATCC

CAGACGC
CTGCTC

GACG

NC_028454.1 5 1,406,759 0/1 1 0.272 5.22 × 10−6 0.202 0.368 0.167 0.034 1.464

Minor
allele has
positive

effect

TDN Blink 30879386

TGCAGT
AGTGGCG
GTGGACT
ACGACGC
CTCCCCC
TGCGAGC
ACATCAT
ATCCCAG
ACGCCTG
CTCGACG

NC_028454.1 5 1,406,759 0/1 1 0.272 0.000 NA NA NA 0.0000 NA
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Table 5. Cont.

No. Trait Model Marker
ID

Marker
Sequence

RefSeq
Sequence Chr pos Allele Minor

Allele maf p-Value
R2

without
SNP

R2 with
SNP R2*

FDR
Adjusted
p Values

Effect Remark

ADF GLM 30879386

TGCAGT
AGTGGCG
GTGGACT
ACGACGC
CTCCCCC
TGCGAGC
ACATCAT
ATCCCAG
ACGCCTG
CTCGACG

NC_028454.1 5 1,406,759 0/1 1 0.272 3.65 × 10−6 0.169 0.349 0.180 0.024 −1.509

Minor
allele has
negative

effect

3 TDN FarmCPU 30841580

TGCAGAA
CGTTCAGA
CTTCAAAC
CACATGCT
GCCGTGC

GCATCAGC
ACATGTG
CTTGACT

TGTGACCTG

NC_028454.1 5 6,158,000 0/1 1 0.145 1.47 × 10−6 NA NA NA 0.005 −1.130

Minor
allele has
negative

effect

4

ADF Blink 30930612

TGCAGCTC
CCGCCGTG
GCAGCAC
TCCAGCG
CGTCCC
AGCCG

NC_028456.1 7 25,606,103 0/1 1 0.18 1.06 × 10−6 NA NA NA 0.003 NA NA

TDN Blink 30930612

TGCAGCTC
CCGCCGTG
GCAGCAC
TCCAGCG
CGTCCCA

GCCG

NC_028456.1 7 25,606,103 0/1 1 0.18 1.40 × 10−7 NA NA NA 0.001 NA NA

* R2 = R2 with SNP − R2 without SNP.
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Using the combined data, 19 SNP markers were found to be associated with CP, 11 with
NDF, 6 with ADF, 19 with TDN and 7 with DMI (Figure 9 and Supplementary Table S9). In
addition, using the 2016 season data, four SNP markers were found to be associated with
TDN, two with CP and seven with ADF (Supplementary Figure S5 and Supplementary
Table S10). One of the SNP markers associated with CP was detected using both BLINK
and GLM models, and one marker associated with TDN was detected using both FarmCPU
and BLINK models.
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Figure 9. SNP markers associated with feed quality traits using the combined data from the 2015 and
2016 growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes, and the
y-axis is the negative log base 10 of the p-values. The green horizontal line indicates the significance
level. QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and the x-axis is
the expected observed negative base 10 logarithm of the p-values.

4. Discussion
4.1. Markers Associated with Feed Quality Traits

Buffel grass is an important forage grass in the tropical and subtropical regions of
the world [21,22]. Substantial variation in agronomic and nutritional quality traits was
observed in the buffel grass accessions, which shows the rich genetic variation embedded
in the collection from which to select lines with superior performance. Year difference
was also significant for all traits, indicating that a multiyear evaluation of buffel grass
is essential to determine the consistent performance of the genotypes. However, the
maximum biomass yield recorded in the current report is less than the biomass yield
reported elsewhere [22,25,30]. The relatively lower biomass yield observed at Bishoftu
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could be related to the environmental conditions and difference in management practices.
On the other hand, the range of CP content of the studied accessions was wider than what
has been reported elsewhere for the species [25,48]. Based on genome-wide DArTSeq
markers, the collection was clustered into eight clusters [9]. The accessions in clusters I,
II and III showed a low biomass yield but a relatively higher feed quality (CP, TDN and
DMI) than the rest of the clusters. Cluster IV had the highest biomass yield and the tallest
plants compared to the other clusters. Similarly, Jorge and colleagues [32] also studied
68 accessions and classified them based on the robustness of the plant, flowering characters
and growth forms. Accordingly, some of the accessions with the highest biomass yield and
tallest plants belong to the most robust and leafiest cluster group, whereas accessions with
the lowest biomass yield belong to the cluster with short leaves and thin stems.

