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Abstract: A clear understanding of the number of pigs plays a crucial role in breeding management.
Computer vision technology possesses several advantages, as it is harmless and labour-saving
compared to traditional counting methods. Nevertheless, the existing methods still face some
challenges, such as : (1) the lack of a substantial high-precision pig-counting dataset; (2) creating
a dataset for instance segmentation can be time-consuming and labor-intensive; (3) interactive
occlusion and overlapping always lead to incorrect recognition of pigs; (4) existing methods for
counting such as object detection have limited accuracy. To address the issues of dataset scarcity
and labor-intensive manual labeling, we make a semi-auto instance labeling tool (SAI) to help us
to produce a high-precision pig counting dataset named Count1200 including 1220 images and
25,762 instances. The speed at which we make labels far exceeds the speed of manual annotation.
A concise and efficient instance segmentation model built upon several novel modules, referred
to as the Instances Counting Network (ICNet), is proposed in this paper for pig counting. ICNet
is a dual-branch model ingeniously formed of a combination of several layers, which is named
the Parallel Deformable Convolutions Layer (PDCL), which is trained from scratch and primarily
composed of a couple of parallel deformable convolution blocks (PDCBs). We effectively leverage
the characteristic of modeling long-range sequences to build our basic block and compute layer.
Along with the benefits of a large effective receptive field, PDCL achieves a better performance
for multi-scale objects. In the trade-off between computational resources and performance, ICNet
demonstrates excellent performance and surpasses other models in Count1200, AP of 71.4% and
AP50 of 95.7% are obtained in our experiments. This work provides inspiration for the rapid creation
of high-precision datasets and proposes an accurate approach to pig counting.

Keywords: pig counting; instance segmentation; deformable convolution; parallel modules; pig
segmentation dataset

1. Introduction

Pig counting is an important part of livestock farming industry, as well as the vital pro-
cess of recording and managing information such as pig growth, feeding, and reproduction
costs in a pig farm. Accurate pig counting in pigsties can improve the efficiency of pig farm
management. However, the traditional manual visual counting [1,2] and electronic ear tag
counting [3] are inefficient, and difficult to reconcile at a later stage. With the arrival of the
deep-learning era and the rapid development of computer graphics cards, the computing
power of computers has been increasing, accelerating the development of computer vision
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and deep-learning networks. Computer vision research is expanding, and it is widely used
in object counting. Object counting algorithms provide the possibility of accurate counting,
which is widely used in the field of agronomy [4–8] and accelerates the development of
animal husbandry informationization.

Pig counting is a type of object counting which implements several mainstream
methods like object recognition, object classification and object detection. For example,
object detection counting can quickly achieve accurate counting for sparser scenes. The
R-CNN proposed by Girshick et al [9], introduced a two-stage detection method for the
first time. Furthermore, Wang [10] proposed a detection method that recognizes ear tags to
check the specific situation of pigs in a production environment. Object detection methods
use deep convolutional networks to obtain excellent target detection accuracy, but the
accuracy of target recognition decreases when faced with scenes with occlusion between
pigs and the sticky edges of pigs, which means it is not conducive for us to deploy it in real-
world scene applications. For denser scenes, the current mainstream method is the density
map estimation [11–13] based on convolutional neural networks (CNN). Feng et al. [11]
proposed an architecture composed of density map network and a K-means clustering
algorithm, which can quickly estimate the number of high-density and high-overlap crowds
in the scene, but this method has a lower counting accuracy, which does not meet our
requirements for accurate counting. In addition, some researchers focus on keypoints
detection to monitor the status of pigs. Chen et al. [14] created a model to detect keypoints
of pigs’ bodies and identify individual pigs, which can associate pigs across video frames.
Nonetheless, since only three points are used to mark a pig in frames, the method is prone
to fault detection and identifying the background as a pig.

