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Abstract: The risks brought by microplastics (MPs) to agricultural soil structure and crop growth in
the agricultural system are the focus of global debate. MPs enter the soil through various routes, such
as through the use of agricultural mulch and atmospheric deposition. Here, we review the research
on MP pollution in the soil during the last 30 years. This review focuses on (i) the sources, types,
and distribution characteristics of MPs in agricultural soils; (ii) the migration and transformation of
MPs and their interactions with microorganisms, organic matter, and contaminants in agricultural
soils; and (iii) the effects of environmental factors on the composition and structure of MPs in
agricultural soils. This review also proposes key directions for the future research and management
of MPs in the agricultural soil. We aim to provide a theoretical basis for the fine management of
agricultural farmland.
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1. Introduction

Microplastics (MPs) are particles that are less than 5 mm in at least one dimension [1–3],
while nano-plastics are generally referred to as plastic particles with a size smaller than
100 nm [4]. The results of many studies have shown that the amount of MPs remaining in
soil is directly proportional to the duration of mulching with plastic film [5,6]. Although
nanoplastics are also widely present in soil, this review focuses on MPs [7]. For example,
the average abundance of MPs in the cotton fields in Xinjiang Province was 80.30 ± 49.30
and 308.00 ± 138.10 particles/kg dry mass (dm) of soil in the farmlands with 5 and
24 years of film mulching, respectively [8]. The annual discharge of MPs into the soil
through wastewater treatment plants in Europe was estimated to range from 63,000 tons
to 430,000 tons, while the estimate for that in North America ranged from 44,000 tons to
300,000 tons [9,10]. Most previous studies of MPs focused on water bodies such as oceans,
lakes, and rivers [8,11]. MP amount in the soil has been found more than four times higher
than that in the ocean [12,13]. However, MP pollution in the soil has received much less
attention from researchers [8]. Therefore, it is critical to characterize MPs in the soil and
propose relevant treatment technologies.

With a large surface area to volume ratio and high hydrophobicity, MPs can adsorb
many hydrophobic organic pollutants, heavy metals, and other complex pollutants [14].
After being ingested by organisms in the soil, MPs can threaten their survival and develop-
ment. MPs can also be ingested by human beings through the food chain, posing potential
risks to human health [15]. Despite the potential risks of MPs in the farmland, studies have
found that microorganisms in the plant rhizosphere can use hydroxy-valerate copolymer
(PHBV, a type of biodegradable MP) as a carbon source, thus promoting their growth and
development [16]. The presence of PHBV also changed the structure of bacterial colonies at
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different classification levels [16]. Therefore, biodegradable plastics have the potential to
optimize the ecological function of the soil and the biogeochemical cycle of carbon and other
nutrients by stimulating the activity of functional microbial enzymes in the rhizosphere of
crops [17]. Hence, the impact of MPs on the agroecosystem is not entirely negative. More
comprehensive studies are needed to assess the impact of the complex effects of MPs with
other pollutants and microorganisms in the soil ecosystem.

Currently, the international community has set the target of plastic waste treatment at
a recycling rate of 35% by 2050 [18]. The EU is launching the “Plastics Strategy”, aiming
to reduce the use of single-use plastic bags and establish a new circular economy [19].
The “Biotechnology Innovation in Environmental Restoration” program has been set up
to establish biotechnology for the biodegradation of refractory and degradable plastics
(CE-Biotec-05-2019). China’s Soil Pollution Prevention and Control Law, promulgated
on 31 August 2018, proposes to strengthen the recycling and reuse of agricultural film
waste [20]. Furthermore, efforts to clean up residual mulching film and the plastic pack-
aging of pesticides and fertilizers, as well as political rectification, should be promoted to
gradually reduce the amount of plastic waste in the farmland.

This review summarizes the global research on MPs in the agricultural soil over the last
30 years in terms of source analysis, pollution status, distribution characteristics, migration
and transformation, and treatment technologies. Furthermore, key research directions are
proposed to provide a theoretical foundation and guide the future research on the effects of
MPs on soil ecosystems.