This study also revealed different levels of variability among traits. The highest PCV
and GCV values were recorded for biomass yield and plant height, indicating the presence
of high genetic variability for the traits. The PCV value for biomass yield was equivalent
to the corresponding GCV value, whereas the PCV value for plant height was close to
the GCV value. This shows the substantial contribution of genetic factors to the observed
performance for both traits. Thus, directional selection might be effective to improve these
two traits. On the other hand, NDF, TDN, CP, ADF and DMI showed low PCV and GCV
estimates, indicating low genetic variability. PCV values for feed quality traits were greater
than the corresponding GCV values, indicating the significant effect of environmental fac-
tors on the expression of these traits. In general, the evaluated accessions showed significant
variation in performance. Hence, given the observed genetic and phenotypic performance
variation in the collection [9,32,49], there is a potential improvement opportunity in the
buffel grass germplasm to develop high-yielding climate-resilient varieties.

4.2. Correlation of Biomass Yield, Plant Height and Feed Quality Traits in Buffel Grass

Biomass yield and feed quality traits are important parameters in forage improvement.
Understanding the relationship between biomass yield and feed quality traits and the
genetic basis of their relationship would be of great importance to breeding programs.
A positive correlation was observed between biomass yield and plant height (0.64 **).
Biomass yield had a positive correlation with NDF (0.48 ***) and ADF (0.60 **) and a
negative correlation with CP (−0.51 ***), TDN (−0.59 ***) and DMI (−0.48 ***). Plant
height also had a similar trend in correlation with feed quality traits. It is also worth
noting that DMI and TDN had a strong negative correlation with NDF (−0.999 ***, and
−0.870 ***, respectively). NDF also had a similar correlation with DMI (−0.981 ***) and
TDN (−0.885 ***). The observed relationship between the traits was very similar during the
two growing seasons. The correlation observed between biomass yield and plant height, as
well as biomass yield and feed quality traits, have implications for improvement programs.
For example, plant height could be used a good indicator for biomass yield under field
conditions. However, the negative correlation between biomass yield and feed quality
traits (CP, TDN and DMI) needs special attention in improvement programs, as varieties
with a higher biomass yield might be poor in feed quality. Thus, the high-biomass-yielding
accessions and accessions that produce high CP content would be the candidate accessions
for further field performance evaluation in different tropical agroecologies and seasons.

4.3. Marker–Trait Associations in Buffel Grass

In this study, we used a buffel grass germplasm collection in the forage genebank
at ILRI and conducted GWAS to identify marker–trait associations. Several marker–trait
associations were identified. Using the combined data from the two seasons, three SNP
and eight SilicoDArT markers were found to be associated with biomass yield. A total of
nine markers (six SilicoDArT and three SNP) were found to be associated with biomass
yield in the 2016 growing season. One of the SNP and two of the SilicoDArT markers were
detected both using the 2016 season and the combined data. In the 2015 growing season,
one SilicoDArT marker was associated with biomass yield. One SilicoDArT marker was
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associated with plant height in 2015. No marker was associated with plant height using the
2016 season and the combined data.

Using the combined data, four SilicoDArT markers were found to be associated with
ADF and TDN, whereas no marker was found to be associated with the other feed quality
traits (CP, NDF and DMI). One of the four markers was also detected using individual
season data, and it was associated with CP in 2015 and TDN in 2016. A total of eight
SilicoDArT markers (four in 2015 associated with CP, two in 2016 associated with CP and
three in 2016 associated with TDN) were found to be associated with feed quality traits.