Instance segmentation is a technique used to perform pixel-level classification with
high accuracy. There are a number of segmentation networks that have performed well
so far. Kaiming He et al. proposed Mask R-CNN [15] by incorporating a Feature Pyra-
mid Network (FPN) [16] for feature fusion and hierarchical detection, employing a more
accurate bilinear interpolation approach RoIAlign instead of the traditional RoIPooling,
which can generate richer feature mapping maps. Since then, Mask-RCNN has become
the primary method of instance segmentation. Then, SOLOv1 [17] introduced the concept
of “instance categories” to look at the instance segmentation task from a completely new
perspective. The “Instance category” assigns a category to each pixel in an instance based
on the location and size of the instance, effectively transforming instance mask segmen-
tation into a categorizable problem to be solved. SOLOv1 is a simpler and more flexible
instance segmentation framework that outperforms Mask R-CNN in terms of accuracy.
However, SOLOv1 currently faces the problems of inadequate representation and learn-
ing of masks, insufficiently high resolution of masks obtained from prediction and is too
time-consuming NMS for post-processing. Therefore, SOLOv2 [18] adopted the idea of
dynamic convolution, which enabled the network to dynamically segment the instances
based on the position information, and proposed Matrix NMS, which greatly improved
the speed of post-processing. Maskformer [19] as well as Mask2former [20] were proposed
to refine the task of instance segmentation even more, using a mask classification model
that predicts class-specific masks for each instance in an image. Since Maskformer suffers
from the problem of high memory occupation, leading to training difficulties, Cheng et al.
further proposed Mask2former, which is keyed to the Masked-attention Mask Transformer
structure, is based on the self-attention mechanism [21], and uses the mask technique to
generate the segmentation masks. Compared to the traditional encoder–decoder-based
neural network model, Mask2former achieves better results in instance segmentation tasks.
Nonetheless, existing methods still face challenges such as interactive occlusion, overlap-
ping and inaccurate counting, and the lack of a substantial high-precision pigcounting
dataset, which is attributed to the inefficiency in human production of labels. In summary,
to complete the task of precise counting, we choose instance segmentation to detect and
count pigs instead of objection detection, density estimation, etc., owing to the advan-
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tages of recognizing the outline of an object independently and clearly separating it from
the background.

In this paper, on the one hand, in order to acquire high-precision datasets, we design a
semi-automatic labeling software based on Segment Anything Model (SAM) [22], which are
faster and more accurate than the manual labeling methods in labeling segmentation labels.
On the other hand, for accurate pig counting in realscenario, we adopt the framework
of Mask-RCNN, combining the advantages of DCNv3 [23] and dual-branch structure to
design a pig counting backbone named ICNet, which achieves a better performance in
high-precision dataset and less computational resource. In general, the contribution of our
paper are summarized in the following three aspects:

• We create a semi-auto instance labeling tool called SAI, which is based on the SAM,
to produce faster and more accurate segmentation labels, and a high-precision pig
counting dataset called Count1200.

• We reconstruct a more robust backbone called ICNet, with a Pipe Layer and four
Parallel Deformable Convolutional Layers (PDCLs), which effectively exploits the
long time-series modeling property and is able to expand the sensory field while
saving computational resources.

• We design a module named Parallel Deformable Convolutional Block (PDCB) that
consists of a double-branch structure and skip-connection, which is used to form the
PDCL. PDCB is based on DCNv3, which is able to achieve more features with fewer
parameters, and is more suitable for our detection work on multi-scale datasets.

2. Materials and Methods
2.1. Count1200 Dataset

Count1200 is an instance segmentation dataset primarily designed for the problem of
pig counting. The dataset comprises 1220 images, encompassing situations from various
scenarios, including different times of day and varying lighting conditions. We collect
images from the Internet and take pictures at the livestock farm, representing 75% and 25%
of the total number of images, respectively, consisting of situations of small-scale objects
(Figure 1c,d), occlusion between pigs and other obstructions such as beams and feeding
troughs (Figure 1a,f), overlapping or clustering among pigs (Figure 1e,f), and low-light
challenges posed by nighttime perspectives (Figure 1e); this enables our dataset to possess
diversity and robustness. Considering the need for multi-scale counting, the data we
collected include 9–28 pigs per image.