2. Environmental Characterization of Microplastics in Agricultural Soils
2.1. Literature Searching and Screening

In the database of the Web of Science Core Collection, we used the condition
“TS = (microplastic)” to find the research on microplastics and narrowed the scope with
the condition “(TS = ((soil) or (land) or (farmland))) AND TS = (microplastic)” to focus on
the research on MPs in soil. A total of 8839 articles related to microplastics were obtained,
while a total of 1520 articles were obtained on microplastics in soil. The annual number
of articles published on MPs and MPs in soil is presented in Figure 1A. Research on MPs
started in 2013, and has gradually emerged as a research hotspot in recent years. Figure 1B
displays the proportion of research on MPs in the soil relative to the overall research on
MPs, revealing the growing focus on MPs in the soil.

Agriculture 2024, 14, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. The number of MPs and soil MPs articles published from 1995 to 2024 ((A) the number of 
MPs articles and the number of soil MPs articles; and (B) proportion of soil MPs in MPs studies). 

 
Figure 2. Keyword co-occurrence analysis of soil microplastics research from 2012 to 2024. The size 
of nodes and fonts is related to the number of co-occurrences. 

  

Figure 1. The number of MPs and soil MPs articles published from 1995 to 2024 ((A) the number of
MPs articles and the number of soil MPs articles; and (B) proportion of soil MPs in MPs studies).

Furthermore, the retrieved publications were subjected to keyword co-occurrence
analysis using the CiteSpace 6.2 R7 software (Figure 2). The most frequently occurring
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keywords were identified to be pollution, marine environment, sediments, particles, water,
accumulation, plastics, identification, soil, and transport. This analysis highlights the
complex nature and broad impact of MPs on both marine and terrestrial environments.
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Figure 2. Keyword co-occurrence analysis of soil microplastics research from 2012 to 2024. The size
of nodes and fonts is related to the number of co-occurrences.

The co-occurrence analysis of keywords reveals the focal points and trends in the
research on MPs in soil. Researchers commonly focus on the impacts of MPs on soil quality
and ecosystems, as well as the sources, behavior, and identification methods of MPs in
soil. Additionally, attention is directed towards the accumulation and effects of MPs in the
marine environment, as well as the pathways through which they enter the soil, such as
through sediments or water bodies.

It is important to determine the impact of MPs on the soil ecosystem and implement
corresponding management measures for the health of the environment and humans.

2.2. Sources and Types of Microplastics in Agricultural Soils

The main sources of land-based plastics include plastic greenhouses used in agricul-
tural production, plastic mulch directly applied in the farmland, the dispersion of the
domestic use of plastics (including additives in personal care products, washing machines,
and the wear and tear of tires that release plastic particles), sludge, the deposition of ex-
haust gases from industrial production, floods, and sandstorms [21–25] (Figure 3). These
plastics have become important sources of MPs in the soil because of their low recovery and
susceptibility to aging and fragmentation when exposed in the environment. According to
the composition, MPs consist mainly of polyethylene (PE), polypropylene (PP), polystyrene
(PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The physical and
chemical characteristics of plastics that frequently occur in the soil are shown in Table 1.
Agricultural films are mainly PE and PVC materials [26]. PE and PVC plastic are mostly uti-
lized in agricultural practices. PE film has the ability to maintain a consistent temperature
and a stable soil water moisture, repel pests, and inhibit the occurrence of diseases. Mean-
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while, PVC plastic is commonly employed in agricultural drip irrigation systems [27,28].
According to the sources, MPs can be divided into primary and secondary MPs [26,29,30].
Primary MPs mainly originate from activities such as laundry, the use of cosmetics, and
the discharge of medical wastes. In other words, cleaning products, cosmetics, sunscreen,
shampoo, etc., used in our daily life, are all potential sources of MPs [31]. Secondary MPs
are smaller plastic fragments resulting from the physical, chemical, and biodegradation
processes of large plastic fragments [31,32].
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Table 1. Physical and chemical properties of MPs in the soil [33–35].