Using the combined data, a total of 42 SNP markers were associated with feed quality
traits, of which four were also detected using the 2016 season data. Of the four markers
detected using both combined and 2016 season data, two were associated with the same
trait (one with ADF and the other with TDN). The other two markers were associated
with different traits depending on the dataset. Seven SNP markers were associated with
DMI using the combined data, whereas no marker was found to be associated with the
trait using the individual season data. Thirteen SNP markers were found to be associated
with feed quality, using data from the 2016 growing season. Of these markers, four
were associated with TDN, two with CP and seven with ADF. The different marker–trait
associations identified between the two growing seasons (2015 and 2016) could be related to
the difference in weather conditions (Supplementary Table S11). For example, the average
monthly rainfall of the location during the months of July to September was 117 mm in 2015
and 142 mm in 2016. In addition, in 2015, the minimum and maximum daily temperature
during July to August was 12 ◦C and 26 ◦C whereas it was 13 ◦C and 28 ◦C, respectively,
during the same months in 2016. The variation in growing conditions would affect the
performance of the genotypes and result in variation in the marker–trait associations for
the different years. Another reason could be that the plants were well established during
the second season and therefore more able to reach the crops’ genetic potential in terms
of performance.

4.4. Genome-Wide Distribution and Co-Localisation of the Marker–Trait Associations

Except for a few studies with conventional molecular markers [50], genomic studies
are limited in buffel grass. A reference genome has not been developed to date. The lack
of its own reference genome has hindered the mapping and selection of genome-wide
representative markers for further molecular studies. As a result, the reference genome of
Setaria italica [36] was used to map the generated markers. However, only a small percentage
of the total markers was successfully mapped [9]. Despite this challenge, we conducted a
GWAS using the mapped markers and identified several marker–trait associations with R2

values ranging from 0.138 to 0.236. The identified marker–trait associations were distributed
across the different chromosomes of the Setaria italica genome (Figure 10). On Chr1, three
SilicoDArT markers (one for CP and two for biomass yield) and four SNPs (one associated
with CP and TDN and one each for biomass yield, CP and ADF) were identified. The SNP
associated with ADF was detected using the 2016 season whereas the SNPs with biomass
yield, CP and TDN were identified using the combined data. Three SilicoDArT markers
(one for CP and three for biomass yield using the 2016 season data) and two SNP markers
(one each for CP and NDF using combined data) were identified on Chr2. Five SNP markers
(two associated with biomass yield, one with TDN, one with both NDF and TDN and one
with both CP and TDN) and two SilicoDArT markers (one each for yield and TDN) were
located on Chr3. On Chr4, one SilicoDArT marker associated with biomass yield, and one
SNP marker associated with multiple traits (ADF, TDN and DMI) were identified using
the combined data. No marker on this chromosome was found to be associated with these
traits using individual season data.
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On Chr5, 13 markers were associated with different traits. One SilicoDArT marker
was associated with both CP (2015 season data) and TDN (2016 season data, with a positive
effect) whereas it was associated with ADF and TDN using the combined data. The marker
showed a negative effect on ADF, whereas it had a positive effect on TDN. Another two
SilicoDArT markers associated with CP (2016 season) and TDN (combined data) were also
located on this chromosome. In addition to the SilicoDArT markers, using the combined
data, ten SNP markers associated with different traits (one with biomass yield, three with
TDN, three with DMI, three with CP, two with ADF and two with NDF) were also found
on this chromosome. Three of these SNP markers were associated with two different traits,
of which two were associated with NDF and DMI, with negative and positive effects on the
traits, respectively, and the other one with CP and TDN, with positive effects on both traits.

On Chr6, there were two SilicoDArT markers (one each associated with CP and
biomass yield) and six SNP markers (two with TDN, two with ADF, one with both TDN
and ADF and one with TDN and DMI) associated with different traits. One of the SNP
markers was associated with three feed quality traits (NDF, TDN and DMI) whereas one
was associated with both ADF and TDN. The marker associated with NDF, TDN and
DMI had a negative effect on NDF, whereas it had a positive effect on TDN and DMI. Six
SNP and two SilicoDArT markers associated with different traits were located on Chr7.
One of these markers was associated with three feed quality traits (CP, ADF and TDN),
whereas the other three markers were associated with two different traits. The SNP marker
associated with NDF and DMI had negative and positive effects, respectively, whereas
the SNP marker associated with CP and TDN had a positive effect on both traits. Three
SilicoDArT markers (one each for plant height, biomass yield, and TDN) and one SNP
marker associated with CP were located on Chr8. A total of 23 markers associated with
traits (18 SNP and 5 SilicoDArT) were located on Chr9. Of these markers, nine were
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associated with CP (eight markers with a negative effect), five with ADF (three with a
positive effect based on the 2016 season data), two with NDF (both with a negative effect),
one with biomass yield (with a positive effect based on the combined data from the two
seasons) and five with TDN. Among the SilicoDArT markers, one was associated with
both biomass yield and TDN, two with CP and three with biomass yield. One of the SNP
markers was associated with three feed quality traits (CP, ADF and TDN), whereas four
SNP markers were associated with two of the traits.