(a) (b) (c)

(d) (e) (f)

Figure 1. Samples of Count1200 capturing in different situations. (a) Large-scale objects. (b) Normal
condition. (c) Small-scale objects. (d) Small-scale objects. (e) Nighttime perspectives. (f) Overlapping
and clustering.
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It is a tedious and difficult task for researchers to make the ground truth of instance
segmentation, which has persistently hindered the development of instance segmenta-
tion [24]. In traditional manual annotation methods, researchers often use the method of
clicking around the pigs multiple times to draw polygons for mask labels. When there
are too many objects in the image, this type of annotation process is very time-consuming
and labor-intensive. With its strong ability to identify masks of natural objects, SAM can
segment objects easily; that means this model can rapidly generate numerous points to
outline the shape of anything, even in complicated environments. The details of SAI are
shown in Figure 2.

M × images

M × embeddings

SAI

Select Cancel

Left Click Right Click

Prompt Input

M × embeddings Mask Decoder

Image Mask

Prompt Input

Prompt Decoder

Predict
Prediction Mask

Segment Anything Model

Figure 2. The process and details of SAI.

Firstly, M-embedding files are generated by the encoder of ViT and correspond one-to-
one with the images, which contain feature information and positional encoding. Prompt
input is a series of mouse operation instructions used to select regions of concern. With
the Graphical User Interface (GUI) of SAI, we can use left click to select pigs and right
click to fine-tune the areas of interest in real time. When it comes to the details of the SAM
model, the mask decoder plays a pivotal role and the peripheral operations are sent to the
mask decoder after passing through the prompt decoder. In addition, the combination of
embeddings and image masks serves as input for the mask decoder, too. The mask decoder
utilizes the above resources to make mask predictions and provide real-time feedback in
the image. The specific visualization effect is illustrated in the right size of Figure 2.

We successfully leverage the features above to develop a semi-auto instance labeling
tool named SAI with a convenient GUI. With just left and right clicks, we can generate
a mask in 5 s, which is seven times faster than manual annotation. The comparison of
the two methods is illustrated in Figure 3. As opposed to the manual annotation with
coarse-grained contour, the mask produced by SAI seamlessly fits around the objects,
which helps models to separate pigs and background quickly and allows the feature of
instances to be extracted efficiently without interference from irrelevant information, as
shown in Figure 3a,b.

Along with the great performance of SAI, we create a COCO-type dataset [25] that
consists of 25,762 instances and divide them into training and testing sets in an 8:2 ratio,
containing 975 and 245 images, respectively. This dataset presents significant challenges for
both instance segmentation and counting tasks. We aim to provide a foundational idea for
subsequent research.
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(a) (b)

Figure 3. Comparison of semi-auto and manual annotation methods. (a) Semi-auto annotation
(96 points, 5s per instance). (b) Manual annotation (17 points, 35s per instance).

2.2. Methods

This research concentrates on a pig-counting task based on instance segmentation,
with the aim of achieving clear separation among objects and between objects and the
background that facilitates accurate counting. With its great performance in CNN models,
the whole structure of our model follows the design of Mask-RCNN [15], as shown in
Figure 4. The results of prediction consist of coordinates of bounding boxes, masks, and
categories of instances.

ICNet
Feature

Map

PL PDCLs

3×3 conv

1×1 conv

1×1 conv

Bbox Reg

RPN Head Proposals

ROI Align

Multi Branches

FC Layers

FC Layers

Mask

Coordinates

Category

FC Layers

FPN

FCN Mask Head

Figure 4. Architecture of the model.

2.2.1. Instances Counting Network (ICNet)

Deviating from the traditional pipeline of Mask-RCNN using ResNet [26] as a feature-
extracting module, we suggest ICNet as a more robust and appropriate backbone for
instance segmentation tasks (the area outlined by the blue dashed box in Figure 3). The
details of ICNet are illustrated in Figure 5.