Mcroplastics Chemical
Formula Polarity Glass Transition

Temperature (◦C)
Density
(g/cm3)

Resistance to
UV Light General Properties

PE (C2H4)n non-polar −110 0.92–0.97 Poor
With good water resistance,

weather resistance and
flexible chemical resistance

PP (C3H6)n non-polar −49 to −20 0.88–1.23 Fair

Resistance to a variety of
acids and alkalis, low

density, high stiffness, heat
resistance and good

transparency

PVC (C2H3Cl)n polar 60–100 1.15–1.70 Good
Flame retardancy, resistance

to acids, alkalis and most
inorganic chemicals

PS (C8H8)n non-polar 90 1.04–1.50 Poor

Crystal clear appearance,
good impact resistance and

toughness, and poor
waterproofing and oxygen

resistance

PET (C10H8O4)n polar 73–78 1.30–1.50 Fair

Light weight, aging
resistance, strong impact
and shatter resistant with
good water retention and

sealing properties.

PA6 (C6H11NO)n Strongly polar −60
1.12–1.14 Poor

Toughness, good tensile
strength and good wear

resistancePA66 (C12H22N2O2)n 1.13–1.38 Fair
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Plastic mulch is an effective agricultural practice that regulates soil temperature,
maintains soil moisture, and prevents weeds and soil erosion, as well as improves crop
yields [36,37]. The consumption of plastic film is growing exponentially, with a global
share of more than 3.9 million tons, and it is mainly concentrated in Asia (about 70%) and
Europe (about 16%), with the largest consumer country being China [38,39]. In 2017, the
total amount of agricultural plastic film in China reached 2 million tons, accounting for
90% of the global total [38,39]. The use of agricultural plastic film in China increased by
30% annually from 1991 to 2001, and it increased from 1.85 × 106 tons to 2.6 × 106 tons
with an increase of 41% from 2006 to 2015 [40]. The range of residual film content in the
soil of Xinjiang is from 0 to 502 kg/hm2 (average 121.5 kg/hm2) [41]. The average residual
amount of mulching film was more than 100 kg/hm2 in most regions of Gansu Province,
eastern Inner Mongolia, and the northeast areas dominated by sandy soils [42]. In these
areas, the mulch is used to reduce water evaporation because of the low rainfall and high
evaporation. Farmers have a low awareness of the harm of residual film pollution. The
thickness of the PE film produced by many enterprises in China is lower than the national
standard of 0.008 mm, resulting in low strength and easy breakage [43]. The mulch is
supposed to be removed from the field at the end of the farming period. However, only a
small proportion of the mulching plastic is actually collected. For example, in the European
Union, 100,000 tons of plastic are used for mulching each year, but only 32% of these is
collected at the end of the farming period, with the rest incinerated or buried in the soil [44].

Sewage and sludge discharge is also one of the important sources of MPs in the soil
environment globally. For example, Tagg et al. detected an MP concentration of 14.6 g/L in
German soil, which was due to the high content of MPs in sewage sludge [45]. According
to a Norwegian survey, 500 billions of MPs were released into the environment every year
through sludge from sewage treatment plants [46]. Moreover, 32.4% of MPs from Canadian
wastewater treatment plants were suspected to enter the soil ecosystem [47].

2.3. Distribution of Microplastics in Agricultural Soils

Large amounts of MPs have been detected in soil worldwide. In Switzerland, about
90% of the soil in the floodplain areas contained MPs, with a maximum concentration
of 593 g/kg [24]. The average MPs content in the soil at the industrial sites in Australia
was 23 g/kg dm [48]. MPs in the sediments of Koshi River (a typical alpine river in the
Himalayas on the border between China and Indonesia) were inversely proportional to the
altitude, with a range of concentration as 31–85 items/kg dry weight [49]. The abundance
of MPs in the shore was twice as high as in the center of the river [50]. In the arid and
semi-arid areas, relatively large amounts of MPs were observed in soils near watersheds
and industrial and agricultural sites [51].