In a few cases, a single marker was associated with two and three traits, or markers
associated with two different traits were closely located on the same chromosome. Markers
associated with three traits were found on Chr4, Chr5, Chr6, Chr7 and Chr9. The markers
on Chr4 and Chr6 were associated with ADF, TDN and DMI, whereas the markers on
Chr5, Chr7 and Chr9 were associated with CP, ADF and TDN. In addition, several markers
associated with two traits were also found on Chr1, Chr3, Chr5, Chr6, Chr7 and Chr9. For
example, a SilicoDArT marker on Chr5 was associated with both CP and TDN, whereas
another SilicoDArT marker on Chr9 was associated with both biomass yield and TDN.
Closely located marker–trait associations were also found on six of the nine chromosomes.
On Chr1, a SilicoDArT marker associated with CP and a SNP marker associated with
biomass yield were located at 398,585 bp from each other. Similarly, on Chr8, markers
associated with plant height and biomass yield had a physical distance of 565,288 bp
from each other. Among the markers on Chr9, a SNP marker associated with CP and a
SilicoDArT marker associated with biomass yield were located at 501,486 bp from each
other. Other closely located marker–trait associations were also found on Chr1 (biomass
yield and CP/TDN), Chr3 (ADF/TDN and NDF), Chr5 (TDN and NDF/DMI), Chr6 (NDF
and ADF/TDN), Chr7 (CP and CP/ADF/TDN) and Chr9 (biomass yield and CP, CP and
ADF, NDF and CP/TDN). In total, 78 marker–trait associations distributed across the
different chromosomes (one based on both individual growing season and combined data,
47 based on combined data only, 21 based on individual growing season data only and
9 based on both combined and 2016 growing season data) were identified in this study.
The largest number of marker–trait associations were located on Chr9, whereas the lowest
number of markers were located on Chr4. In terms of traits, the largest number of markers
was associated with TDN followed by CP and biomass yield. The generated information on
the genome distribution of the marker–trait associations will be a useful resource for future
improvement programs in this important tropical forage. Furthermore, an additional study
is required to validate the associations and co-localisation of the identified markers. In line
with this suggestion, it is very important to develop a buffel grass reference genome to
facilitate genomic studies and the development of markers for efficient marker-assisted
selection/breeding. The lack of a reference genome is one of the main challenges to
genomic studies of tropical forages such as buffel grass. In this study, we used the reference
genome of Setaria italica, a model grass species, to map the generated buffel grass DArTSeq
markers, which enabled us to map only a small percentage of the generated markers. On
several occasions, developing and using a species-specific reference genome increased
the efficiency of mappable markers and the discovery of marker–trait associations. Thus,
developing a species-specific reference genome will increase the number of mappable
markers and thereby improve the discovery and accuracy of the marker–trait associations
in this drought-tolerant tropical forage.

4.5. Marker–Trait Association in Functional Putative Genomic Regions

Some of the identified marker–trait associations were in genomic regions related to key
enzymes and proteins involved in different biochemical reactions and processes in plants.
Among the identified SNP markers associated with biomass yield, one was located on Chr1
in the genomic region linked to a gene encoding a Phenylalanine ammonia-lyase (PAL)-like
protein. PAL catalyses the deamination of phenylalanine to produce trans-cinnamic acid,
a precursor of lignins, flavonoids and coumarins, and it is a key enzyme that induces the
synthesis of salicylic acid, which causes systemic resistance in many plants [51,52]. A recent
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study has shown that PAL-knockdown plants in the model grass Brachypodium distachyon
exhibited delayed development and reduced root growth, as well as increased susceptibility
to diseases [53]. Another marker associated with biomass yield was located on Chr3 in the
region related to a gene encoding a U-box domain containing protein 1. This protein is in
the family of ubiquitin ligase (E3) enzymes that are involved in various biological processes
and in the stress response in plants [54]. Similarly, the SilicoDArT marker associated with
plant height was located on Chr8 in the genomic region harbouring a gene annotated as a
Setaria italica ankyrin-1 protein. This protein family is conserved in plants and involved in
biochemical processes in response to biotic and abiotic stresses [55–57].