By combining it with a series of layers, we construct a network with the ability to
achieve long-range dependence, adaptive spatial aggregation and efficient utilization of
memory and computation. That means, compared to normal convolution, we have a
larger receptive field and can better preserve information such as long-distance spatial
information and dense pixel interaction information extracted from images at the same
kernel size. One pipe layer and four PDCLs serve as the main building blocks of ICNet,
with a downsampling layer positioned after each PDCL. The feature map is sent to FPN and
RPN [27] for additional information compression and proposal generation after semantic
and spatial information have been extracted from the input. After implementing ROI



Agriculture 2024, 14, 141 6 of 15

Align, we use a Fully Convolutional Networks Mask Head to generate a mask of regions
proposals, and we follow the design of Mask R-CNN to use the fully convolutional layers
to predict the coordinates and categories of instances.

2.2.2. Pipe Layer

The pipe layer is a combination of two cycles comprising 3 × 3 convolution, Batch
Normalization [28] and ReLU [29], whose function is to preprocess the data and adjust
the resolution of input, improving the resolution of basic semantic information. A single
combination cycle is used to reduce the input resolution by two times; the configuration of
the convolutions is stride = 2 and padding = 1. The specific pipeline of two cycles can be
described using Formulas (1) and (2), where Xinput ∈ RH×W×3 and Xoutput ∈ RH×W×64.

XH×W×32
temp = ReLU(BN(Conv(Xinput))) (1)

Xoutput = BN(Conv(Xtemp)) (2)

2.2.3. Downsampling Layer

Instead of using a single normalization layer in other networks, we combine Batch
Normalization (BN) and Layer Normalization (LN) [30] for the downsampling layer, which
preserves the benefits of modeling long-range sequences and addresses internal covariate
shift. The function of the downsampling layer is to reduce scales of input by half and double
the number of channels, which is similar to the function of the pipe layer, as indicated by
the blue box in the lower part of Figure 5.

3 ×3 Conv

Input

    BN

ReLU

Layer 1 Feature 

Map

H×W× 3 H/8×W/8×128H/4×W/4×64

Layer 2

Pipe Layer

......

Layer 3 & 4

H/32×W/32×512

FPN

3 ×3 ConvLN BN

Downsampling 

Layer

Figure 5. The overall structure of the ICNet, where BN and LN stand for Batch Normalization and
Layer Normalization, respectively.

The downsampling layer ensures that the model incorporates multi-scale information,
making it more conducive to downstream tasks when data comprise objects of various
sizes. The details of the downsampling are shown in Formula (3), where Permute() is a
dimension transformation in the order of (0, 3, 1, 2).

X′H×W×C/2 = BN(Permute(LN(XH×W×C))) (3)
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2.2.4. Parallel Deformable Convolutions Layer (PDCL)

The PDCL is a sequence composed of computing basic blocks named parallel de-
formable convolution blocks (PDCBs). The implementation details of this computing layer
are illustrated in Figure 6.

              

Next 

Layer

FC Layers

Feature Map

ReLU

MLP Layer

Drop Out

N×

LN

LN

DCNv3 

Conv

Drop Path

Element AddElement Add

PDCB

Figure 6. Illustrating the specific computational components of PDCL.

An aggregation of N basic blocks is represented by PDCL, where N determines the
size of each layer and serves as a hyper-parameter for the number of PDCB. For instance,
in this work, we stack four layers to build ICNet, where the array for N is Ni ∈ [2, 2, 8, 2]
indicating that there are two blocks in Layer1, eight blocks in Layer3, and so on.

In order to achieve a balance between performance and resources consumption, a
dual-branch structure is developed by us, whose core operation is DCNv3 that occurs after
LN and before a drop path layer [31]. In our experiment, layer normalization exhibits
strong adaptability with DCNv3 and we make good use of this feature to build our basic
block. Compared to the basic block in InternImage [23], our PDCB uses less parameters to
achieve a better performance owing to the creative unities of double branches features and
skip-connection [26]. The dual-branch blocks can be depicted as Formula (4):

Xi = Drop_Path(γ × DCNv3(LN(X))), (i = 1, 2) (4)

Integer i represents the ith branch in the current block, while γ is a hyper-parameter
used to scale the results and we set γ = 1 in this research.