MPs in soil migrate through different processes, including leaching, bioturbation, and
mechanical perturbation [52]. Some studies have shown that the fields of cereal crops
(such as wheat and rice) contain a large proportion of large-size (1–5 mm) fibrous MPs,
while woodland (e.g., orchard and forest) contained a larger proportion of smaller-size
MPs (0.02–0.2 mm) [30]. Biological processes contributed to the horizontal and vertical
redistribution of MPs in the soil. In these processes, MPs can be ingested and selectively
discharged by soil protists, such as earthworms and collembola [53,54]. The pore structure
of soil and disturbance of soil organisms such as earthworms help MPs to migrate deep
underground and even reach the groundwater layer [53,55]. Choi et al.’s study showed that
the abundance of MPs in farmland soils varied with tillage type, with the highest abundance
in orchards, followed by dryland greenhouses, and paddy fields. This is probably related
to the use of agricultural film and instruments, as orchards tend to have less runoff and soil
erosion but more physical disturbances than other agricultural lands (e.g., tillage and soil
stirring) [56,57].
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3. Migration and Effects of Microplastics in Agricultural Soils
3.1. Migration of Microplastics in Agricultural Soils

MP particles on the surface of the soil could enter underground with human activities.
Tillage methods affect the distribution of MPs in the soil layer [58]. Traditional tillage
promotes the transfer of MPs to the deep soil layer, while shallow tillage, rotary tillage, and
harrowing lead to the migration of MPs to the tilled layer [58]. The migration of MPs in the
soil is influenced by the electrolytes, pH, and humic acid, etc. [59–61]. Cations with smaller
ionic radii have larger hydration radii, which reduces the effect of the charge screening and
steric obstruction deposition and decreases the retention of MPs in porous media; that is, the
migration efficiency of MPs is increased [50,60,62]. The interaction of MPs with dissolved
organic matter (DOM) in the soil also inevitably affects the migration of MPs in various
ways and complicates the environmental characteristics of MPs [63]. In the soil, saturated
goethite (GT), DOM, and nano-plastics (50 nm) can form GT-DOM-nanocomposite, which
leads to the co-deposition of nano-plastics and DOM and blocks the migration of nano-
plastics [64]. When the pH of soil solution is close to neutral, MPs interact with fulvic
acid (FA) through H-bond and n-π EDA (electron donor/acceptor), which promotes the
mobility of MPs in the soil [65]. The surface morphology and structural characteristics
of MPs undergo changes with aging. For instance, after aging under ultraviolet, MPs
exhibit embrittlement, irregular shape, increased roughness, and an alteration in surface
hydrophobicity, which consequently influences the adsorption, migration, and microbial
colonization in the soil [66]. The aging process is typically accompanied by chemical
reactions, resulting in the formation of oxygen-containing groups such as –OH, –C=O,
COOH, and C=C on the surface of MPs [67]. Additionally, the molecular weight of the
polymer also undergoes changes during aging. For example, following O3 treatment, the
average molecular weight of PS decreases from 24.8 kg/mol to 18.4 kg/mol, while the
weight-average molecular weight of PS decreases from 168.1 kg/mol to 121.2 kg/mol [68].
Currently, the CI and O/C values are frequently employed to assess the degree of MP aging.
CI refers to the absorbance ratio of the carbonyl peak to the reference peak in the FTIR
spectrum, whereas O/C represents the ratio of oxygen to carbon on the polymer surface
as characterized by X-ray photoelectron spectroscopy (XPS). Therefore, the migration of
MPs is also closely related to these hydrophilic heavy metals. The presence of humic acids
and the heterogeneity of functional groups on the surface restrict the transport of MPs [69].
MPs in the soil mainly migrate with wind erosion, surface runoff, biological processes,
and agricultural activities (Yu et al. 2019). Biological processes could accelerate both the
horizontal and vertical migration of MPs in the soil. The depth of earthworm (Lumbricus
terrestris) burrows can be more than 30 cm, which is a potential way for MPs to enter the
deep soil layer with preferential flow [70–72].