Several markers were found to be associated with feed quality traits. These markers
were distributed over the different chromosomes of the Setaria italica genome. Some
of the marker–trait associations were located in the genomic regions linked to different
biophysiological processes in plants. One of the marker–trait (CP) associations on Chr2
was close to a gene encoding an E3 ubiquitin–protein ligase RGLG1, like in Setaria viridis.
E3 ubiquitin–protein ligase is a family of proteins that catalyses the ubiquitination of
protein substrates for targeted degradation [58], acts as central regulators in plant hormone
signalling pathways [59] and has been known as an important regulator of drought stress
response in plants [60]. A SilicoDArT marker associated with TDN (on Chr8) was close to a
gene encoding a predicted Setaria italica chlorophyll a/b-binding protein CP26, chloroplast.
This protein is conserved in plants and green algae and plays a key role in absorbing
and transferring sunlight energy into chemical energy [61]. Both E3 ubiquitin–protein
ligases and chlorophyll a/b-binding proteins are involved in many other biophysiological
processes that contribute to plant growth and development.

Among the SNP markers associated with feed quality traits, the marker associated
with TDN (on Chr6) was close to genes encoding a tryptophan decarboxylase and aromatic-
L-amino-acid decarboxylase in grass, which are involved in many biochemical reactions,
contributing to the formation of many metabolites involved in biotic and abiotic stress
defence in plants [62,63]. A marker associated with CP (on Chr9) was located in the genomic
region containing a gene encoding a pentatricopeptide-repeat (PPR)-containing protein.
PPR proteins are one of the largest nuclear-encoded protein families in higher plants and
interact with RNA to affect gene expressions necessary for organelle development [64,65].
On Chr9, another SNP marker associated with ADF was found in the genomic region
harbouring a gene encoding a detoxification-40-like protein, which is believed to play a
role in response to stresses in plants (e.g., the detoxification of a heavy metal, Cd(2+), in
rice) [66]. In general, marker–trait associations in genomic regions containing genes linked
to important enzymes and proteins were identified. This result could be used as a starting
point for further study to elucidate genomic regions with genes controlling important traits
such as drought tolerance, disease resistance and feed quality traits.

5. Conclusions and Recommendations

Here we reported the first genome-wide association study in buffel grass, an important
drought-tolerant tropical forage grass. Several markers were found to be associated with
biomass yield and feed quality traits. The largest number of markers was associated
with TDN followed by CP and biomass yield. Some of the markers were associated
with multiple traits: eight markers were associated with CP and TDN; two markers with
ADF and TDN; two markers with CP, TDN and DMI; two markers with NDF and DMI;
one marker with ADF, TDN and DMI; one marker with NDF, TDN and DMI; and one
marker with biomass yield and TDN. Some of the associated markers were located in
the genomic regions containing genes related to key biochemical processes that affect
yield, stress responses and feed quality traits in plants. In general, the identified marker–
trait associations will be a useful genomic resource for buffel grass genomic studies and
will have a significant implication on future buffel grass improvement programs, and
we recommend the following as future lines of research on buffel grass for accelerated
improvement programs:
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• Developing a reference genome that can be used for marker mapping and genome-
wide association studies to identify major QTL for traits of interest with an improved
association accuracy.

• Buffel grass has different ploidy levels. Hence, determining the ploidy level, coupled
with the identification of sexually reproducing lines, will facilitate a breeding program
for developing new improved varieties of this economically important forage species.

• Buffel grass is a drought-tolerant grass species. Being an underutilised crop, little is
known about the genetic basis of its drought tolerance trait. Hence, it is important to
study the genetic and physiological basis of drought tolerance and other important
traits to develop a climate-resilient variety.

• The results of this study can also be used as a basis to develop a set of markers for
future marker-assisted selection and breeding.
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