Drop_path() is a layer of network regularization method, which is proposed for branch
networks. Compared to the common method used to prevent overfitting—drop out [32],
which applies to specific feature maps—Drop_path() involves randomly dropping network
branches and is particularly suitable for multi-branch structured networks.

In summation, the principal procedure of PDCL can be described as Formula (5):

Layerj = FN(MLP(LN(X +
2

∑
i=1

Xi))), (j = 1, 2, 3, 4) (5)

where j is the jth layer in ICNet, and FN means that we recursively call N PDCBs to process
the input.

2.2.5. Deformable Convolutions v3 (DCNv3)

Deformable Convolutions was created in 2017 by Jifeng Dai [33] and further improved
by Xizhou Zhu in 2019 [34]. It has been frequently used in instance segmentation and
object detection-related tasks, since it has an irregular convolution shape, which allows a
more flexible range of receptive fields when scanning images. Owing to the advantages
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listed above, deformable convolution is adapted to this work with the aim of achieving
multi-scale detection of targets.

Regular shapes are always equipped in common convolution such as square (1 × 1,
3 × 3 kernel), rectangle (1 × 7 kernel), and so on, which can traverse images patch by patch
to a generate feature map. This can be summarized by the following formula, taking 3 × 3
kernel as an example:

Mout(x0) = ∑
xn∈C

w(xn) · Min(x0 + xn) (6)

where Min and Mout are the input feature map and output feature map, respectively, and
x0 is the current pixel point handled by the kernel. C represents a grid region of coordinates
that determines the dilation and receptive field size of kernel, the visualization effect is as
shown in Figure 7a and xn traverses the position in C. w(xn) is a corresponding weight
coefficient of enumeration in C.

-1,1

-1,0

-1,-1

0,1

0,0

0,-1

1,1

1,0

1,-1

7×7 image

(a) Classical convolution.

-1,1

-1,0

-1,-1

0,1

0,0

0,-1

1,1

1,0

1,-1

y7

y4

y1

y8

y5

y2

     y9

     y6

     y3

y7

y4

y1

y8

y5

y2

     y9

     y6

     y3

x7

x4

x1

x8

x5

x2

x9

x6

x3

x7

x4

x1

x8

x5

x2

x9

x6

x3

7×7 image

(b) Deformable convolution.

Figure 7. Examples displayed under 3 × 3 kernel within 7 × 7 image. The pentagram of image
represents the center of convolution. The green and blue squares in these two 7 × 7 images represent
the receptive field range of current convolution.

For the DCNv3, an offset matrix and ideas of groups dividing are incorporated into
the convolution operation.

The offset matrix is a learnable convolutional layer that indicates the expansion scale
and direction of the current convolution kernel. This particularity means common convolu-
tion had a deformable receptive field and the visible range of convolution is irregular. The
values in the offset are highly flexible, granting characteristics of long-range dependencies
and spatial aggregation which is similar to that of Transformer.

The concept of a multi-group [35] is initially applied to image classification tasks and
significantly excels in MHSA. Partitioning operators into multiple groups is equivalent to
dividing them into multiple subspaces, facilitating models to focus on different pieces of
information from various zones. The calculation process of deformable convolution v3 is
displayed as

Mout(x0) =
G

∑
g=1

N

∑
n=1

wgmgn · Min(x0 + xn + ∆xgn) (7)

G is the number of groups we set [2, 4, 8, 16] for each PDCL, meaning that the
dimensions of the feature map in each group are Cg = Ci/Gi, where Ci represents the total
channels in Layeri. Positive integer N is the number of sampling pixels that equal |C| in
Formula (6). The offset matrix is denoted by ∆xgn ∈ RH×W×2S, where S is the kernel size
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of convolution and 2S rules the offset in the X and Y directions. wg ∈ RCi×Cg on behalf of
the projection weights of the current group, which is similar to w(xn) in Formula (6). As
for the mgn, it represents a scale factor of xn in this group.