Heavy rainfall, high temperature, strong ultraviolet radiation, and windy weather
make plastic residues more fragile and difficult to recycle from farmland soils. Regions
with high temperature may face a great threat from MPs. MPs in the farmland of Hainan
Island, China, ranged from 2800 to 82,500 particles/kg and showed a significant positive
correlation with the temperature [73]. The distribution of MPs in the farmland soil is also
affected by many factors, such as soil texture, planting time, and irrigation methods. Soil
texture affects the migration and accumulation of MPs in the soil, which is related to the
distribution and continuity of soil pores. The coarse soil presents a fast penetration rate; that
is, the fine soil helps to retain the water. [74–77]. The abundance of MPs in sandy loam was
significantly higher than that in silty loam or loam based on the international classification
standard [78]. Long-term mulch application and irrigation during planting practice can
cause MPs to accumulate in the soil [11]. Some studies have shown that irrigation methods
can also affect the accumulation of MPs in the soil. Surface sprinkler irrigation has the
lowest water utilization rate, followed by sprinkler irrigation and drip irrigation [79]. As a
result, we speculated that MPs input into the soil through irrigation present in an increasing
order as follows: surface irrigation, sprinkler irrigation, and drip irrigation.
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Different types of plastics exhibit varying functional groups and polarities, affecting
their adsorption behavior in the soil. For instance, PS displayed a notably strong adsorption
capacity for toluene due to the strong π-π interaction between them [80]. Similarly, PA,
which contains an amide group (a proton donor group), can form hydrogen bonds with
the carbonyl group (a proton acceptor group), thereby enhancing the adsorption of PA
to organic matter [34]. Consequently, the adsorption capacity of PA for hormones, drugs,
pesticides, and other organic matter surpasses that of PE [81]. Non-polar plastics such as
PE, PP, and PS demonstrate significant hydrophobicity, thus exhibiting stronger adsorption
capacity for hydrophobic organics like 17β-estradiol compared to polar plastics [82].

3.2. Effects of Microplastics on Agricultural Ecosystems

The residues of mulch including MPs reduce the soil permeability, inhibit water and
nutrient uptake by roots, and suppress soil microbial activity, thus negatively impacting the
yield and quality of crops and soil sustainability [83] (Figure 4). For example, the annual
mulch residue weight factor (the weight ratio of mulch residue to the total applied mulch)
in the Hetao irrigation area in the Yellow River Basin was as high as 38.10% [84]. MPs can
disrupt soil aggregates, which is critical for water penetration, water retention, aeration, and
the fertility of soil [85–89]. The effects of MPs on plants were mainly manifested in the direct
effects on plant growth and root microbial communities. Root-colonized microorganisms
usually include nitrogen fixers, pathogens, mycorrhizal fungi N-fixers, pathogens, and
mycorrhizal fungi [90]. Root colonization symbionts often have positive effects on plant
diversity [91,92]. MPs change the soil structure, which affects the microbial communities,
further affecting mineralization rates and colonizing symbionts, and even reducing plant
diversity [93,94]. MPs in the soil may be absorbed by the roots and transported to the stem
and the fruit, with transpiration being the main driving force [95]. MPs in the air may also
enter the stomata of the leaves and then transfer through the vasculature to other parts of the
plant [96,97]. NPs with smaller particle sizes have been detected in the nucleus, suggesting
a risk of NPs to the nuclear membrane and chromosome function [98,99]. Degraded soil
quality by MPs also limits space for roots and soil fauna, reduces aerobic processes that are
important for plant nutrition, and favors anaerobic microbial processes that lead to methane
and nitrous oxide production [100]. MPs are normally hydrophobic, inert, and persistent,
and thus they are relatively stable and persist in the environment for a long time [101].
Most MPs are negatively charged, and metal cations in the environment can be attached to
MPs via electrostatic binding [102]. At the same time, MPs have a high surface area and
strong binding affinity, which enables them to interact extensively with the surrounding
materials. These surrounding substances can form eco-coronas and biocoronas on the
plastic surface, and the surface corona can affect the transport, absorption, distribution,
biotransformation, and toxicity of MPs [103]. The corona formed on the surface of MPs can
stay in the soil for a long time and interact with biological molecules such as proteins and
lipids in the organisms (Figure 5). By virtue of their small size, MPs can penetrate the cells
or break the cell wall of organisms, enrich in the organisms, and lead to cytotoxicity, thus
affecting the survival of organisms [104–106].

The substances released from MPs, such as polyurethane, polyvinyl chloride, and
acrylate-butadiene copolymers, also cause ecological risks to the soil ecosystem [62]. In
addition, additives (i.e., bisphenol A and phthalate), most of which are endocrine disrup-
tors, are usually added in the production process of plastics [93]. These environmental
endocrine disruptors released from the plastic also pose a threat to the ecosystems and even
human health. MPs have been found in the gut, lungs, blood, brain, and breast milk of hu-
mans [107,108]. MPs may also be able to penetrate cell membranes, the blood–brain barrier,
and the placental barrier of mammals [105,109]. The 300 nm and 50 nm plastic granules
increased the accumulation of oxytetracycline (OTC) in zebrafish liver by 33.8% and 44.5%,
respectively [110]. In fact, most compounds added to plastics, such as plasticizers, stabiliz-
ers, and pigments, are harmful to the endocrine system [108,111]. Fragmented polyester
MPs in soils are likely to adsorb organic chemicals and pathogens [60,112], whereas polycar-
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bonate MPs undergo aging under UV exposure and chafe, releasing monomeric bisphenol
A and other intermediates, such as hydroxylated, carboxylated, and carbonylated prod-
ucts [113–115].
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MPs may also interfere with the pollination of local food crops by affecting the expres-
sion of certain genes of pollinators such as bees [116]. The influenced gene expression has
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been shown to be related to oxidative damage, detoxification, and immunity [116]. When
the abundance of MPs is high, the growth and reproduction of other soil organisms, such
as earthworms, is greatly affected [117]. MPs can accumulate in the body of earthworms,
affecting the immune system and reproduction of earthworms, thus decreasing soil fertility
and inhibiting crop growth [53,54]. MPs could also be brought downward by earthworms
and pose a great risk to the groundwater [53,118,119]. MPs smaller than 0.1 µm could
be translocated to the leaves, which can reduce the chlorophyll content in the leaves and
the plant biomass [120]. MPs can also accumulate in the roots and result in a decrease
in superoxide dismutase activity in the roots [120]. The phytotoxicity of MPs could also
delay seed germination, affect the absorption and migration of MPs in the stems and leaves,
hinder plant growth, inhibit photosynthesis, interfere with nutrient metabolism, cause
oxidative damage, and produce genetic toxicity [121].

However, in addition to the damage caused to living organisms, the environmental
effects of MPs require a comprehensive assessment. Yang et al. studied the interaction of
MPs with the antibiotic sulfamethazine (SMT) in wastewater during ultraviolet disinfection.
The study showed that the photosensitization of quinones and aromatic structures in the
MP-DOM structure accelerated the photodegradation of SMT in a certain concentration
range [122]. The bioavailability of pollutants could be reduced by MPs because of adsorp-
tion, creating a “cleaning effect” [123]. MPs may reduce the number of major consumers in
the soil ecosystem, benefiting the microalgae populations [124]. MPs may also benefit some
species, such as Halobates sericeus, by acting as substrates for microbial growth [125,126].
Yan et al. found that MPs affected the availability of phosphorus in rice and red soil by
differentiating the microbial communities [127]. Li et al. also found that PP, PE, PS, PES, and
PVC plastics with the abundance of 1000~10,000 particle/L promoted the denitrification of
activated sludge, and PVC inhibited the emission of N2O produced during the nitrification
process [128]. Further research is needed to study the effects of MPs on the geochemical
cycle of nitrogen and phosphorus in the soil. And it is necessary for professionals with
diverse backgrounds such as biologists, chemists, and economists to fully assess the direct
and indirect effects of MPs on a broad scale on the ecosystem and the society.