Throughout the stages of growth, pigs are housed in different pigsties, since pigs vary
greatly in their body shape at different periods. Additionally, differences in the capture
distance during imaging can result in variations in individual sizes within the same pen [36].
Moreover, the shooting edges of the camera can also cause image distortion. The truths
mentioned above can easily cause inaccuracies in detection models with datasets collected
from real farming scenarios. With the help of DCNv3, our model can adapt to the changing
feature distributions, which can greatly alleviate the impact of the above issues.

2.3. Experimental Environment Setup

All experiments are conducted under the Pytorch & CUDA framework in a version of
1.12.1 and 11.3, respectively. We use a NVIDIA (Santa Clara, CA, USA) RTX A6000 to train
these models from scratch with a batch size of 32 and 200 epochs.

2.3.1. Data Preprocessing

We set the size of input images to [512, 512], a common setting in many segmentation
models, which creates a balance between segment accuracy and memory consumption.
Apart from this, data augmentation methods are employed to enhance the generalization
capability, including random flipping and random cropping, with a flipping ratio of 50%
and crop size of [512,512].

2.3.2. Optimization Strategy

AdamW [37] is used in our research with the strategy of layer decay [38]. We initialize
the lr = 1 × 10−4 with the weight decay = 5 × 10−2. In addition, we perform a linear
warm-up [39] in [180, 190] epochs with γ = 0.1. The remaining parameter configurations
remain consistent with Mask R-CNN [15] and InternImage [23].

2.3.3. Evaluation Metric

COCO evaluation metrics are used in this research to estimate our results. True Positive
(TP), False Positive (FP), True Negative (TN), False Negative (FN), and Intersection over
Union (IoU) are applied to compute the precision of segmentation. The IoU describes the
relationship between the predicted mask and the ground truth in terms of their overlapping
areas, illustrated in Formula (8).

IoU =
Area(O)

Area(U)
(8)

where Area(O) represents the overlapping area between label and prediction and Area(U)
is the sum of these two areas. Meanwhile, the precision and recall at a specific threshold
are represented by the following formula, where t is the threshold of IoU.

P =
TP(t)

TP(t) + FP(t)
(9)

R =
TP(t)

TP(t) + FN(t)
(10)

AP is calculated using Formula (11) and mAP is the average of AP values across all categories.

AP =
∫ 0

1
P(r) dr (11)

We will display the AP and AR at different IoU thresholds [0.5:0.05:0.95] of results in
the next section.
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Beyond that, we select the Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) to assess the precision of counting [40]. These two metrics are calculated by the
formula as follows:

MAE =
1
N

N

∑
n=1

|yn − ŷn| (12)

RMSE =

√√√√ 1
N

N

∑
n=1

(yn − ŷn)2 (13)

where N is the total number of images and n is nth image in this set. The number of
actual instances in the nth image is denoted by yn, while the number of predicted masks
is indicated by ŷn. MAE and RMSE are inversely correlated with the model’s accuracy
and robustness.

3. Results
3.1. Results on the Test Set

We train our model with an input size of 512 × 512, and we conduct a comparative
experiment between our model and mainstream instance segmentation models in terms of
# params, # FLOPs, AP, and AR. The test results are summarized as follows in Table 1.

ICNet arrives at AP of 71.4% and AP50 of 95.7% with parameters of 33M, the highest
score and the fewest parameters of all the models. In addition, we also outperform other
networks in the rest of the metrics. Compared to SOLOv1 with similar parameter values,
we achieve a 24.1% increase in AP and a 13.1% increase in AP50. In contrast, SOLOv2
obtains AP of 60.6 % and AP50 of 90.9%, which are close to our results, but it uses more pa-
rameters. Compared to the model based on Vision Transformer(ViT) [41] and Mask2Former,
Mask2Former still cannot achieve matching results with different backbones, and due to
the use of ViT’s architecture, its number of parameters is about twice that of ICNet. In
comparison with InternImage, which also builds basic blocks based on DCNv3, ICNet
surpasses InternImage in all metrics using only 33M parameters while InternImage has
parameters of 49M. As for the AP and AP50, the results obtained using ICNet are 3.8% and
2.2% higher than those obtained using InternImage.

ICNet and InternImage have better segmentation accuracy compared to other models
in various metrics, which verifies the superiority of DCNv3 in instance segmentation and
pig counting. Furthermore, the novel design of the dual branch structure allows us to more
effectively extract the feature information contained in the images, while the addition of a
drop path prevents the model from overfitting. In addition, the use of skip connections
helps us to mitigate feature loss after multiple layers of convolutional processing, which is
crucial for information transmission. In addition, the combination of downsampling layers
and the use of BN and LN between layers grants us abundant features compared to other
models. Our ablation experiment also indirectly proves this point.

Table 1. Comparison of the Count1200 test set. The volume of parameters and FLOPs are obtained
across the entire model workflow. We show the key evaluation metrics from the COCO dataset.

Methods Scale Param. # FLOPs AP AP50 AP75 APM APL AR

SOLOv1 5122 36M 106G 47.3 82.6 51.7 9.7 53.4 56.5
SOLOv2 5122 65M 133G 60.6 90.9 67.4 33.2 64.5 67.4

Mask R-CNN 5122 62M 134G 47.8 77.1 54.2 13.3 52.7 54.9
Mask2Former (R) 5122 63M 117G 53.5 85.1 59.9 15.5 58.9 60.0
Mask2Former (S) 5122 69M 125G 54.1 84.6 61.0 15.0 59.7 60.6

InternImage 5122 49M 117G 67.6 93.5 81.4 37.7 71.6 70.7
ICNet 5122 33M 106G 71.4 95.7 86.4 47.5 74.5 74.3

Mask2Former (R) and Mask2Former (S) means that use the ResNet and Swin Transformer as backbones, respec-
tively. The bold numbers in the label represent the optimal value.
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3.2. Ablation Study

We use one branch without drop path and a single LN as a normalization layer to
build up the simple block, which is the foundation of the entire ablation study. We attempt
to add BN, dual branch structure, and drop path for testing. The test results are shown in
the Table 2 below.

The experiment demonstrates that the model’s performance cannot be enhanced by a
single LN layer. Combining BN and LN can better induce and compress data, achieving
70.7% and 74.3% on AP and AR, respectively. In addition, when we introduce the dual
branch structure into the model, the model improves by 0.3% on AP compared to Experi-
ment No. 2, but achieve the same 74.3% on AR as Experiment No. 5, which is the highest
value in the entire experiment. This fully demonstrates the effectiveness of the dual branch
structure. Drop path is introduced in experiment No. 4, but our AR decreases by 0.1% and
our AP only improves by 0.1%, suggesting that the effect of drop path is not significant
for a single branch. We conduct a No. 5 experiment by combining drop path with double
branches, which shows significant improvements in both AP and AR compared to the
initial simple block. We also choose this structure as the foundation for our PDCB.

Table 2. The ablation experiment of ICNet. AP and AR are displayed to represent the improvement
with different module combinations.

No. Simple
Block BN Dual Drop Path AP AR

1
√

66.5 69.7
2

√ √
70.7 73.8

3
√ √ √

71.0 74.3
4

√ √ √
70.8 73.7

5
√ √ √ √

71.4 74.3
The

√
symbol represents that we use this component in the current experiment. The bold numbers in the label

represent the optimal value

3.3. Evaluation of Counting

In the evaluation of counting results, the test results of each model in MAE and RMSE
are shown in the Table 3.

It is evident from the table that ICNet performs best in terms of both MAE and RMSE
(the smaller the MAE value, the higher the model evaluation accuracy, and the smaller the
RMSE value, the stronger the model robustness). Combining it with Table 1 shows that
models with better segmentation performance also have higher accuracy when it comes to
counting. Therefore, the instance segmentation method for pig counting is very feasible
and effective, and the model we build is accurate and robust enough.