4. Biodegradation of Microplastics in Agricultural Soils

As an emerging type of persistent organic pollutants, MPs are generally difficult
to be degraded by microorganisms in the environment [129]. However, most mulch
materials that contain low-density PE are resistant to degradation [3], and biodegradable
plastics have not been widely used because of their high cost [130,131]. Studies have
been conducted on biodegradable plastics by microbes and microbial enzymes. PCL
(polycaprolactone) and PBAT (Poly (butylene adipate-co-terephthalate)) are commonly
used biobased biodegradable plastics. PBAT can be employed for the production of
agricultural mulch films, while PCL can be used for agricultural product packaging [132].
Penicillium oxalicum DSYD05-1 depolymerase has a broad range of substrate specificity, and
the strain can completely degrade PCL films within 9 days at 28 ◦C [133]. The degradation
rate of PBAT by thermomonospora fusca strains could reach 99% at 55 ◦C within 22 days [134].
An FTIR analysis of aging polylactic acid showed an extra wide peak threshold ranging
from 3000 to 3500 cm−1, which indicated that the ester bond of PLA was hydrolyzed and
fractured to form carboxyl and hydroxyl groups. It could then be further degraded by
microorganisms into H2O and CO2 [48].

Biodegradation has relatively little impact on the native soil ecosystem compared
to other treatment methods, so it has great potential to treat the pollution of MPs in the
soil [135]. In 2017, two strains, Bacillus cereus and Bacillus formans, were isolated from
mangrove sediments in Peninsular Malaysia and were shown to have the potential to
degrade PP MPs [136]. Currently, more and more bacteria that can degrade PE plastic,
including Bacillus, Staphylococcus, Pseudomonas, Achromatobacteria, Chomonas, Delfteia, and
Stenotrophomonas, have been reported to occur in terrestrial environments [137,138]. When
the domestication propagation technology of microorganisms with the potential of de-
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grading MPs is mature, the efficiency of degrading MPs will be greatly improved. At the
same time, microorganisms with a high efficiency of MP degradation can be combined
and cultured to form enzymes that can degrade MPs (Figure 6). However, further research
is needed to determine whether these artificial microbial communities have adverse ef-
fects on microbial communities in native ecosystems. At present, few studies have been
focused on the microorganism degradation of MPs, but with the development of microbial
culture technology, biodegradation with microorganisms will be a mainstream degradation
technology for MPs in the future.
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In addition to microorganisms, isolated microbial enzymes can also be used to de-
grade MPs [139]. The biodegradation of MPs by microbial enzymes proceeds in two
steps: enzymes are absorbed onto the surface of MPs through the surface-binding do-
main, which does not degrade the monomers of MPs; and the ester bond of MPs is hy-
drolyzed [140]. Also, enzymes can decompose complex plastic polymers into carbon
dioxide, water, and other small molecule polymers, making MPs a source of carbon for
microbial metabolism [141] (Figure 6).

As noted in the abovementioned discussion, overall, MPs present more risks than
benefits in the soil. While the introduction of biodegradable MPs into farmland soils can
increase the carbon source for biodegradation, non-degradable MPs need to be treated
further. In the future, targeted microorganisms (such as bacteria, fungi, and archaea) and
microbial enzymes can be used for the treatment and removal of residual MPs in the soil,
which has a broad prospect and requires in-depth research and continuous exploration.

5. Conclusions

The presence of MPs in farmland soils leads to detrimental consequences by disrupting
soil structure, reducing soil permeability, and impeding water and nutrient absorption by
plant roots. Additionally, MPs can disturb microbial communities, causing an imbalance in
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the soil ecosystem and reducing biodiversity. MPs can also infiltrate plant tissues, posing
risks to plant growth. Moreover, MPs release toxic compounds and endocrine disruptors,
posing potential threats not only to soil ecosystems but also to human health.

To mitigate the impact of MPs pollution and foster sustainable agricultural develop-
ment, it is crucial to understand the properties and environmental behaviors of MPs and to
implement necessary strategies. For example, the following approaches can be considered:
strengthening farmland management practices, reducing the excessive use of plastic films,
exploring alternative materials, improving wastewater and sludge treatment processes,
enhancing environmental awareness, and promoting scientific research cooperation. Par-
ticularly, biodegradation is considered a promising approach to address MP pollution.
Certain microbial strains and enzymes can effectively degrade biodegradable plastics like
PCL, PBAT, and PLA. Furthermore, the cultivation and utilization of artificial microbial
communities demonstrate potential for enhancing the degradation efficiency of MPs. How-
ever, further research is needed to tackle the challenges posed by non-biodegradable MPs
and explore alternative treatment methods.
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