Table 3. Comparison of counting result evaluations.

Metrics MAE RMSE

SOLOv1 3.71 4.69
SOLOv2 1.20 1.83

Mask R-CNN 2.86 3.55
Mask2Former (R) 1.73 2.37
Mask2Former (S) 2.39 3.13

InternImage 0.93 1.38
ICNet 0.68 1.07

The bold numbers in the label represent the optimal value.

3.4. Visualization Results

We test ICNet, InternImage and Mask R-CNN on the test set of Count1200 and the
visualization results are displayed below.
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We select scenes with multi scales and different lighting intensities. The visualization
results of Mask R-CNN are shown in Figure 8, showcasing issues such as repeatedly seg-
menting the same pig, missing pigs and identifying the background as pigs, which is a
undesirable situation for detection and counting purposes. Owing to its close accuracy com-
pared with ours, as shown in Figure 9, InternImage exhibits similar detection performance
on large-scale targets to ours, such as in the clear segmentation results in Figure 9a. In
addition, when facing scenes with a large number of objects, InternImage may fail to count
a significant number of pigs, as illustrated in Figure 9b,d. Compared to the rough detection
results of Mask R-CNN and the coarse-grained segmentation results of InternImage, the
masks we produce almost seamlessly fit the pigs and can still be effectively recognized even
when the pigs overlap. We can even accurately segment pigs when they are obstructed by
objects such as the iron pipes in Figure 10a,e,f. Besides, there are few cases of missed or
incorrect detections, which are consistent with the results in the Table 3.

(a) Large-scale objects. (b) Normal condition. (c) Small-scale objects.

(d) Nighttime perspectives. (e) Overlapping. (f) Occlusion.

Figure 8. Visualization results of test set including different situations based on Mask R-CNN. The
numbers on pigs of subfigure (a) represent the identifiers of pigs.

(a) Large-scale objects. (b) Normal condition. (c) Small-scale objects.

(d) Nighttime perspectives. (e) Overlapping. (f) Occlusion.

Figure 9. Visualization results of test set including different situations based on InternImage.
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(a) Large-scale objects. (b) Normal condition. (c) Small-scale objects.

(d) Nighttime perspectives. (e) Overlapping. (f) Occlusion.

Figure 10. Visualization results of test set including different situations based on ICNet.

4. Discussion

To accomplish the goals of instance segmentation and pig counting, a dual-branch
network and a well-prepared dataset are presented in this work. Count1200 is a dataset
which is highly effective in counting and identification tasks owing to the advantages of
instance segmentation. ICNet is a backbone specifically designed for segmentation and
counting, consisting of a sequence of pipe layers and PDCLs which can enable the model
to obtain multi-scale features. A dual branch structure of PDCB is used to design the PDCL
using deformable convolution v3. This model benefits from the characteristics of long-range
dependencies and spatial aggregation provided by DCN in conjunction with the idea of
multi-group design, as shown in the experimental results table (Tables 1 and 3), we achieve
the best performance in both instance segmentation and counting tasks. Moreover, the
visual results, which showcase the seamless masks and highly accurate counting, further
highlight the performance of our dataset and model.

Although the test results of our model are good, far better than those of the rest of
the models, it still encounters a few issues. The masks we predict are correct and accurate
in number, but there are white areas in the middle, failing to completely cover the entire
pig. In addition, our method still has a very small number of false positives and missed
detections. The problems above will be solved in future model enhancements.

5. Conclusions

In this paper, with the help of SAI, a well-curated dataset named Count1200 is created.
Beyond that, leveraging the variable receptive field range of DCNv3 and the robust extrac-
tion capabilities of the dual-branch structure, we develop a network with a small parameter
count and outstanding performance named ICNet. We make good use of the strengths
of our dataset and model to achieve better performance in tasks of instance segmentation
and pig counting. Through a series of repeatable comparative experiments, we validate
that our model exhibits better segmentation and counting capabilities compared to other
models. We intend to further enhance the model by considering both lightweight and
high-precision aspects.
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